A Note on Korn's Inequality in an \mathbf{N}-Dimensional Context and a Global Existence Result for a Non-Linear Plate Model

Fabio Silva Botelho

Citation: Botelho, F.S. A Note on Korn's Inequality in an N-Dimensional Context and a Global Existence Result for a Non-Linear Plate Model. AppliedMath 2023, 3, 406-416. https:/ /doi.org/10.3390/ appliedmath3020021

Received: 15 March 2023
Revised: 12 April 2023
Accepted: 17 April 2023
Published: 2 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics, Federal University of Santa Catarina, UFSC, Florianópolis 88040-900, Brazil; fabio.botelho@ufsc.br

Abstract

In the first part of this article, we present a new proof for Korn's inequality in an ndimensional context. The results are based on standard tools of real and functional analysis. For the final result, the standard Poincaré inequality plays a fundamental role. In the second text part, we develop a global existence result for a non-linear model of plates. We address a rather general type of boundary conditions and the novelty here is the more relaxed restrictions concerning the external load magnitude.

Keywords: Korn's inequality; global existence result; non-linear plate model

MSC: 35Q74; 35J58

1. Introduction

In this article, we present a proof for Korn's inequality in \mathbb{R}^{n}. The results are based on standard tools of functional analysis and on the Sobolev spaces theory.

We emphasize that such a proof is relatively simple and easy to follow since it is established in a very transparent and clear fashion.

About the references, we highlight that related results in a three-dimensional context may be found in [1]. Other important classical results on Korn's inequality and concerning applications to models in elasticity may be found in [2-4].

Remark 1. Generically, throughout the text we denote

$$
\|u\|_{0,2, \Omega}=\left(\int_{\Omega}|u|^{2} d x\right)^{1 / 2}, \forall u \in L^{2}(\Omega)
$$

and

$$
\|u\|_{0,2, \Omega}=\left(\sum_{j=1}^{n}\left\|u_{j}\right\|_{0,2, \Omega}^{2}\right)^{1 / 2}, \forall u=\left(u_{1}, \ldots, u_{n}\right) \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right) .
$$

Moreover,

$$
\|u\|_{1,2, \Omega}=\left(\|u\|_{0,2, \Omega}^{2}+\sum_{j=1}^{n}\left\|u_{x_{j}}\right\|_{0,2, \Omega}^{2}\right)^{1 / 2}, \forall u \in W^{1,2}(\Omega)
$$

where we shall also refer throughout the text to the well-known corresponding analogous norm for $u \in W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right)$.

At this point, we first introduce the following definition.
Definition 1. Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded set. We say that $\partial \Omega$ is \hat{C}^{1} if such a manifold is oriented and for each $x_{0} \in \partial \Omega$, denoting $\hat{x}=\left(x_{1}, \ldots, x_{n-1}\right)$ for a local coordinate system compatible
with the manifold $\partial \Omega$ orientation, there exist $r>0$ and a function $f\left(x_{1}, \ldots, x_{n-1}\right)=f(\hat{x})$ such that

$$
W=\bar{\Omega} \cap B_{r}\left(x_{0}\right)=\left\{x \in B_{r}\left(x_{0}\right) \mid x_{n} \leq f\left(x_{1}, \ldots, x_{n-1}\right)\right\} .
$$

Moreover, $f(\hat{x})$ is a Lipschitz continuous function, so that

$$
|f(\hat{x})-f(\hat{y})| \leq C_{1}|\hat{x}-\hat{y}|_{2}, \text { on its domain, }
$$

for some $C_{1}>0$. Finally, we assume

$$
\left\{\frac{\partial f(\hat{x})}{\partial x_{k}}\right\}_{k=1}^{n-1}
$$

is classically defined, almost everywhere also on its concerning domain, so that $f \in W^{1,2}$.
Remark 2. This mentioned set Ω is of a Lipschitzian type, so that we may refer to such a kind of sets as domains with a Lipschitzian boundary, or simply as Lipschitzian sets.

At this point, we recall the following result found in [5], at page 222 in its Chapter 11.
Theorem 1. Assume $\Omega \subset \mathbb{R}^{n}$ is an open bounded set, and that $\partial \Omega$ is \hat{C}^{1}. Let $1 \leq p<\infty$, and let V be a bounded open set such that $\Omega \subset \subset V$. Then there exists a bounded linear operator

$$
E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)
$$

such that for each $u \in W^{1, p}(\Omega)$ we have:

1. $E u=u$, a.e. in Ω,;
2. Eu has support in V;
3. $\|E u\|_{1, p, \mathbb{R}^{n}} \leq C\|u\|_{1, p, \Omega}$, where the constant depends only on p, Ω, and V.

Remark 3. Considering the proof of such a result, the constant $C>0$ may be also such that

$$
\left\|e_{i j}(E u)\right\|_{0,2, V} \leq C\left(\left\|e_{i j}(u)\right\|_{0,2, \Omega}+\|u\|_{0,2, \Omega}\right), \forall u \in W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right), \forall i, j \in\{1, \ldots, n\},
$$

for the operator e : $W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow L^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right)$ specified in the next theorem.
Finally, as the meaning is clear, we may simply denote $E u=u$.

2. The Main Results, the Korn Inequalities

Our main result is summarized by the following theorem.
Theorem 2. Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and connected set with a \hat{C}^{1} (Lipschitzian) boundary $\partial \Omega$.

Define e : $W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow L^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right)$ by

$$
e(u)=\left\{e_{i j}(u)\right\}
$$

where

$$
e_{i j}(u)=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right), \forall i, j \in\{1, \ldots, n\},
$$

and where generically, we denote

$$
u_{i, j}=\frac{\partial u_{i}}{\partial x_{j}}, \forall i, j \in\{1, \cdots, n\} .
$$

Define also,

$$
\|e(u)\|_{0,2, \Omega}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left\|e_{i j(u)}\right\|_{0,2, \Omega}^{2}\right)^{1 / 2}
$$

Let $L \in \mathbb{R}^{+}$be such $V=[-L, L]^{n}$ is also such that $\bar{\Omega} \subset V^{0}$.
Under such hypotheses, there exists $C(\Omega, L) \in \mathbb{R}^{+}$such that

$$
\begin{equation*}
\|u\|_{1,2, \Omega} \leq C(\Omega, L)\left(\|u\|_{0,2, \Omega}+\|e(u)\|_{0,2, \Omega}\right), \forall u \in W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

Proof. Suppose, to obtain contradiction, that the concerning claim does not hold.
Thus, we are assuming that there is no positive real constant $C=C(\Omega, L)$ such that (1) is valid.

In particular, $k=1 \in \mathbb{N}$ is not such a constant C, so that there exists a function $u_{1} \in W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right)$ such that

$$
\left\|u_{1}\right\|_{1,2, \Omega}>1\left(\left\|u_{1}\right\|_{0,2, \Omega}+\left\|e\left(u_{1}\right)\right\|_{0,2, \Omega}\right) .
$$

Similarly, $k=2 \in \mathbb{N}$ is not such a constant C, so that there exists a function $u_{2} \in$ $W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right)$ such that

$$
\left\|u_{2}\right\|_{1,2, \Omega}>2\left(\left\|u_{2}\right\|_{0,2, \Omega}+\left\|e\left(u_{2}\right)\right\|_{0,2, \Omega}\right)
$$

Hence, since no $k \in \mathbb{N}$ is such a constant C, reasoning inductively, for each $k \in \mathbb{N}$ there exists a function $u_{k} \in W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right)$ such that

$$
\left\|u_{k}\right\|_{1,2, \Omega}>k\left(\left\|u_{k}\right\|_{0,2, \Omega}+\left\|e\left(u_{k}\right)\right\|_{0,2, \Omega}\right) .
$$

In particular, defining

$$
v_{k}=\frac{u_{k}}{\left\|u_{k}\right\|_{1,2, \Omega}}
$$

we obtain

$$
\left\|v_{k}\right\|_{1,2, \Omega}=1>k\left(\left\|v_{k}\right\|_{0,2, \Omega}+\left\|e\left(v_{k}\right)\right\|_{0,2, \Omega}\right)
$$

so that

$$
\left(\left\|v_{k}\right\|_{0,2, \Omega}+\left\|e\left(v_{k}\right)\right\|_{0,2, \Omega}\right)<\frac{1}{k}, \forall k \in \mathbb{N} .
$$

From this we obtain

$$
\left\|v_{k}\right\|_{0,2, \Omega}<\frac{1}{k}
$$

and

$$
\left\|e_{i j}\left(v_{k}\right)\right\|_{0,2, \Omega}<\frac{1}{k}, \forall k \in \mathbb{N},
$$

so that

$$
\left\|v_{k}\right\|_{0,2, \Omega} \rightarrow 0, \text { as } k \rightarrow \infty,
$$

and

$$
\left\|e_{i j}\left(v_{k}\right)\right\|_{0,2, \Omega} \rightarrow 0, \text { as } k \rightarrow \infty
$$

In particular,

$$
\left\|\left(v_{k}\right)_{j, j}\right\|_{0,2, \Omega} \rightarrow 0, \forall j \in\{1, \ldots, n\}
$$

At this point, we recall the following identity in the distributional sense, found in [3], page 12 :

$$
\begin{equation*}
\partial_{j}\left(\partial_{l} v_{i}\right)=\partial_{j} e_{i l}(v)+\partial_{l} e_{i j}(v)-\partial_{i} e_{j l}(v), \forall i, j, l \in\{1, \ldots, n\} . \tag{2}
\end{equation*}
$$

Fix $j \in\{1, \ldots, n\}$ and observe that

$$
\left\|\left(v_{k}\right)_{j}\right\|_{1,2, V} \leq C\left\|\left(v_{k}\right)_{j}\right\|_{1,2, \Omega}
$$

so that

$$
\frac{C}{\left\|\left(v_{k}\right)_{j}\right\|_{1,2, V}} \geq \frac{1}{\left\|\left(v_{k}\right)_{j}\right\|_{1,2, \Omega}}, \forall k \in \mathbb{N} .
$$

Hence

$$
\begin{align*}
& \left\|\left(v_{k}\right)_{j}\right\|_{1,2, \Omega} \\
= & \sup _{\varphi \in C^{1}(\Omega)}\left\{\left\langle\nabla\left(v_{k}\right)_{j}, \nabla \varphi\right\rangle_{L^{2}(\Omega)}+\left\langle\left(v_{k}\right)_{j}, \varphi\right\rangle_{L^{2}(\Omega)}:\|\varphi\|_{1,2, \Omega} \leq 1\right\} \\
= & \left\langle\nabla\left(v_{k}\right)_{j}, \nabla\left(\frac{\left(v_{k}\right)_{j}}{\left\|\left(v_{k}\right)_{j}\right\|_{1,2, \Omega}}\right)\right\rangle_{L^{2}(\Omega)} \\
& +\left\langle\left(v_{k}\right)_{j},\left(\frac{\left(v_{k}\right)_{j}}{\left\|\left(v_{k}\right)_{j}\right\|_{1,2, \Omega}}\right)\right\rangle_{L^{2}(\Omega)} \\
\leq & C\left(\left\langle\nabla\left(v_{k}\right)_{j}, \nabla\left(\frac{\left(v_{k}\right)_{j}}{\left\|\left(v_{k}\right)_{j}\right\|_{1,2, V}}\right)\right\rangle_{L^{2}(V)}+\left\langle\left(v_{k}\right)_{j},\left(\frac{\left(v_{k}\right)_{j}}{\left\|\left(v_{k}\right)_{j}\right\|_{1,2, V}}\right)\right\rangle_{L^{2}(V)}\right) \\
= & C \sup _{\varphi \in C_{c}^{1}(V)}\left\{\left\langle\nabla\left(v_{k}\right)_{j}, \nabla \varphi\right\rangle_{L^{2}(V)}+\left\langle\left(v_{k}\right)_{j}, \varphi\right\rangle_{L^{2}(V)}:\|\varphi\|_{1,2, V} \leq 1\right\} . \tag{3}
\end{align*}
$$

Here, we recall that $C>0$ is the constant concerning the extension Theorem 1. From such results and (2), we have that

$$
\begin{align*}
& \sup _{\varphi \in C^{1}(\Omega)}\left\{\left\langle\nabla\left(v_{k}\right)_{j}, \nabla \varphi\right\rangle_{L^{2}(\Omega)}+\left\langle\left(v_{k}\right)_{j}, \varphi\right\rangle_{L^{2}(\Omega)}:\|\varphi\|_{1,2, \Omega} \leq 1\right\} \\
\leq & C \sup _{\varphi \in C_{c}^{1}(V)}\left\{\left\langle\nabla\left(v_{k}\right)_{j}, \nabla \varphi\right\rangle_{L^{2}(V)}+\left\langle\left(v_{k}\right)_{j}, \varphi\right\rangle_{L^{2}(V)}:\|\varphi\|_{1,2, V} \leq 1\right\} \\
= & C \sup _{\varphi \in C_{c}^{1}(V)}\left\{\left\langle e_{j l}\left(v_{k}\right), \varphi_{, l}\right\rangle_{L^{2}(V)}+\left\langle e_{j l}\left(v_{k}\right), \varphi, l\right\rangle_{L^{2}(V)}\right. \\
& \left.-\left\langle e_{l l}\left(v_{k}\right), \varphi_{, j}\right\rangle_{L^{2}(V)}+\left\langle\left(v_{k}\right)_{j}, \varphi\right\rangle_{L^{2}(V)}:\|\varphi\|_{1,2, V} \leq 1\right\} . \tag{4}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \left\|\left(v_{k}\right)_{j}\right\|_{\left(W^{1,2}(\Omega)\right)} \\
= & \sup _{\varphi \in C^{1}(\Omega)}\left\{\left\langle\nabla\left(v_{k}\right)_{j}, \nabla \varphi\right\rangle_{L^{2}(\Omega)}+\left\langle\left(v_{k}\right)_{j,}, \varphi\right\rangle_{L^{2}(\Omega)}:\|\varphi\|_{1,2, \Omega} \leq 1\right\} \\
\leq & C\left(\sum_{l=1}^{n}\left\{\left\|e_{j l}\left(v_{k}\right)\right\|_{0,2, V}+\left\|e_{l l}\left(v_{k}\right)\right\|_{0,2, V}\right\}+\left\|\left(v_{k}\right)_{j}\right\|_{0,2, V}\right) \\
\leq & C_{1}\left(\sum_{l=1}^{n}\left\{\left\|e_{j l}\left(v_{k}\right)\right\|_{0,2, \Omega}+\left\|e_{l l}\left(v_{k}\right)\right\|_{0,2, \Omega}\right\}+\left\|\left(v_{k}\right)_{j}\right\|_{0,2, \Omega}\right) \\
< & \frac{C_{2}}{k} \tag{5}
\end{align*}
$$

for appropriate $C_{1}>0$ and $C_{2}>0$.
Summarizing,

$$
\left\|\left(v_{k}\right)_{j}\right\|_{\left(W^{1,2}(\Omega)\right)}<\frac{C_{2}}{k}, \forall k \in \mathbb{N} .
$$

From this we obtain

$$
\left\|v_{k}\right\|_{1,2, \Omega} \rightarrow 0, \text { as } k \rightarrow \infty,
$$

which contradicts

$$
\left\|v_{k}\right\|_{1,2, \Omega}=1, \forall k \in \mathbb{N}
$$

The proof is complete.
Corollary 1. Let $\Omega \subset \mathbb{R}^{n}$ be an open, bounded and connected set with a \hat{C}^{1} boundary $\partial \Omega$. Define $e: W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow L^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) b y$

$$
e(u)=\left\{e_{i j}(u)\right\}
$$

where

$$
e_{i j}(u)=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right), \forall i, j \in\{1, \ldots, n\}
$$

Define also,

$$
\|e(u)\|_{0,2, \Omega}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left\|e_{i j(u)}\right\|_{0,2, \Omega}^{2}\right)^{1 / 2}
$$

Let $L \in \mathbb{R}^{+}$be such $V=[-L, L]^{n}$ is also such that $\bar{\Omega} \subset V^{0}$.
Moreover, define

$$
\hat{H}_{0}=\left\{u \in W^{1,2}\left(\Omega ; \mathbb{R}^{n}\right): u=\mathbf{0}, \text { on } \Gamma_{0}\right\}
$$

where $\Gamma_{0} \subset \partial \Omega$ is a measurable set such that the Lebesgue measure $m_{\mathbb{R}^{n-1}}\left(\Gamma_{0}\right)>0$.
Assume also Γ_{0} is such that for each $j \in\{1, \cdots, n\}$ and each $x=\left(x_{1}, \cdots, x_{n}\right) \in \Omega$ there exists $x_{0}=\left(\left(x_{0}\right)_{1}, \cdots,\left(x_{0}\right)_{n}\right) \in \Gamma_{0}$ such that

$$
\left(x_{0}\right)_{l}=x_{l}, \forall l \neq j, l \in\{1, \cdots, n\}
$$

and the line

$$
A_{x_{0}, x} \subset \bar{\Omega}
$$

where

$$
A_{x_{0}, x}=\left\{\left(x_{1}, \cdots,(1-t)\left(x_{0}\right)_{j}+t x_{j}, \cdots, x_{n}\right): t \in[0,1]\right\}
$$

Under such hypotheses, there exists $C(\Omega, L) \in \mathbb{R}^{+}$such that

$$
\|u\|_{1,2, \Omega} \leq C(\Omega, L)\|e(u)\|_{0,2, \Omega}, \forall u \in \hat{H}_{0}
$$

Proof. Suppose, to obtain contradiction, that the concerning claim does not hold.
Hence, for each $k \in \mathbb{N}$ there exists $u_{k} \in \hat{H}_{0}$ such that

$$
\left\|u_{k}\right\|_{1,2, \Omega}>k\left\|e\left(u_{k}\right)\right\|_{0,2, \Omega} .
$$

In particular, defining

$$
v_{k}=\frac{u_{k}}{\left\|u_{k}\right\|_{1,2, \Omega}}
$$

similarly to the proof of the last theorem, we may obtain

$$
\left\|\left(v_{k}\right)_{j, j}\right\|_{0,2, \Omega} \rightarrow 0, \text { as } k \rightarrow \infty, \forall j \in\{1, \ldots, n\}
$$

From this, the hypotheses on Γ_{0} and from the standard Poincaré inequality proof we obtain

$$
\left\|\left(v_{k}\right)_{j}\right\|_{0,2, \Omega} \rightarrow 0, \text { as } k \rightarrow \infty, \forall j \in\{1, \ldots, n\} .
$$

Thus, also similarly as in the proof of the last theorem, we may infer that

$$
\left\|v_{k}\right\|_{1,2, \Omega} \rightarrow 0, \text { as } k \rightarrow \infty
$$

which contradicts

$$
\left\|v_{k}\right\|_{1,2, \Omega}=1, \forall k \in \mathbb{N}
$$

The proof is complete.

3. An Existence Result for a Non-Linear Model of Plates

In the present section, as an application of the results on Korn's inequalities presented in the previous sections, we develop a new global existence proof for a Kirchhoff-Love thin plate model. Previous results on the existence of mathematical elasticity and related models may be found in [2-4].

At this point we start to describe the primal formulation.
Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded, connected set which represents the middle surface of a plate of thickness h. The boundary of Ω, which is assumed to be regular (Lipschitzian), is denoted by $\partial \Omega$. The vectorial basis related to the cartesian system $\left\{x_{1}, x_{2}, x_{3}\right\}$ is denoted by $\left(\mathbf{a}_{\alpha}, \mathbf{a}_{3}\right)$, where $\alpha=1,2$ (in general, Greek indices stand for 1 or 2), and where \mathbf{a}_{3} is the vector normal to Ω, whereas \mathbf{a}_{1} and \mathbf{a}_{2} are orthogonal vectors parallel to Ω. Furthermore, \mathbf{n} is the outward normal to the plate surface.

The displacements will be denoted by

$$
\hat{\mathbf{u}}=\left\{\hat{u}_{\alpha}, \hat{u}_{3}\right\}=\hat{u}_{\alpha} \mathbf{a}_{\alpha}+\hat{u}_{3} \mathbf{a}_{3} .
$$

The Kirchhoff-Love relations are

$$
\begin{align*}
& \hat{u}_{\alpha}\left(x_{1}, x_{2}, x_{3}\right)=u_{\alpha}\left(x_{1}, x_{2}\right)-x_{3} w\left(x_{1}, x_{2}\right)_{, \alpha} \\
& \text { and } \hat{u}_{3}\left(x_{1}, x_{2}, x_{3}\right)=w\left(x_{1}, x_{2}\right) . \tag{6}
\end{align*}
$$

Here, $-h / 2 \leq x_{3} \leq h / 2$ so that we have $u=\left(u_{\alpha}, w\right) \in U$ where

$$
\begin{aligned}
U= & \left\{\left(u_{\alpha}, w\right) \in W^{1,2}\left(\Omega ; \mathbb{R}^{2}\right) \times W^{2,2}(\Omega)\right. \\
& \left.u_{\alpha}=w=\frac{\partial w}{\partial \mathbf{n}}=0 \text { on } \partial \Omega\right\} \\
= & W_{0}^{1,2}\left(\Omega ; \mathbb{R}^{2}\right) \times W_{0}^{2,2}(\Omega)
\end{aligned}
$$

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.

We define the operator $\Lambda: U \rightarrow Y \times Y$, where $Y=Y^{*}=L^{2}\left(\Omega ; \mathbb{R}^{2 \times 2}\right)$, by

$$
\begin{gathered}
\Lambda(u)=\{\gamma(u), \kappa(u)\}, \\
\gamma_{\alpha \beta}(u)=\frac{u_{\alpha, \beta}+u_{\beta, \alpha}}{2}+\frac{w_{, \alpha} w_{, \beta}}{2}, \\
\kappa_{\alpha \beta}(u)=-w_{, \alpha \beta} .
\end{gathered}
$$

The constitutive relations are given by

$$
\begin{align*}
& N_{\alpha \beta}(u)=H_{\alpha \beta \lambda \mu} \gamma_{\lambda \mu}(u), \tag{7}\\
& M_{\alpha \beta}(u)=h_{\alpha \beta \lambda \mu} \kappa_{\lambda \mu}(u), \tag{8}
\end{align*}
$$

where $\left\{H_{\alpha \beta \lambda \mu}\right\}$ and $\left\{h_{\alpha \beta \lambda \mu}=\frac{h^{2}}{12} H_{\alpha \beta \lambda \mu}\right\}$, are symmetric positive definite fourth-order tensors. From now on, we denote $\left\{\bar{H}_{\alpha \beta \lambda \mu}\right\}=\left\{H_{\alpha \beta \lambda \mu}\right\}^{-1}$ and $\left\{\bar{h}_{\alpha \beta \lambda \mu}\right\}=\left\{h_{\alpha \beta \lambda \mu}\right\}^{-1}$.

Furthermore, $\left\{N_{\alpha \beta}\right\}$ denote the membrane force tensor and $\left\{M_{\alpha \beta}\right\}$ the moment one. The plate stored energy, represented by $(G \circ \Lambda): U \rightarrow \mathbb{R}$, is expressed by

$$
\begin{equation*}
(G \circ \Lambda)(u)=\frac{1}{2} \int_{\Omega} N_{\alpha \beta}(u) \gamma_{\alpha \beta}(u) d x+\frac{1}{2} \int_{\Omega} M_{\alpha \beta}(u) \kappa_{\alpha \beta}(u) d x \tag{9}
\end{equation*}
$$

and the external work, represented by $F: U \rightarrow \mathbb{R}$, is given by

$$
\begin{equation*}
F(u)=\langle w, P\rangle_{L^{2}(\Omega)}+\left\langle u_{\alpha}, P_{\alpha}\right\rangle_{L^{2}(\Omega)}, \tag{10}
\end{equation*}
$$

where $P, P_{1}, P_{2} \in L^{2}(\Omega)$ are external loads in the directions $\mathbf{a}_{3}, \mathbf{a}_{1}$, and \mathbf{a}_{2}, respectively. The potential energy, denoted by $J: U \rightarrow \mathbb{R}$, is expressed by

$$
J(u)=(G \circ \Lambda)(u)-F(u)
$$

Finally, we also emphasize from now on, as their meaning are clear, we may denote $L^{2}(\Omega)$ and $L^{2}\left(\Omega ; \mathbb{R}^{2 \times 2}\right)$ simply by L^{2}, and the respective norms by $\|\cdot\|_{2}$. Moreover, derivatives are always understood in the distributional sense, $\mathbf{0}$ may denote the zero vector in appropriate Banach spaces, and the following and relating notations are used:

$$
\begin{aligned}
w_{, \alpha} & =\frac{\partial w}{\partial x_{\alpha}} \\
w_{, \alpha \beta} & =\frac{\partial^{2} w}{\partial x_{\alpha} \partial x_{\beta}}, \\
u_{\alpha, \beta} & =\frac{\partial u_{\alpha}}{\partial x_{\beta}}, \\
N_{\alpha \beta, 1} & =\frac{\partial N_{\alpha \beta}}{\partial x_{1}}
\end{aligned}
$$

and

$$
N_{\alpha \beta, 2}=\frac{\partial N_{\alpha \beta}}{\partial x_{2}} .
$$

4. On the Existence of a Global Minimizer

At this point, we present an existence result concerning the Kirchhoff-Love plate model. We start with the following two remarks.

Remark 4. Let $\left\{P_{\alpha}\right\} \in L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right)$. We may easily obtain by appropriate Lebesgue integration $\left\{\tilde{T}_{\alpha \beta}\right\}$ symmetric and such that

$$
\tilde{T}_{\alpha \beta, \beta}=-P_{\alpha}, \text { in } \Omega
$$

Indeed, extending $\left\{P_{\alpha}\right\}$ to zero outside Ω if necessary, we may set

$$
\begin{aligned}
& \tilde{T}_{11}(x, y)=-\int_{0}^{x} P_{1}(\xi, y) d \xi \\
& \tilde{T}_{22}(x, y)=-\int_{0}^{y} P_{2}(x, \xi) d \xi
\end{aligned}
$$

and

$$
\tilde{T}_{12}(x, y)=\tilde{T}_{21}(x, y)=0, \text { in } \Omega
$$

Thus, we may choose a $C>0$ sufficiently big, such that

$$
\left\{T_{\alpha \beta}\right\}=\left\{\tilde{T}_{\alpha \beta}+C \delta_{\alpha \beta}\right\}
$$

is positive definite in Ω, so that

$$
T_{\alpha \beta, \beta}=\tilde{T}_{\alpha \beta, \beta}=-P_{\alpha}
$$

where

$$
\left\{\delta_{\alpha \beta}\right\}
$$

is the Kronecker delta.
Therefore, for the kind of boundary conditions of the next theorem, we do not have any restriction for the $\left\{P_{\alpha}\right\}$ norm.

In summary, the next result is new and it is really a step forward concerning the previous one in Ciarlet [3]. We emphasize that this result and its proof through such a tensor $\left\{T_{\alpha \beta}\right\}$ are new, even though the final part of the proof is established through a standard procedure in the calculus of variations.

Finally, more details on the Sobolev spaces involved may be found in [5-8]. Related duality principles are addressed in [5,7,9].

At this point, we present the main theorem in this section.
Theorem 3. Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded, connected set with a Lipschitzian boundary denoted by $\partial \Omega=\Gamma$. Suppose $(G \circ \Lambda): U \rightarrow \mathbb{R}$ is defined by

$$
G(\Lambda u)=G_{1}(\gamma(u))+G_{2}(\kappa(u)), \forall u \in U
$$

where

$$
G_{1}(\gamma u)=\frac{1}{2} \int_{\Omega} H_{\alpha \beta \lambda \mu} \gamma_{\alpha \beta}(u) \gamma_{\lambda \mu}(u) d x
$$

and

$$
G_{2}(\kappa u)=\frac{1}{2} \int_{\Omega} h_{\alpha \beta \lambda \mu} \kappa_{\alpha \beta}(u) \kappa_{\lambda \mu}(u) d x
$$

where

$$
\begin{gathered}
\Lambda(u)=(\gamma(u), \kappa(u))=\left(\left\{\gamma_{\alpha \beta}(u)\right\},\left\{\kappa_{\alpha \beta}(u)\right\}\right), \\
\gamma_{\alpha \beta}(u)=\frac{u_{\alpha, \beta}+u_{\beta, \alpha}}{2}+\frac{w_{, \alpha} w_{, \beta}}{2}, \\
\kappa_{\alpha \beta}(u)=-w_{, \alpha \beta}
\end{gathered}
$$

and where

$$
\begin{align*}
J(u)= & W(\gamma(u), \kappa(u))-\left\langle P_{\alpha}, u_{\alpha}\right\rangle_{L^{2}(\Omega)} \\
& -\langle w, P\rangle_{L^{2}(\Omega)}-\left\langle P_{\alpha}^{t}, u_{\alpha}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \\
& -\left\langle P^{t}, w\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \tag{11}
\end{align*}
$$

where,

$$
\begin{align*}
U= & \left\{u=\left(u_{\alpha}, w\right)=\left(u_{1}, u_{2}, w\right) \in W^{1,2}\left(\Omega ; \mathbb{R}^{2}\right) \times W^{2,2}(\Omega):\right. \\
& \left.u_{\alpha}=w=\frac{\partial w}{\partial \mathbf{n}}=0, \text { on } \Gamma_{0}\right\} \tag{12}
\end{align*}
$$

where $\partial \Omega=\Gamma_{0} \cup \Gamma_{t}$ and the Lebesgue measures

$$
m_{\Gamma}\left(\Gamma_{0} \cap \Gamma_{t}\right)=0
$$

and

$$
m_{\Gamma}\left(\Gamma_{0}\right)>0 .
$$

We also define

$$
\begin{align*}
F_{1}(u)= & -\langle w, P\rangle_{L^{2}(\Omega)}-\left\langle u_{\alpha}, P_{\alpha}\right\rangle_{L^{2}(\Omega)}-\left\langle P_{\alpha}^{t}, u_{\alpha}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \\
& -\left\langle P^{t}, w\right\rangle_{L^{2}\left(\Gamma_{t}\right)}+\left\langle\varepsilon_{\alpha}, u_{\alpha}^{2}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \\
\equiv & -\langle u, \mathbf{f}\rangle_{L^{2}}+\left\langle\varepsilon_{\alpha}, u_{\alpha}^{2}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \\
\equiv & -\left\langle u, \mathbf{f}_{1}\right\rangle_{L^{2}}-\left\langle u_{\alpha}, P_{\alpha}\right\rangle_{L^{2}(\Omega)}+\left\langle\varepsilon_{\alpha}, u_{\alpha}^{2}\right\rangle_{L^{2}\left(\Gamma_{t}\right)}, \tag{13}
\end{align*}
$$

where

$$
\left\langle u, \mathbf{f}_{1}\right\rangle_{L^{2}}=\langle u, \mathbf{f}\rangle_{L^{2}}-\left\langle u_{\alpha}, P_{\alpha}\right\rangle_{L^{2}(\Omega)},
$$

$\varepsilon_{\alpha}>0, \forall \alpha \in\{1,2\}$ and

$$
\mathbf{f}=\left(P_{\alpha}, P\right) \in L^{\infty}\left(\Omega ; \mathbb{R}^{3}\right)
$$

Let $J: U \rightarrow \mathbb{R}$ be defined by

$$
J(u)=G(\Lambda u)+F_{1}(u), \forall u \in U .
$$

Assume there exists $\left\{c_{\alpha \beta}\right\} \in \mathbb{R}^{2 \times 2}$ such that $c_{\alpha \beta}>0, \forall \alpha, \beta \in\{1,2\}$ and

$$
G_{2}(\kappa(u)) \geq c_{\alpha \beta}\left\|w_{, \alpha \beta}\right\|_{2}^{2}, \forall u \in U .
$$

Under such hypotheses, there exists $u_{0} \in U$ such that

$$
J\left(u_{0}\right)=\min _{u \in U} J(u) .
$$

Proof. Observe that we may find $\mathbf{T}_{\alpha}=\left\{\left(T_{\alpha}\right)_{\beta}\right\}$ such that

$$
\operatorname{div} \mathbf{T}_{\alpha}=T_{\alpha \beta, \beta}=-P_{\alpha}
$$

and also such that $\left\{T_{\alpha \beta}\right\}$ is positive, definite, and symmetric (please see Remark 4).
Thus, defining

$$
\begin{equation*}
v_{\alpha \beta}(u)=\frac{u_{\alpha, \beta}+u_{\beta, \alpha}}{2}+\frac{1}{2} w_{, \alpha} w_{, \beta}, \tag{14}
\end{equation*}
$$

we obtain

$$
\begin{align*}
J(u)= & G_{1}\left(\left\{v_{\alpha \beta}(u)\right\}\right)+G_{2}(\kappa(u))-\left\langle u, \mathbf{f}_{L^{2}}+\left\langle\varepsilon_{\alpha}, u_{\alpha}^{2}\right\rangle_{L^{2}\left(\Gamma_{t}\right)}\right. \\
= & G_{1}\left(\left\{v_{\alpha \beta}(u)\right\}\right)+G_{2}(\kappa(u))+\left\langle T_{\alpha \beta, \beta}, u_{\alpha}\right\rangle_{L^{2}(\Omega)}-\left\langle u, \mathbf{f}_{1}\right\rangle_{L^{2}}+\left\langle\varepsilon_{\alpha}, u_{\alpha}^{2}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \\
= & G_{1}\left(\left\{v_{\alpha \beta}(u)\right\}\right)+G_{2}(\kappa(u))-\left\langle T_{\alpha \beta}, \frac{u_{\alpha, \beta}+u_{\beta, \alpha}}{2}\right\rangle_{L^{2}(\Omega)} \\
& +\left\langle T_{\alpha \beta} n_{\beta}, u_{\alpha}\right\rangle_{L^{2}\left(\Gamma_{t}\right)}-\left\langle u, \mathbf{f}_{1}\right\rangle_{L^{2}}+\left\langle\varepsilon_{\alpha}, u_{\alpha}^{2}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \\
= & G_{1}\left(\left\{v_{\alpha \beta}(u)\right\}\right)+G_{2}(\kappa(u))-\left\langle T_{\alpha \beta,}, v_{\alpha \beta}(u)-\frac{1}{2} w_{, \alpha} w_{, \beta}\right\rangle_{L^{2}(\Omega)}-\left\langle u, \mathbf{f}_{1}\right\rangle_{L^{2}}+\left\langle\varepsilon_{\alpha}, u_{\alpha}^{2}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \\
& +\left\langle T_{\alpha \beta} n_{\beta}, u_{\alpha}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} \\
\geq & c_{\alpha \beta}\left\|w_{, \alpha \beta}\right\|_{2}^{2}+\frac{1}{2}\left\langle T_{\alpha \beta}, w_{, \alpha} w_{, \beta}\right\rangle_{L^{2}(\Omega)}-\left\langle u, \mathbf{f}_{1}\right\rangle_{L^{2}}+\left\langle\varepsilon_{\alpha}, u_{\alpha}^{2}\right\rangle_{L^{2}\left(\Gamma_{t}\right)}+G_{1}\left(\left\{v_{\alpha \beta}(u)\right\}\right) \\
& -\left\langle T_{\alpha \beta}, v_{\alpha \beta}(u)\right\rangle_{L^{2}(\Omega)}+\left\langle T_{\alpha \beta} n_{\beta}, u_{\alpha}\right\rangle_{L^{2}\left(\Gamma_{t}\right)} . \tag{15}
\end{align*}
$$

From this, since $\left\{T_{\alpha \beta}\right\}$ is positive definite, clearly J is bounded below.
Let $\left\{u_{n}\right\} \in U$ be a minimizing sequence for J. Thus, there exists $\alpha_{1} \in \mathbb{R}$ such that

$$
\lim _{n \rightarrow \infty} J\left(u_{n}\right)=\inf _{u \in U} J(u)=\alpha_{1} .
$$

From (15), there exists $K_{1}>0$ such that

$$
\left\|\left(w_{n}\right)_{, \alpha \beta}\right\|_{2}<K_{1}, \forall \alpha, \beta \in\{1,2\}, n \in \mathbb{N} .
$$

Therefore, there exists $w_{0} \in W^{2,2}(\Omega)$ such that, up to a subsequence not relabeled,

$$
\left(w_{n}\right)_{, \alpha \beta} \rightharpoonup\left(w_{0}\right)_{, \alpha \beta}, \text { weakly in } L^{2},
$$

$\forall \alpha, \beta \in\{1,2\}$, as $n \rightarrow \infty$.
Moreover, also up to a subsequence not relabeled,

$$
\begin{equation*}
\left(w_{n}\right)_{, \alpha} \rightarrow\left(w_{0}\right)_{, \alpha}, \text { strongly in } L^{2} \text { and } L^{4}, \tag{16}
\end{equation*}
$$

$\forall \alpha, \in\{1,2\}$, as $n \rightarrow \infty$.
Furthermore, from (15), there exists $K_{2}>0$ such that,

$$
\left\|\left(v_{n}\right)_{\alpha \beta}(u)\right\|_{2}<K_{2}, \forall \alpha, \beta \in\{1,2\}, n \in \mathbb{N},
$$

and thus, from this, (14) and (16), we may infer that there exists $K_{3}>0$ such that

$$
\left\|\left(u_{n}\right)_{\alpha, \beta}+\left(u_{n}\right)_{\beta, \alpha}\right\|_{2}<K_{3}, \forall \alpha, \beta \in\{1,2\}, n \in \mathbb{N} .
$$

From this and Korn's inequality, there exists $K_{4}>0$ such that

$$
\left\|u_{n}\right\|_{W^{1,2}\left(\Omega ; \mathbb{R}^{2}\right)} \leq K_{4}, \forall n \in \mathbb{N} .
$$

Therefore, up to a subsequence not relabeled, there exists $\left\{\left(u_{0}\right)_{\alpha}\right\} \in W^{1,2}\left(\Omega, \mathbb{R}^{2}\right)$, such that

$$
\left(u_{n}\right)_{\alpha, \beta}+\left(u_{n}\right)_{\beta, \alpha} \rightharpoonup\left(u_{0}\right)_{\alpha, \beta}+\left(u_{0}\right)_{\beta, \alpha}, \text { weakly in } L^{2},
$$

$\forall \alpha, \beta \in\{1,2\}$, as $n \rightarrow \infty$, and

$$
\left(u_{n}\right)_{\alpha} \rightarrow\left(u_{0}\right)_{\alpha}, \text { strongly in } L^{2},
$$

$\forall \alpha \in\{1,2\}$, as $n \rightarrow \infty$.
Moreover, the boundary conditions satisfied by the subsequences are also satisfied for w_{0} and u_{0} in a trace sense, so that

$$
u_{0}=\left(\left(u_{0}\right)_{\alpha}, w_{0}\right) \in U
$$

From this, up to a subsequence not relabeled, we obtain

$$
\gamma_{\alpha \beta}\left(u_{n}\right) \rightharpoonup \gamma_{\alpha \beta}\left(u_{0}\right), \text { weakly in } L^{2},
$$

$\forall \alpha, \beta \in\{1,2\}$, and

$$
\kappa_{\alpha \beta}\left(u_{n}\right) \rightharpoonup \kappa_{\alpha \beta}\left(u_{0}\right), \text { weakly in } L^{2}
$$

$\forall \alpha, \beta \in\{1,2\}$.
Therefore, from the convexity of G_{1} in γ and G_{2} in κ, we obtain

$$
\begin{align*}
\inf _{u \in U} J(u) & =\alpha_{1} \\
& =\liminf _{n \rightarrow \infty} J\left(u_{n}\right) \\
& \geq J\left(u_{0}\right) . \tag{17}
\end{align*}
$$

Thus,

$$
J\left(u_{0}\right)=\min _{u \in U} J(u) .
$$

The proof is complete.

5. Conclusions

In this article, we have developed a new proof for Korn's inequality in a specific n-dimensional context. In the second text part, we present a global existence result for a non-linear model of plates. Both results represent some new advances concerning the present literature. In particular, the results for Korn's inequality known so far are for a three-dimensional context such as in [1], for example, whereas we have here addressed a more general n-dimensional case.

In a future research, we intend to address more general models, including the corresponding results for manifolds in \mathbb{R}^{n}.

Funding: This research received no external funding
Conflicts of Interest: The author declares no conflict of interest.

References

1. Lebedev, L.P.; Cloud, M.J. Korn's Inequality. In Encyclopedia of Continuum Mechanics; Altenbach, H., Öchsner, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [CrossRef]
2. Ciarlet, P. Mathematical Elasticity; Vol. I-Three Dimensional Elasticity; Elsevier: Amsterdam, The Netherlands, 1988.
3. Ciarlet, P. Mathematical Elasticity; Vol. II-Theory of Plates; Elsevier: Amsterdam, The Netherlands, 1997.
4. Ciarlet, P. Mathematical Elasticity; Vol. III—Theory of Shells; Elsevier: Amsterdam, The Netherlands, 2000.
5. Botelho, F.S. Functional Analysis, Calculus of Variations and Numerical Methods for Models in Physics and Engineering; CRC Taylor and Francis: Uttar Pradesh, India, 2020.
6. Adams, R.A.; Fournier, J.F. Sobolev Spaces, 2nd ed.; Elsevier: New York, NY, USA, 2003.
7. Botelho, F.S. Functional Analysis and Applied Optimization in Banach Spaces; Springer: Cham, Switzerland, 2014.
8. Evans, L.C. Partial Differential Equations. In Graduate Studies in Mathematics; AMS: Providence, RI, USA, 1998.
9. Ekeland, I.; Temam, R. Convex Analysis and Variational Problems; Elsevier: Amsterdam, The Netherlands, 1976.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

