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Abstract: An algebraic system is introduced which is very useful for performing scattering calcu-
lations in quantum field theory. It is the set of all real numbers greater than or equal to −m2 with
parity designation and a special rule for addition and subtraction, where m is the rest mass of the
scattered particle.
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1. Introduction and Formulation

In physics, quantum field theory (QFT) was developed to describe structureless el-
ementary particles (e.g., electrons, quarks, photons, etc.) and their interaction with each
other and with their environment [1–3]. A graphical technique to account for physical
processes in QFT (e.g., scattering) is using diagrams known as Feynman diagrams [4].
These consist of points (vertices) connected by lines (propagators) [5,6]. The lines represent
the free propagation of elementary particles and the points represent the interaction among
particles meeting at those points. On the other hand, a QFT for particles with structure
has recently been proposed by the first author [7]. In addition to the usual formulation of
conventional QFT, the new theory relies predominantly on the properties of orthogonal
polynomials. In the remainder of this introductory section, we summarize the formulation
of this theory, and in Section 2, we address scattering in the theory and show how a novel
algebraic system appears naturally. In Section 3, we provide a rigorous mathematical
definition of this algebraic system, and in Section 4, we demonstrate how the scattering
calculation is carried out in the new theory using Feynman diagrams, utilizing the novel
algebraic system. Finally, we end with a brief summary and conclusion in Section 5.

One way to represent free scalar particles in QFT is to utilize solutions of the Klein–
Gordon wave equation in (3+1)-dimensional Minkowski space–time that reads:

(∂2
t −

→
∇

2
+ m2)Ψ(t,

→
r ) = 0 (1)

where m is the rest mass of the scalar particle, and we have adopted the relativistic units
} = c = 1. Recently, a formulation of QFT for elementary particles that have internal
structure was developed in which the quantum field operator Ψ(t,

→
r ) is written as a Fourier

expansion over the energy domain consisting of continuous and discrete components:

Ψ(t,
→
r ) =

∫
Ω

e−iEtψ(E,
→
r )a(E)dE +

N

∑
j=0

e−iEjtψj(
→
r )aj (2)
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The integral over Ω represents the continuous energy spectrum of the particle, whereas
the sum represents its structure, which is resolved in the energy and is of size N + 1. This
formulation of QFT is referred to by the acronym SAQFT, which stands for “Structural
Algebraic QFT” and could be useful in treating elementary particles that are thought
to be structureless at low-energy scale [7]. We take Ω to stand for the single energy
interval E2 ≥ m2 and use 0 ≤ E2

j < m2. The objects a(E) and aj are field operators
(the vacuum annihilation operators) that satisfy the conventional commutation relations:[

a(E), a†(E′)
]
= δ(E− E′) and

[
ai, a†

j

]
= δi,j.

Now, the continuous and discrete energy kernels in the Fourier expansion (2) have
distinct properties, but both are pointwise finite in space. The discrete kernel ψj(

→
r ) is

confined and vanishes asymptotically, whereas the continuous kernel ψ(E,
→
r ) remains

asymmetrically finite. Nonetheless, we can find a complete set of basis functions in space,
where we can expand both kernels using elements of the same basis but with different
types of expansion coefficients. If such a basis set is designated as {φn(

→
r )}, then we can

write these Fourier energy components as the following pointwise convergent series:

ψ(E,
→
r ) =

∞

∑
n=0

An(E)φn(
→
r ) := A0(E)

∞

∑
n=0

pn(z)φn(
→
r ) (3a)

ψj(
→
r ) =

∞

∑
n=0

Bn(Ej)φn(
→
r ) = B0(Ej)

∞

∑
n=0

pn(zj)φn(
→
r ) (3b)

where z is some proper function of the energy called the spectral parameter, which is to
be determined, and p0(z) = 1. For scalar particles, we require that {φn(

→
r )} satisfy the

following differential relation:

−
→
∇

2
φn(
→
r ) = αnφn(

→
r ) + βn−1φn−1(

→
r ) + βnφn+1(

→
r ) (4)

where {αn, βn} are real constants such that βn 6= 0 for all n. Using (4) in the free Klein–
Gordon wave Equation (1) produces the following algebraic relation:

zpn(z) = αn pn(z) + βn−1 pn−1(z) + βn pn+1(z) (5)

for n = 1, 2, 3, . . ., giving z = E2 − m2, zj = E2
j − m2. This is a symmetric three-term

recursion relation that makes {pn(z)} a sequence of polynomials in z with the two initial
values p0(z) = 1 and p1(z) =

z−α0
β0

. On the other hand, for spinor particles and due to the
multiplicity of the quantum field components, the basis consists of a number of sets equal
to the number of field components. For example, in 3+1 space–time, the spinor quantum
field Ψ↑↓(t,

→
r ) is a four-component field, and the two-component basis sets {φ±n (

→
r )} are

required to satisfy:

−i
→
σ ·
→
∇φ−n (

→
r ) = cnφ+

n (
→
r ) + dnφ+

n−1(
→
r ) (6a)

−i
→
σ ·
→
∇φ+

n (
→
r ) = cnφ−n (

→
r ) + dn+1φ−n+1(

→
r ) (6b)

where {→σ} are the three 2× 2 Pauli spin matrices and {cn, dn} are real constant parameters.
Using (6) in the coupled four-component Dirac equation, we also obtain the three-term
recursion relation (5), but for {p↑↓n (z)}, corresponding to two sets of recursion coefficients
{α↑↓n , β↑↓n } that depend differently on the constants {cn, dn}. For more details on the spinor
formulation in SAQFT, interested readers are referred to Appendix B in ref. [7].

The Favard theorem [8] (also known as the Shohat–Favard theorem [9] or the spectral
theorem [10]) states that a sequence of polynomials satisfying the three-term recursion
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relation (5) with βn 6= 0 for all n is an orthogonal and a complete set. In general, the
polynomial solution of Equation (5) satisfies the following orthogonality relation [10–12]:

∫
Ω

ρ(z)pn(z)pm(z)dz +
N

∑
j=0

ξ(zj)pn(zj)pm(zj) = δn,m (7)

where ρ(z) is the continuous component of the weight function and ξ(zj) is the discrete
component. These weight functions are positive definite and related to the energy functions
A0(E) and B0(E) as A2

0(E)dE = ρ(z)dz (with dz
dE > 0 for E ∈ Ω) and B2

0(Ej) = ξ(zj).
It should be clear from the above analysis that the wave Equation (1), which is the

Klein–Gordon equation, is equivalent to the three-term recursion relation (5). Now, since
in conventional QFT, the solution of Equation (1) is used in defining scalar particles, so
too is the polynomials solution of recursion (5) in SAQFT. Moreover, as shown briefly
above and detailed in [7], the Dirac equation is equivalent to another three-term recursion
relation whose solution is the alternative set of orthogonal polynomials {p↑↓n (z)}. Therefore,
these alternative polynomials are associated with spinor particles. As conventional QFT
distinguishes particles from one another by assigning different properties to the solutions
of the wave equation (Klein–Gordon or Dirac), SAQFT does as well, by assigning different
properties to the associated orthogonal polynomials. For example, one can assign different
values to the physical parameters that appear in the recursion coefficients {αn, βn} or in
the spectral parameter z. In [7], we propose that the Wilson polynomial Wµ(z; a, b, c) with
−3 < µ < −2 can be used to represent baryons, whereas the continuous dual Hahn
polynomials Sµ(z; a, b) with−2 < µ < −1 can be used for mesons. The parameters {a, b, c}
could assume one of six values corresponding to one of the six flavors of the constituent
quarks, whereas their conjugates represent the anti-quarks.

2. Scattering in SAQFT

In conventional QFT, the propagators in the Feynman diagrams are tagged with the

energy–momentum four-vector (E,
→
k ). However, in SAQFT, these propagators are tagged

with the spectral parameter z. For free scalar particles, E2 > m2, making z positive. How-
ever, when performing a scattering calculation with the Feynman diagrams in closed loops,
one should integrate and sum over all possible values of the real energy in Ω ∪

{
Ej
}N

j=0

(i.e., E2 ≥ 0), making the values of these spectral parameters z greater than or equal to −m2.
At each vertex in the Feynman diagrams, the energy–momentum four-vector is conserved.
For example, when calculating the first-order correction to the three-particle interaction
vertex, we encounter loop diagrams similar to that shown in Figure 1, where the spec-
tral parameters {x, x′, y, y′, z, u} are indicated on their respective propagators. Choosing
a counterclockwise loop, the three energy conservation equations are: E(x) = E(u)− E(x′),
E(y) = E(y′)− E(u), and E(z) = E(y′)− E(x′) = E(x)+ E(y), where E(a) = ±

√
a + m2.

This leads to a special rule for adding and subtracting spectral parameters. For example,
E(z) = E(x) + E(y) produces:

z = x + y + m2 + 2sgn
√
(x + m2)(y + m2) (8)

where “sgn” is ±, which is the product of the signs of the two energies E(x) and E(y).
Moreover, the sign of the energy E(z) is the sign of E(x) + E(y). Therefore, for the spectral
parameters to contain full physical information, they must carry the sign of their corre-
sponding energies. Hence, we associate with each spectral parameter a ± parity, which is
indicated as superscript on the parameter. For example, the parity of z in (8) is the sign of
σ
√

x + m2+ τ
√

y + m2, where σ is the sign of the energy E(x) (i.e., parity of x) and τ is the
sign of the energy E(y) (i.e., parity of y). Thus, we rewrite (8) properly as follows:

zρ = (x + y + m2 + 2στ
√
(x + m2)(y + m2))

ρ

:= xσ ⊕ yτ (9)
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where ρ is the (nonzero) sign of the energy E(z) (i.e., parity of z). This equation defines the
operation of addition of the spectral parameters. Repeating the same for the energy conser-
vation equation E(z) = E(y′)− E(x′), we obtain the following rule for the subtraction of
spectral parameters:

zρ = (y′ + x′ + m2 − 2τσ
√
(y′ + m2)(x′ + m2))

ρ

:= y′τ 	 x′σ (10)

where ρ is the (nonzero) sign of τ
√

y′ + m2 − σ
√

x′ + m2. The parity of each spectral
parameter {x, x′, y, y′, z, u} in the figure (not shown) is the sign of the corresponding energy.

Figure 1. One of six loops in the Feynman diagrams used for calculating the first order correction to
the interaction vertex.

Interested readers are referred to [7] for further details on the scattering calculation in
SAQFT that utilizes this algebraic system. In the following section, we make a proper and
rigorous mathematical definition of the underlying algebraic structure emerging from the
physics of scattering with scalar particles in SAQFT as outlined above and detailed in [7].

3. The Algebraic System

The novel algebraic system emerging from the physical application in QFT presented
in the previous section and exhibited by the addition and subtraction rules of the spectral
parameters as shown by Equations (9) and (10) will now be given a proper mathemati-
cal definition.

Notation 1. Fix r in R and let Rr = ([r, ∞)× {−1, 1})\(r,−1), where the pair (x, σ) is denoted
by xσ. For each z ∈ R, let s(z) be the (nonzero) sign of z: s(z) = 1 if z ≥ 0, s(z) = −1 if z < 0.

Define operations ⊕ and ⊗ on Rr by

xσ ⊕ yτ = (x + y− r + 2στ
√
(x− r)(y− r))

s(z)
(11)

xσ ⊗ yτ = ((x− r)(y− r) + r)s(w) (12)

where z = σ
√

x− r + τ
√

y− r and w = στ
√
(x− r)(y− r).

Proposition 1. With the above notation, (Rr,⊕,⊗) is a field isomorphic to the usual field of real
numbers. In particular, (Rr,⊕) and (Rr\{(r, 1)},⊗) are Abelian groups.

Proof. 1. Let f : Rr → R and g : R→ Rr be the functions defined, respectively, by:
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f (xσ) = σ
√

x− r (13)

g(x) = (x2 + r)
s(x)

(14)

A routine verification shows that f and g are inverses of each other and that:

xσ ⊕ yτ = g( f (xσ) + f (yτ)) (15)

xσ ⊗ yτ = g( f (xσ) f (yτ)) (16)

Hence, f is a bijection that preserves the operations, and therefore, (Rr,⊕,⊗) is a field
isomorphic to the field (R,+,×) under the function f . The last statement follows from the
fact that the additive identity of Rr is g(0), i.e., (r, 1) (or, in our notation, r1). �

Note that the multiplicative identity of Rr is g(1), i.e., (1 + r, 1), and that the additive
and multiplicative inverses of xσ are g(− f (xσ)) and g( 1

f (xσ)
) (for x 6= r), respectively,

i.e., xs(−σ
√

x−r) and ( 1
x−r + r)

σ
.

If we denote subtraction on Rr by 	, i.e., xσ 	 yτ = g( f (xσ)− f (yτ)), then:

xσ 	 yτ = (x + y− r− 2στ
√
(x− r)(y− r))

s(z)
(17a)

where z = σ
√

x− r− τ
√

y− r, so that

yτ 	 xσ = (x + y− r− 2στ
√
(x− r)(y− r))

s(−z)
(17b)

(note that 	 is not commutative since xσ 	 yτ and yτ 	 xσ may have different parities).
Other properties of R are also inherited by Rr via the bijection f above. For example,

(Rr, d), where d(xσ, yτ) = | f (xσ)− f (yτ)| is a metric space.
As shown in Section 2 and detailed in Ref. [7], this algebraic system is very useful in

relativistic scattering calculations using Feynman diagrams in SAQFT if we take the real
constant r = −m2. In that case, f (xσ) = σ

√
x + m2 becomes the relativistic energy of the

particle associated with the spectral parameter xσ. Finally, it is worth noting that Rr together

with addition ⊕ and a scalar multiplication ∗ defined by a ∗ xσ = (a2(x− r) + r)s(aσ
√

x−r),
for each real number a, will turn Rr into a real vector space. This extra structure could have
a physical interpretation and might be useful for certain applications in QFT.

4. Scattering Example

As an illustration, we present an example where we show how to evaluate the Feyn-
man diagrams occurring in scalar SAQFT by utilizing the algebraic structure introduced

here. Let us consider a physical system with the nonlinear self-interaction term g
∣∣∣Ψ(t,

→
r )
∣∣∣3,

where g is a coupling parameter. Therefore, Figure 1 is one such diagram, which is used
in the calculation that contributes to the third-order correction (i.e., up to g3) of the in-
teraction vertex. Since scalar particles in SAQFT are fully described by the properties of
the orthogonal polynomials pn(z) defined by Equations (5) and (7) along with their initial
values p0(z) and p1(z), the corresponding propagators in the Feynman diagrams will be
labeled by the polynomial index and its argument (the spectral parameter). Therefore,
for calculation purposes, we should include in Figure 1 the missing polynomial index on
each propagator along with the spectral parameter. Let us choose the indices {i, j, k, l, m, n}
for the propagators that correspond to the spectral parameters {x′, y′, u, x, y, z}, respec-
tively. Since in scattering experiments, the input/output channels are selected, the two sets
{l, m, n} and {x, y, z} are fixed. However, each element in the set {i, j, k} runs from 0 to
∞, whereas each element in the set {x′, y′, u} goes over the entire range of the continuous
and discrete spectra from −m2 to ∞. That is, they span Ω and run over

{
Ej
}

from j = 0
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to j = N. However, energy conservation dictates that zρ = xσ ⊕ yτ , x′σ′ = uζ 	 xσ, and
y′τ′ = uζ ⊕ yτ , leaving uζ as the only arbitrary spectral parameter. Consequently, if the
bare interaction vertex is g{ηm,k

n }, then the Feynman diagram of Figure 1 results in the
following infinite sum (see Section 4 of [7]):

g3

3! ρ(x′)ρ(y′)ρ(u)
∞
∑

i,j,k=0
η

i,j
n ηi,k

l η
j,k
m p2

i (x′)p2
j (y
′)p2

k(u)

= g3

3! ρ(u	 x)ρ(u⊕ y)ρ(u)
∞
∑

i,j,k=0
η

i,j
n ηi,k

l η
j,k
m p2

i (u	 x)p2
j (u⊕ y)p2

k(u)
(18)

where each term is to be integrated and summed over the continuous and discrete energy
spectra associated with the spectral parameter u as follows:∫

ρ(u	 x)ρ(u⊕ y)ρ(u)p2
i (u	 x)p2

j (u⊕ y)p2
k(u)du

+
N
∑

t=0
ξ(ut 	 x)ξ(ut ⊕ y)ξ(ut)p2

i (ut 	 x)p2
j (ut ⊕ y)p2

k(ut)
(19)

We have removed the parity designation from the spectral parameters in (18) and
(19) for simplicity of the notation. It was shown in ref. [7] that integral (19) is one of the
fundamental SAQFT integrals, which is finite and goes to zero fast enough as the indices
{i, j, k} go to infinity. To account for the full third-order correction to the interaction vertex,
one should also add five more diagrams in addition to the one shown in Figure 1, each
with a single loop. The details of this calculation are provided in Section 4 of ref. [7].

5. Conclusions

A formulation of QFT for elementary particles with structure has recently been pro-
posed and referred to by the acronym SAQFT. Performing a scattering calculation in the
theory using Feynman diagrams along with the energy–momentum conservation forced us
to employ a novel algebraic system in the spectral parameter space. In this short article, we
presented a rigorous mathematical definition of this algebraic system and showed how it
comes about by giving a simple scattering example. We focused our development on the
scalar formulation of SAQFT; however, the spinor and vector formulation follow a similar
framework but with multiple components.
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