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Abstract: In this article, some prescriptions to define a distribution on the set Q0 of all rational
numbers in [0, 1] are outlined. We explored a few properties of these distributions and the possibility
of making these rational numbers asymptotically equiprobablein a suitable sense. In particular, it will
be shown that in the said limit—albeit no absolutely continuous uniform distribution can be properly
defined in Q0—the probability allotted to every single q ∈ Q0 asymptotically vanishes, while that
of the subset of Q0 falling in an interval [a, b] ⊆ Q0 goes to b− a. We finally present some hints to
complete sequencing without repeating the numbers in Q0 as a prerequisite to laying down more
distributions on it.
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1. Introduction

What could the locution taking at random possibly mean? In its most general sense,
this would indicate that the drawing of an outcome ω out of a set Ω is made according to
any arbitrary (but legitimate) probability measure assigned on the subsets of Ω, and then
that the usual precepts of the probability theory are followed by the result that different
probabilities are normally allotted to distinct subsets of Ω. Traditionally, however, the
meaning of the said locution is more circumscribed and stands rather for assuming that
there is no reason to think that there are preferred outcomes ω ∈ Ω, these instead being
supposed to be equally likely. This is the meaning that we are interested in within this
paper, or—if this notion is not exactly applicable—an asymptotic version of it in some
acceptable limiting sense.

It is well known that for the sets of real numbers, this kind of randomness is enforced ei-
ther by sheer equiprobability (on the finite sets) or by distribution uniformity (on the bounded,
Lebesgue measurable, uncountable sets). On the other hand, infinite, countable sets and un-
bounded, uncountable sets are both excluded from these egalitarian probability attributions
because their elements can be made neither equiprobable (with a non-vanishing probability,
in the countable case), nor uniformly distributed (with a non-vanishing probability density,
in the uncountable case). On these occasions, it is therefore advisable to start with some
proper (neither equiprobable, nor uniform) probability distribution, and then to inquire
if and how this can be made ever closer—in a suitable, approximate sense —either to
an equiprobable distributionor to an uniform one. We will then, respectively, speak of
asymptotic equiprobability and asymptotic uniformity.

The focus of the present inquiry, as will be elucidated in Section 2, are the rational
numbers that—even in a bounded interval—constitute an infinite, countable set, with a
few relevant, additional peculiarities due to them also being dense everywhere among the
real numbers. In Section 3, we provide a procedure to attribute non-vanishing probabilities
to every rational number q = n/m in the interval [0, 1]. Section 4 is instead devoted to the
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aftermath of supposing conditionally equiprobable numerators n, and then Section 5 shows
under which hypotheses our distributions can give rise to an asymptotic equiprobability
of the rationals in [0, 1] such that—without pretending to have an absolutely continuous
(ac) uniform distribution on Q0—the probability allotted to a single q ∈ Q0 vanishes in the
limit, while that of the infinite subset of rationals falling in an interval [a, b] ⊆ Q0 goes to
b− a. Several examples of denominator distributions are explained in Section 6, giving
rise to a few closed formulas. Finally, in Section 7, some concluding remarks are added,
offering a glimpse into the open problem of sequencing all the rational numbers in Q0.

2. Probability on Rational Numbers

Rational numbers Q are famously countable, and hence they can be put in a sequence.
Since they are a dense subset of the real numbers, every rational number is a cluster point,
and thus no sequence encompassing all of them can ever converge, not to say be monotone.
In any case, their countability certainly allows the allotment of discrete distributions with
non-vanishing probabilities to every rational number; since they are infinite, however, they
can never be exactly equiprobable. We will outline in the forthcoming sections a simple
procedure to obtain distributions on all the rationals in [0, 1], a set that we will shortly denote
as Q0 = Q∩ [0, 1], and we will investigate if and how they can be considered asymptotically
equiprobable. We will refrain, for the time being, from extending these considerations to
the whole of Q only because in our opinion, this would not add particular insight into the
discussion at the present stage of the inquiry.

It is, however, advisable to remember right away that the distribution of a rv (random
variable) Q taking values in Q0 must anyhow be of a discrete type, allotting (possibly non-
vanishing) probabilities to the individual rational numbers q ∈ Q0: conceivable continuous
set functions—namely with continuous, albeit perhaps not absolutely continuous, cdf
(cumulative distribution function)—would turn out not to be countably additive, and would
hence not qualify as measures, not to say as probability distributions. Every continuous
cdf for Q would indeed entail that, at the same time, P{Q = q} = 0, ∀q ∈ Q0, and
P{Q ∈ Q0} = 1, while Q0 is apparently the countable union of the disjoint, negligible sets
{q}, which is in plain conflict with the countable additivity. This in particular also rules
out, for the numbers in Q0, the possibility of being in some sense uniformly distributed (an
imaginable surrogate of equiprobability suggested by the cited density of the rationals) for
the numbers in Q0. This property would, in fact, require a cdf of the uniform type for Q:

FQ(x) = P{Q ≤ x} =


0 x < 0
x 0 ≤ x < 1
1 1 ≤ x

which is apparently continuous, and would hence attribute probability 0 to every single q,
but probability 1 to Q0.

We would like to stress, moreover, that the problem focused on in the present paper
is not how to realistically produce rational numbers that are possibly equiprobable at
random; this would be performed trivially, for instance, just by taking random, uniformly
distributed real numbers and then truncating them to a prefixed number n of decimal digits,
as always conducted in practice in every computer simulation of random numbers in [0, 1].
It is indeed apparent that in so doing, we would shrink Q0 to a finite set of rational numbers
(they would be exactly 10n + 1) that could always be made exactly equiprobable, failing
on the other hand to allot a non-vanishing probability to the remaining, overwhelmingly
more numerous elements of Q0. The aim of our inquiry is instead to find a sensible way to
attribute (non-vanishing and possibly not too different from each other) probabilities to
every rational number in Q0. Their practical simulation is not considered our main purpose
here, but just as an eventual side effect of this allocation.

Remark that one could be lured to think that a way around the previous snag could
consist of again drawing again uniformly distributed real numbers, yet truncating the
decimal digits to some random number N taking arbitrary, finite but unbounded integer
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values. Even in this way, however, not every rational number would have a chance to
be produced; the said procedure would indeed a priori exclude all the (infinitely many)
rational numbers with an infinite, periodic decimal representation, for instance, 1/3, 2/3, . . .
and so on. In light of this preliminary scrutiny, the best way to tackle the task of laying
down a probability on Q0 seems then to be to exploit the fractional representation q = n/m
of every rational number by attributing some suitable joint distribution to its numerators
and denominators, considered here as rvs with integer values.

3. Distributions on Q0

Using the well-known diagram used to show how rational numbers are countable, we
will explore two dependent rvs, M and N, with integer values

m = 1, 2, . . . n = 0, 1, 2, . . . , m

acting, respectively, as denominator and numerator of the random rational number Q =
N/M ∈ [0, 1]. Therefore, Q will have the values q = n/m arrayed in a triangular scheme as
in Table 1.

Table 1. Table of rational numbers q = n/m with repetitions: many fractions are reducible to canonical
forms already present in earlier positions.

n

m 0 1 2 3 4 5 6 7 8 . . .

1 0 1
2 0 1/2 1
3 0 1/3

2/3 1
4 0 1/4

2/4
3/4 1

5 0 1/5
2/5

3/5
4/5 1

6 0 1/6
2/6

3/6
4/6

5/6 1
7 0 1/7

2/7
3/7

4/7
5/7

6/7 1
8 0 1/8

2/8
3/8

4/8
5/8

6/8
7/8 1

...
...

. . .

However, this method causes every rational number q to appear infinitely many times
because of the existence of reducible fractions. For example, using the usual notation for
repeating decimals, we have

0.5 = 1/2 = 2/4 = 3/6 = . . . 0.3 = 1/3 = 2/6 = . . . 0.75 = 3/4 = 6/8 = . . .

to avoid repetitions, the rational numbers in [0, 1] should be listed with blanks as in Table 2.
However, this table is not suitable for assigning probabilities directly to its elements, as
there is no simple way to give them a sequential index (for example, which one is the
1000th element?). This is because the numbers νm of different rationals in each row with
the same irreducible denominator m form a rather irregular sequence, as we will briefly
explain in Section 7. Therefore, it is better to use the complete Table 1 and introduce a joint
distribution of N and M first.

P{M = m} m = 1, 2, . . .

P{N = n|M = m} n = 0, 1, 2, . . . , m

P{N = n, M = m} = P{N = n|M = m}P{M = m}
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Table 2. Table of rational numbers q .
= n/m without repetitions: only irreducible fractions are

represented, along with the number νm of the different rationals sharing a common irreducible
denominator m.

n

νm m 0 1 2 3 4 5 6 7 . . .

2 1 0 1
1 2 1/2
2 3 1/3

2/3
2 4 1/4

3/4
4 5 1/5

2/5
3/5

4/5
2 6 1/6

5/6
6 7 1/7

2/7
3/7

4/7
5/7

6/7
4 8 1/8

3/8
5/8

7/8
...

...
...

. . .

For a rational number q, we adopt the notation

q .
= n/m

to indicate that n/m is the irreducible representation of q, namely that n and m are co-primes.
For instance, in the previous examples:

0.5 .
= 1/2 0.3 .

= 1/3 0.75 .
= 3/4

To account for the repeated entries in Table 1, we will allot the probability (the notation
used in this paper follows the usual one of probability textbooks.) to every rational
q .
= n/m ∈ [0, 1].

P{Q = q} =
∞

∑
`=1

P{N = `n, M = `m}

=
∞

∑
`=1

P{N = `n|M = `m}P{M = `m} (1)

This apparently also defines the cdf of Q as (here, of course, x ∈ R)

FQ(x) = P{Q ≤ x} = P{N ≤ Mx} =
∞

∑
m=1

P{N ≤ mx|M = m}P{M = m}

=
∞

∑
m=1

FN(mx|M = m)P{M = m} (2)

and the probability of Q falling in (a, b], for 0 ≤ a < b ≤ 1 real numbers, as:

P{a < Q ≤ b} = FQ(b)− FQ(a)

=
∞

∑
m=1

[
FN(mb|M = m)− FN(ma|M = m)

]
P{M = m} (3)

Notice that the conditional cdf of N can also be given as

FN(x|M = m) = P{N ≤ x|M = m} =
m

∑
n=0

P{N = n|M = m}ϑ(x− n)

=
bxc

∑
n=0

P{N = n|M = m} (4)
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where

ϑ(x) =
{

1 x ≥ 0
0 x < 0

is the Heaviside function, while for every real number x, the symbol bxc denotes the floor
of x, namely the greatest integer less than or equal to x. Therefore, Equations (2) and (3)
can be written in the following form:

FQ(x) =
∞

∑
m=1

P{M = m}
bmxc

∑
n=0

P{N = n|M = m} (5)

P{a < Q ≤ b} =
∞

∑
m=1

P{M = m}(1− δbmac,bmbc)
bmbc

∑
n=bmac+1

P{N = n|M = m} (6)

where the Kronecker delta considers the circumstance that when bmbc = bmac, the ex-
pression becomes vanishing, resulting in bmbc ≥ bmac + 1. Additionally, we possess
expressions for both the expectations and the characteristic function:

E[Q] = E
[

N/M

]
= E

[
1
M

E[N|M]

]
=

∞

∑
m=1

P{M = m}
m

E[N|M = m] (7)

E
[

Q2
]

=
∞

∑
m=1

P{M = m}
m2 E

[
N2
∣∣∣M = m

]
(8)

ϕQ(u) = E
[
eiuN/M

]
=

∞

∑
m=1

P{M = m}
m

∑
n=0

eiun/mP{N = n|M = m}

=
∞

∑
m=1

P{M = m}ϕN(
u/m|M = m ) (9)

where we have also introduced the shorthand notation

ϕN(u|M = m ) = E
[
eiuN |M = m

]
=

m

∑
n=0

eiunP{N = n|M = m}

The specific joint distributions of variables N and M can be chosen in several ways
and we survey a few particular cases in the next sections.

4. Equiprobable Numerators

Firstly, we suppose that for a given denominator m ≥ 1, the m + 1 possible values of
the numerator n = 0, 1, . . . , m are equiprobable in the sense that

P{N = n|M = m} = 1
m + 1

n = 0, 1, . . . , m

We then have (see [1] 0.121)

E[N|M = m] =
m

∑
n=0

n
m + 1

=
1

m + 1
m(m + 1)

2
=

m
2

E
[

N2
∣∣∣M = m

]
=

m

∑
n=0

n2

m + 1
=

1
m + 1

m(m + 1)(2m + 1)
6

=
m(2m + 1)

6
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and hence, from (7) and (8),

E[Q] =
∞

∑
m=1

P{M = m}
m

m
2

=
1
2

∞

∑
m=1

P{M = m} = 1
2

E
[

Q2
]

=
∞

∑
m=1

P{M = m}
m2 E

[
N2|M = m

]
=

∞

∑
m=1

2m + 1
6m

P{M = m}

=
1
3

∞

∑
m=1

P{M = m}+ 1
6

∞

∑
m=1

P{M = m}
m

=
1
3
+

1
6

E
[

1
M

]
V [Q] = E

[
Q2
]
− E[Q]2 =

1
12

+
1
6

E
[

1
M

]
As for the distribution, with n, m co-primes and 0 ≤ n ≤ m, from (1), we have

P{Q = q} =
∞

∑
`=1

P{M = `m}
`m + 1

q .
= n/m (10)

which is independent of n and relies solely on the value of the irreducible denominator m.
Furthermore, the characteristic Function (9) reads

ϕN(u|M = m ) =
1

m + 1

m

∑
n=0

eiun ϕQ(u) =
∞

∑
m=1

P{M = m}
m + 1

m

∑
n=0

eiun/m

while for the cdf (5), we have, from (4),

FN(mx|M = m ) =
1

m + 1

m

∑
n=0

ϑ(mx− n) =


0 x < 0
bmxc+1

m+1 0 ≤ x < 1
1 1 ≤ x

FQ(x) =
∞

∑
m=1

P{M = m}
m + 1

m

∑
n=0

ϑ(mx− n)

=


0 x < 0

∑m≥1 P{M = m} bmxc+1
m+1 0 ≤ x < 1

1 1 ≤ x
(11)

and the probability (6) with 0 ≤ a < b ≤ 1 becomes

P{a < Q ≤ b} =
∞

∑
m=1

P{M = m}bmbc − bmac
m + 1

(12)

It is clear that, with the exception of the expected value E[Q] = 1/2 , all these quan-
tities are influenced by the selection of the denominator distribution. However, we will
demonstrate in the subsequent section that, given reasonable conditions on the denomina-
tors M, the distribution of Q can indeed be made arbitrarily close to, though not precisely
coincident with, a uniform distribution on the interval [0, 1]. This behavior is what we will
refer to as asymptotic equiprobability.

5. Asymptotic Equiprobability

Considering the equiprobable numerators introduced in the preceding section, where
we denote the distribution of M as pm = P{M = m} and the supremum of all its values as
s, let us now consider a sequence of denominators Mkk≥1 with corresponding distributions
pm(k)k≥1. Furthermore, let sk approach zero as k tends to infinity in a manner such that

lim
k

sk ln k = 0 (13)
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To put it differently, we examine a sequence of distributions that progressively become
flatter and approach zero uniformly, consequently leading to increasingly equiprobable
denominators. Illustrative examples of such sequences for various values of k (where k
takes on the values 1, 2, . . .) include the sequence of finite equiprobable distributions

pm(k) =
{ 1/k m = 1, 2, . . . , k

0 m > k

where sk =
1/k

k−→ 0 and (13) is satisfied; that of the geometric distributions

pm(k) = wk(1− wk)
m−1 m = 1, 2, . . .

with infinitesimal wk so that sk = wk
k−→ 0 : (13) is satisfied with a suitable choice of wk;

and finally, that of the Poisson distributions

pm(k) = e−λk
λm−1

k
(m− 1)!

m = 1, 2, . . .

with divergent λk, where again the modal values are infinitesimal: we know indeed that

a Poisson distribution attains its maximum in bλkc+ 1, so that for λk
k−→ +∞, its modal

value sk essentially behaves as (see [1] 8.327.1)

sk = e−λk
λ

λk−1
k

Γ(λk)
=

1
√

2πλk
(
1 + O(λ−1

k )
) k−→ 0

In this case, (13) is also fulfilled through a suitable choice of λk

Lemma 1. Within the aforementioned notations and under the given conditions, we have

µk = E
[

1/Mk

]
=

∞

∑
m=1

pm(k)
m

k−→ 0 (14)

Proof. The positive series defining µk is certainly convergent because

µk =
∞

∑
m=1

pm(k)
m

<
∞

∑
m=1

pm(k) = 1

and, hence, we can write

µk =
∞

∑
m=1

pm(k)
m

=
k

∑
m=1

pm(k)
m

+ Rk

where

Rk =
∞

∑
m=k+1

pm(k)
m

k−→ 0

is an infinitesimal remainder. Remark that here k plays the roles of index of the distribution
sequence as well as the cut-off of the series.

On the other hand, under our stated conditions,

k

∑
m=1

pm(k)
m

< sk

k

∑
m=1

1
m

= sk Hk
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where Hk denotes the kth harmonic number, namely the sum of the reciprocal integers up to
1/k. It is well known ([1] 0.131) that, for k → ∞, Hk grows as ln k, so using (13), we have

sk Hk
k−→ 0, and finally µk = sk Hk + Rk

k−→ 0.

Theorem 1. If Q = N/M and FQ(x) is its cdf , then, given the notation and conditions outlined
above, we have

lim
k

P{Q = q} = 0 lim
k

P{a < Q ≤ b} = b− a (15)

lim
k

FQ(x) =


0 x < 0
x 0 ≤ x < 1
1 1 ≤ x

(16)

Proof. Since our series have positive terms, the first result in (15) follows from (10) and (14)
because, with q .

= n/j,

P{Q = q} =
∞

∑
`=1

p`j(k)
`j + 1

<
∞

∑
m=1

pm(k)
m + 1

<
∞

∑
m=1

pm(k)
m

= µk
k−→ 0

As for the second result in (15), since for every real number x it is x− 1 ≤ bxc ≤ x, for
every k = 1, 2, . . ., and 0 ≤ a < b ≤ 1, we have, from (12),

∞

∑
m=1

pm(k)
m(b− a)− 1

m + 1
≤ P{a < Q ≤ b} ≤

∞

∑
m=1

pm(k)
m(b− a) + 1

m + 1

namely,

b− a + (a− b− 1)
∞

∑
m=1

pm(k)
m + 1

≤ P{a < Q ≤ b} ≤ b− a + (a− b + 1)
∞

∑
m=1

pm(k)
m + 1

so that, since a− b− 1 ≤ 0 and a− b + 1 ≥ 0, it is

b− a + (a− b− 1)µk ≤ P{a < Q ≤ b} ≤ b− a + (a− b + 1)µk

and the second result (15) follows again from (14). Finally, in a similar way, we find,
for (16), that

∞

∑
m=1

pm(k)
mx

m + 1
≤ FQ(x) ≤

∞

∑
m=1

pm(k)
mx + 1
m + 1

0 ≤ x ≤ 1

namely,

x− x
∞

∑
m=1

pm(k)
m + 1

≤ FQ(x) ≤ x + (1− x)
∞

∑
m=1

pm(k)
m + 1

and, hence,
x− x µk < FQ(x) < x + (1− x)µk

so that, in this case, the result also follows from (14).

This theorem reveals that as the upper limit k approaches infinity; although the
probability associated with individual rational numbers tends to vanish, the probability of
these numbers grouped into intervals remains substantial. This behavior bears a striking
resemblance to the behavior observed in continuously distributed real rvs. Nevertheless,
due to the factors discussed in Section 2, it is important to emphasize that the previous
result does not imply the possibility of achieving a uniform limit distribution on Q0 (as
such a distribution does not exist). Instead, it suggests that our stochastic rational numbers
Q—at least for denominators m distributed in a fairly flat way, and numerators n that are
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conditionally equiprobable within the range of 0 to m—tend to behave asymptotically like
a uniform distribution within the interval [0, 1]. This aligns well with our intuitive concept
of selecting rational numbers randomly. It is worth noting in this context that the variance is
also given by

V [Q] =
1
12

+
1
6

E
[

1
M

]
=

1
12

+
µk
6

k−→ 1
12

again in agreement with an approximate uniform distribution in [0, 1].

6. Denominator Distributions
6.1. Geometric Denominators

A few closed formulas about the rv Q are available for particular denominator distribu-
tions: let us suppose, for instance, that the denominator M is geometrically distributed as

P{M = m} = w (1− w)m−1 w > 0, m = 1, 2, . . .

In this case, we first find

E[M] =
1
w

E
[

1
M

]
=

∞

∑
m=1

w(1− w)m−1

m
=

w
1− w

∞

∑
m=1

(1− w)m

m
= −w ln w

1− w

and, hence,

V [Q] =
1
12
− w ln w

6(1− w)

while for the cdf we can not go beyond its formal definition

FQ(x) =


0 x < 0

∑m≥1 w (1− w)m−1 bmxc+1
m+1 0 ≤ x < 1

1 1 ≤ x

As for the Q discrete distribution instead, taking q .
= n/m, we find with j = `− 1 the

analytic expression

P{Q = q} =
∞

∑
`=1

w(1− w)`m−1

`m + 1
= w(1− w)m−1

∞

∑
`=1

(1− w)m(`−1)

`m + 1

= w(1− w)m−1
∞

∑
j=0

(1− w)mj

m(j + 1) + 1

=
w(1− w)m−1

m + 1 2F1

(
1, 1 + 1/m ; 2 + 1/m ; (1− w)m

)
(17)

where 2F1(a, b; c; z) is a hypergeometric function [1] that quantifies the deviation of P{Q = q}
from the corresponding joint probability of N, M

P{N = n, M = m} = w(1− w)m−1

m + 1

This formula allows a graphic representation of P{Q = q} as a function of the irre-
ducible denominators m displayed in Figure 1, where it is clear how the initial (m = 1)
ordering of the probabilities (increasing with the w values going from w = 0.001 to w = 0.9)
becomes totally overturned for a large enough m. We remark that each value of the proba-
bility (17) should be considered to be attributed to every rational number with the same
m as the irreducible denominator. For instance, see Table 2; for m = 1, we obtain the
probability of q .

= 0 and 1; for m = 2, the probability of q .
= 1/2 alone; for m = 3, that of

q .
= 1/3 ,2 /3 ; for m = 4, that of q .

= 1/4 ,3 /4 ; . . . ; and so on. This observation enables us,
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in particular, to avoid a potential misinterpretation. Indeed, we note that, while it might
seem at first glance that

∞

∑
m=1

m

∑
n=0

P{N = n, M = m} =
∞

∑
m=1

m

∑
n=0

w(1− w)m−1

m + 1
=

∞

∑
m=1

w(1− w)m−1 = 1

we find instead

∞

∑
m=1

m

∑
n=0

w(1− w)m−1

m + 1 2F1

(
1, 1 + 1/m ; 2 + 1/m ; (1− w)m

)
< 1

as can be seen from the fact that for 0 < w < 1

2F1

(
1, 1 + 1/m ; 2 + 1/m ; (1− w)m

) { = 1 m = 1
< 1 m = 2, 3, . . .

Figure 1. Probabilities (17) attributed to rational numbers as a function of the irreducible, geo-
metrically distributed denominators m, and for decreasing (0.9, 0.5, 0.1, 0.01, 0.001) values of w: by
choosing different m intervals, the pictures show how these probabilities level down to infinitesimal
equiprobability for w→ 0.

This is not in contradiction with the mandatory requirement that

∑
q∈Q0

P{Q = q} = 1 (18)

precisely because, as previously remarked, the probability associated to an m must be
attributed to several different rational numbers q; if νm is the number of rationals q that
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have m as its irreducible denominator, then we should rather pay attention to ascertain the
normalization in the form

∑
q∈Q0

P{Q = q} =
∞

∑
m=1

m

∑
n=0

νm
w(1− w)m−1

m + 1 2F1

(
1, 1 + 1/m ; 2 + 1/m ; (1− w)m

)
=

∞

∑
m=1

νm w(1− w)m−1
2F1

(
1, 1 + 1/m ; 2 + 1/m ; (1− w)m

)
= 1

We stress that confirming this result—which we can confidently establish through
construction and definition—proves to be challenging when attempting direct calculations.
This difficulty arises due to the lack of a readily available closed-form expression for the
sequence νm. The behavior of this sequence is rather irregular, though it demonstrates an
overall upward trend on average. This can be observed from an empirical plot of its initial
values, depicted in Figure 2. We will defer a more detailed discussion on this matter to
Section 7, where we will provide additional insights. In particular, we will demonstrate
how the preceding normalization condition can be employed for stepwise computations of
the νm values.

Figure 2. Numerosity νm of the different rational numbers q .
= n/m sharing a common, irreducible

denominator m.

6.2. Poisson and Equiprobable Denominators

When the denominators are distributed according to different (albeit simple) laws, we
no longer have access to elementary closed forms for P{Q = q}. For instance, if M follows
a Poisson distribution, we have

P{M = m} = e−λ λm−1

(m− 1)!
λ > 0, m = 1, 2, . . .

we find E[M] = 1 + λ and

E
[

1
M

]
=

∞

∑
m=1

e−λ

m
λm−1

(m− 1)!
=

e−λ

λ

∞

∑
m=1

λm

m!
=

e−λ

λ

(
∞

∑
m=0

λm

m!
− 1

)
=

1− e−λ

λ



AppliedMath 2023, 3 659

while for the variance, we have

V [Q] =
1

12
+

1− e−λ

6λ

but the cdf is

FQ(x) =


0 x < 0
e−λ ∑m≥1

λm−1

(m−1)!
bmxc+1

m+1 0 ≤ x < 1
1 1 ≤ x

and for the discrete distribution, taking q .
= n/m, we find

P{Q = q} =
∞

∑
`=1

e−λ

`m + 1
λ`m−1

(`m− 1)!

with no closed expression readily available.
Considering, instead, denominators M taking only a finite number k = 1, 2, . . . of

equiprobable values m, we have:

P{M = m} =
{ 1/k m = 1, 2, . . . , k

0 m > k

We then have

E[M] =
k + 1

2
E
[

1
M

]
=

1
k

k

∑
m=1

1
m

=
Hk
k

and, hence,

V [Q] =
1

12
+

Hk
6k

while for the cdf it is

FQ(x) =
1
k

k

∑
m=1

bmxc+ 1
m + 1

and the discrete distribution probabilities are

P{Q = q} = 1
k

bk/mc

∑
`=1

1
`m + 1

q .
= n/m

where, since m ≤ k, it is always bk/mc = 1, 2, . . ..
Even in this case, we have no closed formulas to show. Since the sums involved are

now always finite, a simple—but essentially trivial—technique for simulating an asymp-
totically equiprobable sample of rational numbers within the interval [0, 1] seems to emerge.
The approach involves several steps. Begin by selecting a sufficiently large value k. Then,
randomly select an integer m from the equiprobable set of numbers 1, 2, . . . , k. Subsequently,
choose another random integer n from the equiprobable set of numbers 0, 1, . . . , m, and
calculate q = n/m. By repeating this process a substantial number of times, an almost uni-
formly distributed sample within the range [0, 1] can be generated, as depicted in Figure 3.
Nevertheless, it is important to note that the approach has limitations, as mentioned earlier
in Section 2. Not every rational number in Q0 would have an opportunity to be drawn
using this method, as only a finite subset of these numbers would be taken into account.
Although, in theory, this finite set of numbers could be made exactly equiprobable, the
infinitely numerous remaining rational numbers would be entirely excluded and assigned
a probability of precisely zero.



AppliedMath 2023, 3 660

Figure 3. Typical histogram of the relative frequencies of a sample of 105 random rationals generated
following the procedure described in Section 6.2: here, the maximum value of the equiprobable
denominators is chosen to be k = 105.

7. Final Remarks: Sequencing Rational Numbers

Other examples of distributions on the rational numbers in [0, 1] are, of course, possible.
For instance, given 0 < p < 1 and for a given denominator m = 1, 2, . . ., it is possible to
suppose that the numerators are binomially—instead of equiprobably—distributed as

P{N = n|M = m} =
(

m
n

)
p(1− p)m−n n = 0, 1, . . . , m

By choosing then a suitable distribution for the denominator M, we can define the
global distribution of Q = N/M. However, rather than indulging in displaying these further
examples, we would like to conclude this paper with a few remarks about a particular
residual open problem.

Due to the countable nature of Q0, as we have already said, its elements within the
range 0 ≤ q ≤ 1 can be systematically organized into a sequence. To simplify the process
of assigning a distribution to Q0, it would be immensely advantageous if this sequence
could encompass all rational numbers within [0, 1] without any repetitions. Achieving this
arrangement, however, requires identifying patterns that govern such sequence. This, in
turn, would enable us to easily determine both the rational number q associated with a
given index k and, conversely, the index k corresponding to a specific rational number q. Yet,
this endeavor is complicated by the inherent irregularity present in the sequence of entries
in the triangular table, such as the unpredictable occurrences of prime numbers among the
denominators m. Notably, even the presence of prime numbers—which uniquely identify
rows without gaps between the extremes—does not follow a readily discernible pattern.
Nonetheless, it is evident that effectively sequencing all numbers in Q0 hinges on obtaining
insights into νm—specifically, the count of non-blank entries in the mth row of Table 3.
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Table 3. Table of rational numbers q .
= n/m without repetitions, along with the progressive number

νm of the different rationals sharing a common irreducible denominator m, and their sums σm.

n

σm νm m 0 1 2 3 4 5 6 7 8 9 10

1 2 1 0 1
1/2 1 2 1/2
1 2 3 1/3

2/3
1 2 4 1/4

3/4
2 4 5 1/5

2/5
3/5

4/5
1 2 6 1/6

5/6
3 6 7 1/7

2/7
3/7

4/7
5/7

6/7
2 4 8 1/8

3/8
5/8

7/8
3 6 9 1/9

2/9
4/9

5/9
7/9

8/9
2 4 10 1/10

3/10
7/10

9/10
5 10 11 1/11

2/11
3/11

4/11
5/11

6/11
7/11

8/11
9/11

10/11
...

...
...

...
...

While not attempting an exhaustive treatment of this topic, we will focus on several
observations concerning some basic properties of the numbers νm (representing the count
of rational numbers with a common irreducible denominator m in a row of Table 3) and
σm (indicating the sum of these rational numbers). To begin, it is worth noting that the
normalization condition (18) can be employed to derive a systematic method for iteratively
computing the values of νm. For example, as detailed in Section 6.1, when denominators
follow a geometric distribution and numerators are conditionally equiprobable, the dis-
tribution of Q is expressed by (17). To satisfy the normalization (18), the number νm of
equiprobable numbers sharing the same irreducible denominator must be taken into con-
sideration. It is apparent that by setting z = 1− w in (17), the normalization condition (18)
transforms into

∑
q∈Q0

P{Q = q} = 1− z
z2

∞

∑
m=1

νm

∞

∑
`=1

zm`+1

m`+ 1
= 1

namely, with a power expansion

∞

∑
m=1

νm

∞

∑
`=1

zm`+1

m`+ 1
=

z2

1− z
=

∞

∑
j=0

zj+2 (19)

This relation can be used to find the values of νm by equating the coefficients of the
identical powers of z. Indeed, writing the first terms of (19), we find

ν1

(
z2

2
+

z3

3
+

z4

4
+

z5

5
+ . . .

)
+ ν2

(
z3

3
+

z5

5
+

z7

7
+

z9

9
+ . . .

)
+ ν3

(
z4

4
+

z7

7
+

z10

10
+

z13

13
+ . . .

)
+ ν4

(
z5

5
+

z9

9
+

z13

13
+

z17

17
+ . . .

)
+ . . .

= z2 + z3 + z4 + z5 + . . .
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and, hence, we progressively have

ν1 /2 = 1 ν1 = 2
ν1 /3 +

ν2 /3 = 1 ν2 = 1
ν1 /4 +

ν3 /4 = 1 ν3 = 2
ν1 /5 +

ν2 /5 +
ν4 /5 = 1 ν4 = 2

. . . . . .

and so on, in agreement with the corresponding entries of Table 3. It is crucial to emphasize
that this procedure cannot rely on the specific distribution of Q since the sequence νm
remains constant, and the normalization condition (18) must hold for any valid distribution.

To conclude, we will outline a few elementary properties of νm and σm that can be
instrumental for future advancements. Here, m = 1, 2, . . . represents the denominators and
n = 0, 1, . . . , m represents the numerators. We term them accepted when n/m appears in
Table 3, meaning it is an irreducible fraction. Here are the properties:

1. νm ≤ m − 1 for m ≥ 2: in our table n = 0 and n = m are accepted only for m = 1
so that, in every row with m ≥ 2, the first and last number are always missing;
then, apparently, νm = (m + 1)− 2 = m− 1; in particular, νm = m − 1 only, for m
prime number.

2. For m ≥ 3, if n = k ≥ 1 is accepted, then n = m − k ≤ m − 1 is also accepted
because, if k/m is irreducible, then (m−k)/m = 1− k/m is also irreducible, namely, the
accepted values always show up in pairs; in particular, since n = 1 is always accepted,
then n = m − 1 is also always accepted, and hence, νm ≥ 2 for m ≥ 3 (the two
numbers coincide for m = 2, so that ν2 = 1).

3. νm always is an even number for m ≥ 3 because, according to point 2, the accepted
numerators n always show up in pairs; moreover, if m ≥ 3 is even, then n = m/2 is
not accepted because, for m = 2` (and ` ≥ 2), the numerator would be n = m/2 = `,
and n/m = `/2` would be a reducible fraction.

4. For m ≥ 3, the sum of an accepted pair always is 1 because we are adding k/m and
(m−k)/m = 1− k/m; as a consequence, the sum of the irreducible fractions sharing a
common denominator m is σm = νm /2 because there are νm /2 accepted pairs; looking,
moreover, at Table 3, we see that this last result also holds for m = 1 (ν1 = 2, σ1 = 1)
and m = 2 (ν2 = 1, σ2 = 1/2).

8. Conclusions (Written by Giovanni M. Cicuta)

Let us summarize the findings of this work. The goal of the work is to define a uniform
probability distribution to every rational number q ∈ [0, 1]. This does not seem to have
practical applications today, but it is an intriguing problem. Indeed, it may only be achieved
as a limiting process. The main steps are:

For every ratio of pair of random variables N/M, with n ≤ m, a uniform distribution
for the random variable N is chosen, for fixed m. Next, a sequence, indexed by a parameter
k of distributions, is chosen for the random variable M, the denominator.

The k-dependent distribution is increasingly more flat as k→ ∞.
In terms of these distributions, a k-dependent probability distribution P{Q = q} is

defined in Equation (1), for any q = n/m , 0 ≤ q ≤ 1, where the pair n, m are co-primes. It
is defined as asymptotically equiprobable. Theorem 1 asserts that all the desired properties
for the probability distribution are achieved through this procedure.

Section 6 provides examples of the distributions for the denominator and detailed evaluations.
Section 7 is not probabilistic. The proof of the countability of rational numbers by G.

Cantor provides a sequence of all fractions n/m. Several other sequences were written in
the decades following this proof. In all of them, every rational number q appears several
times (an infinite number of times). One would like to define a sequence of all rational
numbers q ∈ [0, 1], such that the sequence of fractions q = n/m would only include the
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pair n, m as co-primes. In Section 7, some properties of the occurrence of repeated fractions
are obtained.

If the desired sequence of rationals numbers without repetitions could be built, many
probability distributions could be proposed for the elements of the sequence.
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