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Abstract: The presence of environmental conditions that are suitable for the development of agricul-
tural and cattle-raising activities has favored the expansion of land use in the Brazilian Amazon. This
expansion changes the environmental conditions of aquatic ecosystems by altering the structure of
the streambeds and the physicochemical conditions of the water. Therefore, this manuscript aimed
to assess the effect of changes in environmental conditions along a gradient of different land uses
on the richness and species composition of Gerromorpha (Heteroptera: Hemiptera) communities
in streams from the Brazilian Amazon. We sampled Gerromorpha communities and environmen-
tal variables (physical structure of the habitat and physicochemical characteristics of the water)
in 45 streams in the municipality of Paragominas in the state of Pará, Brazil. We then performed
variation partitioning analyses to assess the relative contribution of habitat structure and water
physicochemical variables on the richness and species composition. The Habitat Integrity Index (HII),
which measures the habitat physical structure, was the best predictor of species richness. The HII and
physicochemical variables were jointly the best predictors of species composition. Our results show
that Gerromorpha communities respond to gradients of environmental anthropization in the Amazon
region, which reinforces the importance of habitat integrity and water quality for the maintenance of
Gerromorpha communities.

Keywords: aquatic insects; water electrical conductivity; environmental predictors; land use;
environmental integrity; Amazon

1. Introduction

Anthropic activities such as agriculture and cattle raising can change the natural
landscape, altering its environmental conditions and resources and resulting in generally
negative impacts on the structure of aquatic communities [1]. These effects are even stronger
for sensitive and complex systems such as lower-order streams [2] because the changes
that take place within the drainage basin also modify the physical structure of the stream,
its environmental integrity, and its water quality [3,4]. The Amazon basin is one of the
largest river basins in the world and consists of a complex network of water bodies [5]. This
hydric system then consists of a hierarchical set of sub-basins that are drained by streams
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that supply the larger Amazon basin [6]. This drainage network naturally passes through
large portions of dry and flooded forests connecting aquatic and terrestrial environments,
providing allochthonous energy to the biota [7].

The main consequences of anthropic changes in the landscape surrounding aquatic
ecosystems are the reduction or total loss of the riparian forests, changes in the stream banks
for the reuse of the streambed or by erosion, soil exposure, and siltation, homogenization of
the streambed by the entrance of sediments into the channel, and a decrease in the diversity
of microhabitats [8–10]. These anthropic changes can go further and cause a decrease in the
abundance of the most sensitive species or even lead them to local extinction. However,
they may also facilitate colonization and promote an increase in the abundance of hardy
and tolerant species, thus changing the structure of aquatic communities [11–13].

Changes in the aquatic community structure, such as changes in richness and species
composition patterns may be a consequence of changes in the environmental conditions
(e.g., air and water temperature, flow speed, depth, channel width, and type of substrate on
the channel and the stream banks) and resource availability (e.g., leaves and wood packs
that are used for shelter and food, nesting sites, and foraging substrates) [14]. The structure
of aquatic communities in Amazonian streams is affected both by environmental variables
related to land-use change (resources and environmental conditions) at the landscape scale,
and variables at the local scale, such as changes in habitat integrity, in the structure of the
channel edges, the type of substrate on the streambed, the presence of leaf and wood packs,
and water quality [15,16].

The Habitat Integrity Index (HII) [17] is often used to quantify the environmental
change in Amazonian streams. It is an important tool because it captures the impacts of
land-use change both at the landscape scale, such as the state of preservation of riparian
forests, and at the local scale, such as environmental changes inside the streams [18],
which can even indirectly reflect aspects of the water quality [19]. Therefore, the HII is
appropriate to predict the distribution of different taxonomic groups such as aquatic insects
of the Ephemeroptera, Plecoptera, Trichoptera, Odonata, and Heteroptera orders [18]. The
HII has also been shown to be more suitable than other landscape metrics to predict the
distribution of Heteroptera insects in anthropized gradients [20].

The Heteroptera (Hemiptera) have been frequently used in studies that evaluate an-
thropized aquatic environments in the Amazon region [15,16,21–23]. The Gerromorpha, an
infraorder within the Heteroptera order, is comprised of semiaquatic individuals that move
on the water surface preying upon other aquatic insects that emerge from the aquatic envi-
ronment, and those that fall from the marginal vegetation. They are considered sensitive to
both natural and anthropic environmental change [24]. Changes in the habitat structure
can alter the physicochemical variables of the water, which in turn have negative effects
on the taxonomic diversity of Gerromorpha [16,20,25] or even change the morphology of
individuals such as wing dimorphism [26].

Previous studies claimed that the Heteroptera were resistant to environmental change [27].
However, more recent studies have shown negative effects of environmental change on
Heteroptera communities [15,16,21,24–26,28]. Ephemeroptera, Plecoptera, Trichoptera, and
Odonata were considered to be more sensitive to losses of habitat integrity in tropical
streams than Heteroptera [18]. However, a recent literature synthesis showed that the
Heteroptera are as efficient as bioindicators as these others. Considering these organisms,
recent studies have shown that anthropic changes can alter species interactions [22] and
diversity metrics such as species richness and composition [16,24,25].

Within this context, the present study aims to assess the effect of land use changes at
local and landscape scales on Gerromorpha species richness and composition in streams
from a region subject to multiple land-uses in the Brazilian Amazon. We hypothesize that
the HII will be a better predictor of the Heteroptera communities than landscape or water
quality variables [20] since this index can reflect both environmental impacts in habitat
structure inside the streams and its surroundings [19,29].
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2. Materials and Methods
2.1. Study Area

We sampled 45 streams varying from first to third order (according to Strahler [30])
located in the municipality of Paragominas, the northeastern state of Pará, Brazil (Figure 1).
The region’s climate is mostly rainy and tropical (Köppen’s “Aw”) with monthly precipi-
tation lower than 60 mm, an average annual temperature of 27.2 ◦C, air humidity of 81%,
and average annual precipitation of 2000 mm [31–33]. The region’s vegetation type consists
of dense rain forests, tropical open forests mixed with lianas and palm trees, and dense
alluvial forests [33].
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The streams were distributed along a gradient of anthropic impact. We selected
streams aiming to encompass drainage microbasins with different amounts of native forest
remnants and anthropized areas [33]. This region is considered a mosaic of land uses due to
its historical land-use patterns. It drains a landscape under the direct and indirect influence
of the deforestation process and the construction of federal roads. The region also exhibits
mechanized agricultural activities, silviculture, urban areas that are important for the cattle
business, and activities that are carried out both by small farmer-colonies and settlements,
and large agribusiness farms (see Gardner et al. [33] and Oliveira-Junior et al. [34] for
more details).

2.2. Data Collection
2.2.1. Biological Sampling

The streams were sampled during the dry season between June and August of 2011
due to the lower stream depth and width, which increases the sampling efficiency. It also de-
creases possible seasonality effects [35–37]. Therefore, the collection of field data in studies
of Heteroptera ecology in Brazil are mostly carried out during the dry season [15,16,21].

We delimited a transect with a length of 150 m, which was divided into ten smaller
sections of 15 m [38,39]. The Gerromorpha were sampled on the water surface. The
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sampling effort was three minutes of active capture in each section with a handnet (18 cm
of diameter and 1 mm mesh) following the protocol adapted from Cabette et al. [40]. The
specimens were identified to species level in the laboratory using a dichotomous key [41–49].
They were then deposited in the Zoological Collection of the Federal University of Pará
(UFPA), in Belém, Pará, Brazil.

2.2.2. Environmental Characteristics

We measured the following four water physicochemical variables in each stream using
a Horiba® multiparameter probe: dissolved oxygen mg/L (DO), electrical conductivity µS
(Cond), temperature ◦C (Temp), and pH.

2.2.3. Habitat Structure

We used the physical habitat structure evaluation protocol [38,39] to characterize the
habitat structure. We then selected 44 variables within this protocol that were pointed
out as important for Heteroptera by the literature [15,16,21,24,26]. A total of 29 of those
variables measure local habitat characteristics, and 15 measure landscape metrics (Table S1).
We also used the Habitat Integrity Index (HII) [17], which is an efficient predictor of tropical
Heteroptera communities in anthropized environmental gradients [18].

2.3. Data Analysis

We considered each stream as a sample unit. The environmental variables were our
predictor variables, and the richness and species composition were our response variables.
The environmental descriptors were divided into three subsets: water physicochemical
variables (1), local habitat variables (2), and landscape variables (3). We used a forward
stepwise model selection procedure for each variable subset using the step function from
the stats base package (version 3.6.2) to reduce the number of variables in the model, thus
reducing model inflation and increasing efficiency. As we had a matrix as our response
variable for the analysis of species composition, we performed a forward model selection for
each variable subset separately using the function forward.sel from the adespatial package
(version 0.3-14) [50]. We also built spatial filters (Principal Coordinates of Neighbour
Matrices) to assess a possible spatial autocorrelation effect on both the species richness
and composition.

We performed a partial redundancy analysis (partial RDA) to assess the effect of the
in-stream environmental conditions and land-use changes at the landscape scale using
the varpart function from package vegan (version 2.5-7) [51]. We Hellinger-transformed
the species matrix to reduce the dominance effect of the most common species. We also
standardized the environmental variables so that they were on comparable measurement
scales. The statistical significance of each component was tested through the RDA function
from package vegan [51]. We could not perform the variation partitioning for species
richness because only one predictor was selected. In this case, we performed a simple linear
regression [52]. All analyses were performed in the R environment (version 3.6.2) [53]
according to the assumptions when they exist.

3. Results
3.1. Community Description

We sampled 2212 individuals distributed in three families, 11 genera, and 36 species.
The Vellidae family (n = 1551) was the most abundant and diverse. Rhagovelia was the
most representative genus (n = 1375) and encompassed 12 species. The most representative
species were: Rhagovelia evidis (n = 683), Cylindrostethus palmaris (n = 535), Rhagovelia elegans
(n = 317), Rhagovelia hambletoni (n = 104), Rhagovelia sp. 6 (angustipes complex) (n = 103), and
Stridulivelia tersa (n = 102) (Table 1).
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Table 1. Description of the Gerromorpha (Heteroptera: Hemiptera) community sampled in streams
from the municipality of Paragominas, Pará, Brazil.

Family Species N. Individuals

Gerridae

Brachymetra lata Shaw, 1933 56
Cylindrostethus palmaris Drake and Harris, 1934 535

Limnogonus aduncus Drake and Harris, 1933 10
Limnogonus cf. ignotus Drake and Harris, 1934 2
Limnogonus recurvus Drake and Harris, 1930 12

Neogerris lotus (White, 1879) 28
Tachygerris adamnsoni (Drake, 1942) 3

Tachygerris celosis (Drake and Harris, 1931) 6

Hydrometridae Hydrometra comata (Torre-Bueno, 1926) 4
Hydrometra guianana (Hungerford and Evans, 1934) 2

Veliidae

Euvelia concava Polhemus and Polhemus, 1984 18
Microvelia longipes Uhler, 1893 1

Microvelia pulchella Westwood, 1834 2
Paravelia bullialata Polhemus and Polhemus, 1984 9

Rhagovelia aff. scitula (Bacon, 1956) 1
Rhagovelia elegans Uhler, 1894 317
Rhagovelia evidis Bacon, 1948 683

Rhagovelia hambletoni Drake and Harris, 1933 104
Rhagovelia jubata Bacon, 1948 58

Rhagovelia robusta Gould, 1931 1
Rhagovelia sp. 1 15
Rhagovelia sp. 2 24
Rhagovelia sp. 3 1
Rhagovelia sp. 4 13
Rhagovelia sp. 5 55

Rhagovelia sp. 6 (angustipes complex) 103
Stridulivelia alia (Drake, 1957) 1

Stridulivelia astralis (Drake and Harris, 1938) 12
Stridulivelia cf. ayacucho Polhemus and Spangler, 1995 3

Stridulivelia quadrispinosa (Hungerford, 1929) 1
Stridulivelia raspa (Hungerford, 1929) 5

Stridulivelia sp. 1 2
Stridulivelia stridulata (Hungerford, 1929) 2
Stridulivelia strigosa (Hungerford, 1929) 16

Stridulivelia tersa (Drake and Harris, 1941) 102
Stridulivelia transversa (Hungerford, 1929) 5

Total 2212

3.2. Effect of Environmental Variables on Community Structure

None of the spatial filters were significantly related to species richness or species
composition, indicating that there was no spatial autocorrelation bias. The water electrical
conductivity remained the best predictor of species composition among the water variables
(R2 = 0.093; F = 4.457; p = 0.002). The HII was the best habitat predictor of species composi-
tion (R2 = 0.075; F = 3.508; p = 0.007) and species richness (R2 = 0.135; F = 6.765; p = 0.012)
(Figure 2).



Hydrobiology 2022, 1 116
Hydrobiology 2022, 1, FOR PEER REVIEW 6 
 

 

 
Figure 2. Linear regression between Gerromorpha (Heteroptera: Hemiptera) species richness and 
Habitat Integrity Index—HII in streams sampled in the municipality of Paragominas, Pará, Brazil. 

The selected predictor variables explained 12% of the variation in species composition. 
Of those, 4% was explained exclusively by the local habitat, which was represented by the 
HII (F = 2.859; p = 0.026), 6% was exclusively explained by water electrical conductivity 
(F = 3.774; p = 0.008), and 2% was explained by the interaction between HII and water 
electrical conductivity (Figure 3). 

 
Figure 3. Variation partitioning of the Gerromorpha (Heteroptera: Hemiptera) species composition 
between the Habitat integrity Index and water electrical conductivity in streams sampled in the 
municipality of Paragominas, Pará, Brazil. 

Figure 2. Linear regression between Gerromorpha (Heteroptera: Hemiptera) species richness and
Habitat Integrity Index—HII in streams sampled in the municipality of Paragominas, Pará, Brazil.

The selected predictor variables explained 12% of the variation in species composition.
Of those, 4% was explained exclusively by the local habitat, which was represented by the
HII (F = 2.859; p = 0.026), 6% was exclusively explained by water electrical conductivity
(F = 3.774; p = 0.008), and 2% was explained by the interaction between HII and water
electrical conductivity (Figure 3).
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4. Discussion

The HII was a good local habitat predictor both of species richness and species com-
position. However, after considering the relative importance of the local habitat variables,
landscape variables, and physicochemical variables, the HII was the single best predic-
tor of species richness, which confirmed our hypothesis. Despite the increase in studies
showing the relationship of aquatic insects with environmental variables, many variables
that are important for structuring communities remain unmeasured or even difficult to
understand [54,55]. These include variables that may be related to hydrology, climate,
biome type, substrate, biotic interactions, or historical factors [56–59]. The water electrical
conductivity was the best predictor of species composition, rejecting our hypothesis for
these components. The changes in the HII and electrical conductivity come from anthropic
impacts, and many studies (for example, [15,16,21,24,26]) have shown that Gerromorpha
communities are modified by anthropic activities.

The Habitat Integrity Index (HII) indirectly measures variations in habitat structure
related to the stream’s degree of conservation [18–20]. The relationship between the HII
and Gerromorpha communities is well known in communities from the Cerrado [15,24,25],
the Amazon Forest [16,21], and other biomes such as the Atlantic Forest, as shown by
Brasil et al. [18]. The Gerromorpha species richness increased with the increase of envi-
ronmental integrity, indicating that the changes caused by land use nearby the stream
channel are essential for the maintenance of these communities, which rely on suitable
habitats for oviposition and foraging [44,60]. Other studies of Odonata [61,62] and EPT
(Ephemeroptera, Plecoptera and Trichopteta) communities [63] showed a relationship be-
tween the communities and the HII, reinforcing the direct relationship with environmental
quality and aquatic insect communities of several orders. The relationship between the
Gerromorpha species composition and the HII was also shown by Cunha and Juen [21]
when they observed changes in species composition through the HII, where more generalist
species were found only in places with low HII, and more specialist ones were found in
places with higher HII.

Electrical conductivity was the most important variable among the water physico-
chemical variables to explain the Gerromorpha communities. This variable represents the
sum of dissolved ions, which directly relates to the nitrate concentration, suggesting that
agricultural activities might be contributing to the variation in this variable in the sample
streams [64]. The water conductivity is positively associated with deforestation [65] and en-
vironmental integrity [29] in tropical environments. There are also indications that changes
in electrical conductivity may result in changes in Heteroptera communities [66,67].

Conductivity has already been indicated as a predictor of Gerromorpha species dis-
tribution in Amazonian streams due to a change in species composition across a gradient
of conductivity [21,28]. Cunha and Juen [21] found an association between more gener-
alist species such as Rhagovelia brunae with high values of conductivity, whereas more
sensitive species such as R. jubata and R. evidis exhibited lower abundances in areas with
lower conductivity. Similar to what we found in this study, Godoy et al. [68] also found
a greater explanation of water conductivity for the abundance of Heteroptera in Cerrado
streams. There are indications that conductivity is one of the main components of the
water in gradients altered by multiple land uses [69], which may also change the water’s
surface tension [58]. Such change would certainly affect the movement and dispersal of
the Gerromorpha communities due to their skater habit [70]. However, there is no evidence
directly showing the possible effect of water conductivity on their skating ability or changes
in water superficial tension.

5. Conclusions

In this study, we conclude that the habitat structure, especially environmental
integrity (represented by the HII), is important in predicting Gerromorpha species richness.
However, we highlight that water characteristics, especially electrical conductivity, also
have significant effects on the structuring of these communities. Therefore, we must better
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understand the processes or mechanisms that drive these relationships to have a better com-
prehension of the distribution of the Gerromorpha communities in areas that are impacted
by changes in land use. We emphasize that the environmental integrity is still an important
predictor of the Gerromorpha communities; however, the water conductivity is also an
important environmental predictor and must be considered. We suggest that experimental
studies must be carried out to evaluate if the relationship between the Heteroptera and
water electrical conductivity is affected by changes in the water’s superficial tension, which
would directly affect the movement ability of skaters on the water surface.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/hydrobiology1010008/s1, Table S1: Description of the sets of variables
used in data analysis.
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