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Abstract: Based on the Hodgkin–Huxley theory, this paper establishes several nonlinear system
models, analyzes the models’ stability, and studies the conditions for repetitive discharge of neuronal
membrane potential. Our dynamic analysis showed that the main channel currents (the fast transient
sodium current, the potassium delayed rectifier current, and the fixed leak current) of a neuron
determine its dynamic properties and that the GHK formula will greatly widen the stimulation
current range of the repetitive discharge condition compared with the Nernst equation. The model
including the change in ion concentration will lead to spreading depression (SD)-like depolarization,
and the inclusion of a Na-K pump will weaken the current stimulation effect by decreasing the
extracellular K accumulation. The results indicate that the Hodgkin–Huxley model is suitable for
describing the response to initial stimuli, but due to changes in ion concentration, it is not suitable for
describing the response to long-term stimuli.

Keywords: Hodgkin–Huxley model; nonlinear system dynamics analysis; Goldman–Hodgkin–Katz
(GHK) formula; Nernst equation; frequency analysis

1. Introduction

Neurons, as the basic structural and functional unit of the nervous system, are elec-
trically stimulated, enabling them to receive, process, and transmit information through
electrical and chemical signals. Neurons can be interconnected to form neural networks,
and their discharge activities often exhibit rich dynamic behaviors such as bifurcation
and chaos. The signals of neurons have complex nonlinear characteristics, making it par-
ticularly important to study the nonlinear dynamics of individual neurons. In the past
100 years, physiologists and mathematicians have conducted extensive research on the
mechanism of their signals [1]. The most important landmark in these studies is the work
of Alan Hodgkin and Andrew Huxley, who developed the first quantitative model called
the Hodgkin–Huxley (HH) model [2].

The establishment of the HH model links neuronal activities with activities of mem-
brane ion channels, which can effectively reveal the mechanism of action potential gen-
eration, providing a foundation for physiological experiments and the study of neuronal
discharge patterns. Although the HH model is derived from experimental results and is
very close to real-world neurons, it is very complex and almost impossible to find its analyt-
ical solution. Therefore, analyzing the discharge behavior of neurons from a mathematical
perspective is very complex. Researchers have developed simplified models such as the
FNH model (a simpler version of the HH model proposed by Fitzhugh and Nagumo in the
1960s) [3], the ML model (a two-variable model proposed by Morris and Lecar in 1981 in
their study of barnacle muscle electrical activity) [4], and the HR model (a three-variable
model proposed by Hindmarsh and Rose) [5]. González-Zapata et al. analyzed bifurcation
diagrams, Lyapunov exponents, and the Kaplan–Yorke dimension of four chaotic neurons
including the HR neuron [6]. These simplified models are good at reflecting the dynamic
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characteristics of the system but lose the original HH structure and biological significance of
the neuron model. Izhikevich reviewed bifurcation mechanisms involved in the generation
of action potentials (spikes) by neurons and summarized basic results in tables [7]. The
HH model forms the basis for studying excitability and is the most important model in all
physiological literature. There are many computations and analytic studies performed with
HH models to account for the rich properties of nonlinear phenomena in excitable cells [8].

Externally applied direct current Iex and high concentration of extracellular potassium
([K]e) are the main factors that excite neurons. Cooley et al. and Rinzel studied the
repetitive discharge in the HH model induced by stable injection current Iex [9,10]. Two
stable equilibrium potentials coexist in the HH model under appropriate Iex and K Nernst
equilibrium potential (VK) conditions [11]. Studying bifurcations in nonlinear dynamical
systems is a keystone of understanding the behavior of neural models [12]. Che et al.
studied bifurcations in the HH model exposed to Iex [13]. Guckenheimer and Labouriau
gave detailed bifurcation diagrams of the HH model in the two-parameter space of Iex and
VK [14]. Fukai et al. studied the global structure of bifurcations in the multiple-parameter
space of the HH model and analyzed the details of Hopf bifurcations using the singularity
theoretic approach [15,16]. Yao et al. analyzed the dynamic characteristic of neural signals
based on the HH model and explored the relationship between the frequency of neural
discharge activities and Iex [17].

Most studies are based on parameter values of squid axons or muscle cells. The
parameters in the HH model are fixed, which means that the ion concentration remains
constant during the state exchange process. As is well known, the ion current in the HH
model is carried by the ion, which leads to changes in ion concentration. However, if
the change in ion concentration is taken into account, there is no convergent solution
for the equilibrium state. In addition, the Nernst equation is used to describe the ion
current in the HH model, while the Goldman–Hodgkin–Katz (GHK) formula is suitable
for situations with significant differences in extracellular and intracellular concentrations.
In this paper, we established a generalized model of the soma of a specific neuron and
analyze its dynamic characteristics: firstly, neurons are simplified into the HH model
and the HH model with the GHK current, and their stability and bifurcation are studied;
secondly, a numerical analysis is conducted on the solution containing ion concentration
exchange; and finally, the effects of the Na-K pump are explored. This paper will provide
a comprehensive understanding of the dynamic characteristics of neuron models when
including ion concentration exchange.

2. Materials and Methods
2.1. The Generalized Model

Based on the reconstruction of a hippocampal CA1 neuron (cell n408 from the
Duke–Southampton Archive of Neuronal Morphology) of a young adult rat, a gener-
alized model of the soma is established, and the membrane potential E is governed by the
ordinary differential equation:

Cm
dE
dt

= −I (1)

where Cm is the specific capacitance of the membrane, E is the membrane potential,
I = INa + IK + IL + Iex is the total cross membrane current, Na current INa = INa,T +
INa,P + INa,Pump, K current IK = IK,DR + IK,A + IK,Pump, and IL means the leak current
described as the Nernst equation:

IL = gL(E − Erest) (2)

INa,T, INa,P, IK,DR, and IK,A are ion currents for specific channels (INa,T is the fast tran-
sient sodium current, INa,P is the persistent sodium current, IK,DR is the potassium delayed
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rectifier current, and IK,A is the transient potassium current) and are described as the
GHK formula:

Iion,Type = mphq
gion,TypeFE

(
[ion]i − exp

(
− zFE

RT

)
[ion]e

)
RT
zF

(
1 − exp

(
− zFE

RT

)) (3)

where R is the universal gas constant, T is the absolute temperature, z is the valence of
ion, F is the Faraday constant, and [ion]i and [ion]e are the intracellular and extracellular
ion = Na or K concentrations, respectively. m and h are the activation and inactivation
gating variables, and they satisfy the following equation [18]:

dm
dt

= αm(1 − m)− βmm (4)

In the model, the membrane currents are carried by ions, and this has been taken into
account as an actual change in ion concentration.

d[ion]i
dt

= − S
FVi

Iion (5)

d[ion]e
dt

= − S
FVe

Iion (6)

where S, Vi, and Ve are the surface area of the cell and the intracellular and extracellular
volumes, respectively. Ve = 0.15 Vi in this model.

One of the best-known ATPases is the Na+–K+ ATPase, which pumps 2 K into the
cell and 3 Na out of the cell. If the model considers changes in ion concentration, it
should include a reaction plan for Na+–K+ ATPase. The pump currents are given by
INa,Pump = 3IPump and IK,Pump = −2IPump where:

IPump =
Imax

(1 + 1.75([K]e)
−1)

2
(1 + 5([Na]i)

−1)
3 (7)

The model parameters and values are given in Table 1.

Table 1. Model parameters and values [19].

Parameter/Unit Value

Cm/F cm−2 7.5 × 10−7

gNa,T/S cm−2 0.001
gK,DR/S cm−2 0.001
gLeak/S cm−2 2 × 10−4

gNa,P/S cm−2 2 × 10−5

gK,A/S cm−2 1 × 10−4

[K]e/mM 3.5
[K]i/mM 133.5

[Na]e/mM 10
[Na]i/mM 140

αm,T αm = −0.32 Em+51.9
1−exp[−(0.25Em+12.975)]

βm,T βm = 0.28 Em+24.89
exp[0.2Em+4.978]−1

αh,T αh = 0.128 exp[−(0.056Em + 2.94)]
βh,T βh = 4

1+exp[−(0.2Em+6)]

αn,DR αm = −0.016 Em+34.9
1−exp[−(0.2Em+6.98)]



AppliedMath 2023, 3 761

Table 1. Cont.

Parameter/Unit Value

βn,DR βm = 0.25 exp[−(0.25Em + 1.25)]
αm,P αm = 1

6(1+exp[−(0.143Em+5.67)])

βm,P βm =
exp[−(0.143Em+5.67)]

6(1+exp[−(0.143Em+5.67)])

αh,P αh = 5.12 × 10−8 exp[−(0.056Em + 2.94)]

βh,P βh = 1.6×10−6

1+exp[−(0.2Em+8)]

αm,A αm = −0.02 Em+56.9
1−exp[−(0.1Em+5.69)]

βm.A βm = 0.0175 Em+29.9
exp(0.1Em+2.99)−1

αh,A αh = 0.016 exp[−(0.056Em + 4.61)]
βh,A βh = 0.5

1+exp[−(0.2Em+11.98)]

Imax/mA cm−2 0.013
S/cm2 1.586 × 10−5

Vi/cm3 2.160 × 10−9

2.2. The Simplified Models

The model established in Section 2.1 is a high-dimensional and complex nonlinear
dynamic system, making it difficult to obtain convergent equilibrium solutions. Therefore,
simplified models are introduced to the study equilibrium solutions and bifurcations of the
system. First is the HH model without considering the ion concentration change. Although
there are various ion channels on nerve cells, we only retain main channel currents (INa,T,
IK,DR and IL) and change their current equations to the Nernst equation; this model is
named as HH1. Then, we added the rest of the currents (INa,P and IK,A) to HH1 and named
this model as HH2. We replaced the ion currents in HH2 from the Nernst equation to
the GHK formula and named this model as GHK. Finally, we included changes in ion
concentration in the GHK model, but did not include the Na-K pump and then named the
model as the generalized model without the Na-K pump. Table 2. lists the classification
and description of the model, where “All” means all of the current channels, that is INa,T,
IK,DR, IL, INa,P and IK,A.

Table 2. Model classification and description.

Model Current Channel Current Equation Ion Concentration Change Na-K Pump

HH1 INa,T, IK,DR, IL Nernst equation No No

HH2 All Nernst equation No No

GHK All GHK formula No No

Generalized model
without the Na-K pump All GHK formula Yes No

Generalized model All GHK formula Yes Yes

3. Results
3.1. Equilibrium Point and Stability Analysis of HH Models

By numerically solving the equilibrium point, we can obtain the relationship be-
tween the equilibrium potential of the HH models (HH1 and HH2) and the stimula-
tion current Iex, as shown in Figure 1a. The first Hopf bifurcation (Hop1) occurs at
Iex = 0.0036215315 mA in HH1 and Iex = 0.0036107258 mA in HH2, and the first Lyapunov
coefficient (l1) of HH1 (l1 = 0.293) and HH2 (l1 = 0.275) is positive, which means that the
bifurcation point is a subcritical bifurcation point and that unstable limit cycles will gener-
ate from it. The second Hopf bifurcation (Hop2) occurs at Iex = 0.0050838178 mA in HH1
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and Iex = 0.0050715831 mA in HH2, and their first Lyapunov coefficients (l1 = −0.0558 in
HH1 and l1 = −0.0569 in HH2) are negative, which means that the bifurcation point is a
subcritical bifurcation point and that stable limit cycles will generate from it. There are
two limit cycle bifurcation points, LPC1 (Iex = 0.00362 mA in HH1 and Iex = 0.00361 mA
in HH2) and LPC2 (Iex = 0.00508 mA in HH1 and Iex = 0.00507 mA in HH2). As shown in
Figure 1b, limit cycles appear at Hopf bifurcations (Hop1 and Hop2) in the HH1 model.
Figure 1c exhibits that a subcritical Hopf bifurcation Hop1 gives rise to unstable limit cycles
with smaller amplitudes for Iex < IHop1, which disappears via collision with another limit
cycle with larger amplitudes at LPC1. There is a period doubling point denoted as PD
(Iex = 0.0036189602 mA in HH1 and Iex = 0.003608894 mA in HH2) which is one of the
routes to chaos.

There are two neutral saddle equilibrium points in HH1, which is the same as the
HH model describing the muscle cell [20], and five neutral saddle equilibrium points in
HH2. The neutral saddle point is not a bifurcation point; it is a special saddle point whose
eigenvalues are all real numbers, but one pair of eigenvalues are the opposite of each other.
At a neutral saddle point, the trajectory of the system solution has symmetry about some
coordinates. Neutral saddle points are generally in the vicinity of the Hop bifurcation and
limit points, implying that there are transition points attached at neutral saddle points. The
equilibrium points are listed in Table 3 after calculating with the Matcont toolkit, where
all curves are computed by the same function that implements a prediction-correction
continuation algorithm based on the Moore–Penrose matrix pseudo-inverse [21].
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To illustrate the response of the HH model to different current stimuli, we simulated
the changes of membrane potentials under three current stimulation intensities (0.0035 mA,
0.0037 mA, and 0.0052 mA). Figure 2a shows that when the stimulation current is less than
the current of Hop1, the membrane potential depolarizes and generates a spike and then
returns to an equilibrium state. Not to mention the fact that no spikes occur when the
current is even less. When the stimulation current is between the currents of HOP1 and
HOP2, the cell membrane potential exhibits repetitive discharge and fails to return to an
equilibrium state (Figure 2b). When the stimulation current exceeds the current of HOP2,
the cell membrane potential begins to discharge repeatedly but quickly stabilizes to a new
equilibrium state (Figure 2c). At this time, the membrane potential is significantly higher
than the potential in the stable state. Figure 2 shows that the results of HH1 and HH2
are identical.
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Table 3. Equilibrium points of HH1 and HH2.

− Model Iex (mA) E (mV) First
Lyapunov Coefficient

Hop1
HH1 0.0036215335 −48.99 0.293

HH2 0.0036107258 −48.98 0.275

Hop2
HH1 0.0050838178 −39.10 −0.056

HH2 0.0050715831 −39.11 −0.056

Neutral Saddle
Equilibrium 1

HH1
0.0037633645 −46.73

0.0038111984 −46.06

HH2

0.0036760695 −47.93

0.00373672154 −46.96

0.0038167752 −45.85

0.004026353 −43.88

0.0041198005 −43.24

LPC1
HH1 0.0036189598 0.0036194737 0.0036174701

HH2 0.0036087739

LPC2
HH1 0.0050838182

HH2 0.0050715845

PD
HH1 0.0036189602

HH2 0.003608894

A neuron is considered as quiescent if its membrane potential is at rest or exhibits
only small amplitude oscillations. These two cases correspond to a stable state or to a small
amplitude limit cycle attractor, respectively. Excitability occurs when a small perturbation
can drive the system from its quiescent state to a large excursion (much larger than the small
amplitude perturbation), also called a spike, before returning to its initial quiescent state [7].
Such excitable behavior does occur when the quiescent state is close to a bifurcation that
allows the system to visit a large amplitude periodic pseudo-orbit as shown in Figure 2a.
When the current is strong enough, the cell starts to fire repeatedly and the system has
stable periodic solutions (Figure 2b). The periodic oscillations exist over a rather wide range
of Iex values (IHop1 < Iex < IHop2). When the current increases to a higher value, the repeated
discharge eventually disappears. After a period of decay and oscillations, the membrane
potential finally returns to a new resting state, which is obviously different from the initial
resting state. The new resting state is known as “nerve block” in neurobiology, and cells
at this state will not be able to generate repetitive discharge under current stimulation,
resulting in response failure [22]. Therefore, it is of great significance for clinical diagnosis
and treatment to study the conditions for the generation and disappearance of stable
periodic solutions in the model.

3.2. Equilibrium Point and Stability Analysis of the GHK Model

The equilibrium points of the GHK model were calculated and are listed in Table 4.
The current of HOP1 (Iex = 0.00054 mA) is less than that of the HH models, and the current
of HOP2 (Iex = 0.38 mA) is more than that of the HH models. The first Lyapunov coefficients
(l1) of HOP1 and HOP2 are both negative, which means that stable limit cycles will be
generated. From Table 4, we can infer that the range of Iex that induces repetitive discharge
in the GHK model is wider than that in the HH models.
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Table 4. Equilibrium points of the GHK model.

Point Properties Iex (mA) E (mV) First Lyapunov Coefficient

Hop1 0.00054 −64.53 −2.073

Hop2 0.38712 −34.44 −0.013

LP 0.00054 −64.34

LPC 0.38712 1.14

N 0.00049 −63.25

0.00052 −63.60

To compare the results with the HH models, we simulated the changes in membrane
potential under four current stimulation intensities (0.0006 mA, 0.0035 mA, 0.0052 mA, and
0.39 mA). Figure 3a shows that a very small Iex = 0.0006 mA can induce repetitive discharge,
though it takes several centiseconds to accumulate the stimulation effect. Figure 3d shows
that the cell membrane potential stabilizes to a higher equilibrium state after discharging
repeatedly under a very high Iex = 0.39 mA.
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3.3. Numerical Simulation of the Generalized Model

The membrane currents of INa and IK will lead to changes in ion concentration, but it
is impossible to obtain the convergent equilibrium solution when considering the actual
changes in ion concentration. Therefore, we conducted an analysis on the generalized
model without a Na-K pump through numerical simulation. Figure 4a shows that the
accumulation of [K]e makes the action potentials appear about 20 s earlier than that of the
GHK model. Figure 4b shows that [K]e accumulation makes the action potential stabilize
to a new equilibrium state more quickly compared with the GHK model (Figure 3d).
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Figure 5 compares the numerical results of the GHK model and the generalized model
without the Na-K pump. Figure 5a shows the presence of continuous action potential
in the GHK model, while Figure 5b shows a short duration of action potential (120 ms),
moving from approximately −40 mV to about −10 mV and gradually returning to its
resting voltage, resulting in spreading depression (SD)-like depolarization.
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Figure 5. Simulation result of E, [Na]I, and [K]e under Iex = 0.0052 mA of the different model. (a) GHK
model A, and (b) the generalized model without a Na-K pump.
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The Na+–K+ ATPase pumps 2 K into the cell and therefore contributes to reducing
[K]e. Figure 6 is the simulation results of the generalized model with the Na-K pump.
Figure 6a shows that there are no action potentials at Iex = 0.0006 mA, which is different
from those of the GHK mode and the generalized model without the Na-K pump. Figure 6b
shows that the SD-like depolarization recovers a little more quickly in the generalized
model with the Na-K pump compared with the generalized model without the Na-K pump.
The maximum [K]e is 105 mM in the generalized model without the Na-K pump, while it is
101 mM in the generalized model with the Na-K pump. in the generalized model without
the Na-K pump, [K]e at 10 s is 88.9 mM, while in the generalized model with the Na-K
pump, it is 85.4 mM.
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model with a Na-K pump. (a) under Iex = 0.0006 mA and (b) under Iex = 0.0052 mA.

4. Discussion and Conclusions

In this paper, we established a generalized model of a specific neuron and its simplified
HH models. The dynamic analysis shows that the main channel currents (INa,T, IK,DR, and
IL) of a neuron determine its dynamic properties. The addition of more channel membrane
currents (INa,P and IK,A) only slightly affects the position of the bifurcation points. The
analysis of the dynamic equation shows that the addition of new channels increases the
eigenvalues of the equilibrium equation, which are saddle points and have no effect on the
bifurcation of the model. Replacing the channel current equation with the GHK formula
from the HH equation will considerably broaden the range of stimulation current that gives
rise to the action potential. The GHK formula is based on the dynamic description of the
membrane current and a nonlinear equation, which leads to greater channel currents. It
should be noted that the parameters and values are derived from a GHK model, and the
membrane current calculated by the Nernst equation is less than the physiological current
simulated by the GHK formula; therefore, the depolarization in the HH model shown in
Figure 2b does not reach the physiological level of 35 mV.

Because there is no convergent equilibrium solution in the generalized model, we
analyzed its dynamic properties through numerical simulation. Figures 3 and 4 show
that the membrane potential in the GHK model and the generalized model are similar
at the onset of current stimulation. Figure 5 shows when the current stimulation lasts
for a long period of time, the action potential in the GHK model persists, while SD-like
depolarization occurs in the generalized model. Figure 5b shows that the trends of changes
in [K]e and E are consistent in the generalized model. [K]e is a factor that induces SD-like
depolarization, which is another topic in neuron analysis [23,24]. As for current stimulation,
[K]e stimulation will also induce action potential; this paper does not discuss this because
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the ion concentration stays constant in HH models. The result of the numerical analysis
shows that HH models are suitable for describing the response to an initial stimulation,
when the change in [K]e is too small to infect the response; if studying the response to a long
stimulation, the change in ion concentration must be included, and thus the generalized
model is suitable, and the numerical oscillation analysis diagrams can be used to analyze
the limit cycles [25]. Figure 6 shows that the inclusion of the Na-K pump will weaken the
current stimulation effect by decreasing [K]e accumulation. More current stimulation is
needed to induce action potential, and E recovers to the rest state more quickly.

The human nervous system consists of thousands of millions of neurons, and efficient
communication among them is critical for the correct function of the central nervous
system [26]. It is important not only for life sciences, but also for the development of
medicine, artificial intelligence, computer science, control science, and information science.
For example, the opportunities for smart applications have increased dramatically as
billions of devices are connected via the Internet [27], and the usefulness of chaotic neurons
for secure image transmission is one aspect [6]. The echo state network (ESN) is one of the
most used machine learning methods for predicting chaotic time, and González-Zapata
et al. analyzed different ESN topologies by modifying the structure and number of internal
connections in the hidden layer, in which neurons are connected randomly [28].

It should be noted that all five models in this paper are based on the HH model; the
GHK model is a nonlinear GHK current instead of the linear Nernst current in the HH
model, and the generalized model includes the variation in the ion concentration. Though
there are many types of neuron models, the HH model still dominates the field, and many
models have been proposed on the basis of corrections to the HH model, and the HH model
applies not only to nerve cells but also to other excitable cells. For example, it is also widely
used in other excitable cells, such as muscle cells.
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