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Abstract: In the first part of this article, we present a new proof for Korn’s inequality in an n-
dimensional context. The results are based on standard tools of real and functional analysis. For the
final result, the standard Poincaré inequality plays a fundamental role. In the second text part, we
develop a global existence result for a non-linear model of plates. We address a rather general type of
boundary conditions and the novelty here is the more relaxed restrictions concerning the external
load magnitude.
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1. Introduction

In this article, we present a proof for Korn’s inequality in Rn. The results are based on
standard tools of functional analysis and on the Sobolev spaces theory.

We emphasize that such a proof is relatively simple and easy to follow since it is
established in a very transparent and clear fashion.

About the references, we highlight that related results in a three-dimensional context
may be found in [1]. Other important classical results on Korn’s inequality and concerning
applications to models in elasticity may be found in [2–4].

Remark 1. Generically, throughout the text we denote

‖u‖0,2,Ω =

(∫
Ω
|u|2 dx

)1/2
, ∀u ∈ L2(Ω),

and

‖u‖0,2,Ω =

(
n

∑
j=1
‖uj‖2

0,2,Ω

)1/2

, ∀u = (u1, . . . , un) ∈ L2(Ω;Rn).

Moreover,

‖u‖1,2,Ω =

(
‖u‖2

0,2,Ω +
n

∑
j=1
‖uxj‖

2
0,2,Ω

)1/2

, ∀u ∈W1,2(Ω),

where we shall also refer throughout the text to the well-known corresponding analogous norm for
u ∈W1,2(Ω;Rn).

At this point, we first introduce the following definition.

Definition 1. Let Ω ⊂ Rn be an open, bounded set. We say that ∂Ω is Ĉ1 if such a manifold is
oriented and for each x0 ∈ ∂Ω, denoting x̂ = (x1, ..., xn−1) for a local coordinate system compatible
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with the manifold ∂Ω orientation, there exist r > 0 and a function f (x1, ..., xn−1) = f (x̂) such
that

W = Ω ∩ Br(x0) = {x ∈ Br(x0) | xn ≤ f (x1, ..., xn−1)}.

Moreover, f (x̂) is a Lipschitz continuous function, so that

| f (x̂)− f (ŷ)| ≤ C1|x̂− ŷ|2, on its domain,

for some C1 > 0. Finally, we assume {
∂ f (x̂)

∂xk

}n−1

k=1

is classically defined, almost everywhere also on its concerning domain, so that f ∈W1,2.

Remark 2. This mentioned set Ω is of a Lipschitzian type, so that we may refer to such a kind of
sets as domains with a Lipschitzian boundary, or simply as Lipschitzian sets.

At this point, we recall the following result found in [5], at page 222 in its Chapter 11.

Theorem 1. Assume Ω ⊂ Rn is an open bounded set, and that ∂Ω is Ĉ1. Let 1 ≤ p < ∞, and let
V be a bounded open set such that Ω ⊂⊂ V. Then there exists a bounded linear operator

E : W1,p(Ω)→W1,p(Rn),

such that for each u ∈W1,p(Ω) we have:

1. Eu = u, a.e. in Ω,;
2. Eu has support in V;
3. ‖Eu‖1,p,Rn ≤ C‖u‖1,p,Ω, where the constant depends only on p, Ω, and V.

Remark 3. Considering the proof of such a result, the constant C > 0 may be also such that

‖eij(Eu)‖0,2,V ≤ C(‖eij(u)‖0,2,Ω + ‖u‖0,2,Ω), ∀u ∈W1,2(Ω;Rn), ∀i, j ∈ {1, . . . , n},

for the operator e : W1,2(Ω;Rn)→ L2(Ω;Rn×n) specified in the next theorem.

Finally, as the meaning is clear, we may simply denote Eu = u.

2. The Main Results, the Korn Inequalities

Our main result is summarized by the following theorem.

Theorem 2. Let Ω ⊂ Rn be an open, bounded and connected set with a Ĉ1 (Lipschitzian) bound-
ary ∂Ω.

Define e : W1,2(Ω;Rn)→ L2(Ω;Rn×n) by

e(u) = {eij(u)}

where
eij(u) =

1
2
(ui,j + uj,i), ∀i, j ∈ {1, . . . , n},

and where generically, we denote

ui,j =
∂ui
∂xj

, ∀i, j ∈ {1, · · · , n}.
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Define also,

‖e(u)‖0,2,Ω =

(
n

∑
i=1

n

∑
j=1
‖eij(u)‖2

0,2,Ω

)1/2

.

Let L ∈ R+ be such V = [−L, L]n is also such that Ω ⊂ V0.
Under such hypotheses, there exists C(Ω, L) ∈ R+ such that

‖u‖1,2,Ω ≤ C(Ω, L)(‖u‖0,2,Ω + ‖e(u)‖0,2,Ω), ∀u ∈W1,2(Ω;Rn). (1)

Proof. Suppose, to obtain contradiction, that the concerning claim does not hold.
Thus, we are assuming that there is no positive real constant C = C(Ω, L) such that (1)

is valid.
In particular, k = 1 ∈ N is not such a constant C, so that there exists a function

u1 ∈W1,2(Ω;Rn) such that

‖u1‖1,2,Ω > 1 (‖u1‖0,2,Ω + ‖e(u1)‖0,2,Ω).

Similarly, k = 2 ∈ N is not such a constant C, so that there exists a function u2 ∈
W1,2(Ω;Rn) such that

‖u2‖1,2,Ω > 2 (‖u2‖0,2,Ω + ‖e(u2)‖0,2,Ω).

Hence, since no k ∈ N is such a constant C, reasoning inductively, for each k ∈ N there
exists a function uk ∈W1,2(Ω;Rn) such that

‖uk‖1,2,Ω > k(‖uk‖0,2,Ω + ‖e(uk)‖0,2,Ω).

In particular, defining

vk =
uk

‖uk‖1,2,Ω

we obtain
‖vk‖1,2,Ω = 1 > k(‖vk‖0,2,Ω + ‖e(vk)‖0,2,Ω),

so that
(‖vk‖0,2,Ω + ‖e(vk)‖0,2,Ω) <

1
k

, ∀k ∈ N.

From this we obtain
‖vk‖0,2,Ω <

1
k

,

and
‖eij(vk)‖0,2,Ω <

1
k

, ∀k ∈ N,

so that
‖vk‖0,2,Ω → 0, as k→ ∞,

and
‖eij(vk)‖0,2,Ω → 0, as k→ ∞.

In particular,
‖(vk)j,j‖0,2,Ω → 0, ∀j ∈ {1, . . . , n}.

At this point, we recall the following identity in the distributional sense, found in [3],
page 12:

∂j(∂lvi) = ∂jeil(v) + ∂leij(v)− ∂iejl(v), ∀i, j, l ∈ {1, . . . , n}. (2)

Fix j ∈ {1, . . . , n} and observe that

‖(vk)j‖1,2,V ≤ C‖(vk)j‖1,2,Ω,
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so that
C

‖(vk)j‖1,2,V
≥ 1
‖(vk)j‖1,2,Ω

, ∀k ∈ N.

Hence,

‖(vk)j‖1,2,Ω

= sup
ϕ∈C1(Ω)

{
〈∇(vk)j,∇ϕ〉L2(Ω) + 〈(vk)j, ϕ〉L2(Ω) : ‖ϕ‖1,2,Ω ≤ 1

}
=

〈
∇(vk)j,∇

(
(vk)j

‖(vk)j‖1,2,Ω

)〉
L2(Ω)

+

〈
(vk)j,

(
(vk)j

‖(vk)j‖1,2,Ω

)〉
L2(Ω)

≤ C

〈∇(vk)j,∇
(

(vk)j

‖(vk)j‖1,2,V

)〉
L2(V)

+

〈
(vk)j,

(
(vk)j

‖(vk)j‖1,2,V

)〉
L2(V)


= C sup

ϕ∈C1
c (V)

{
〈∇(vk)j,∇ϕ〉L2(V) + 〈(vk)j, ϕ〉L2(V) : ‖ϕ‖1,2,V ≤ 1

}
. (3)

Here, we recall that C > 0 is the constant concerning the extension Theorem 1. From
such results and (2), we have that

sup
ϕ∈C1(Ω)

{
〈∇(vk)j,∇ϕ〉L2(Ω) + 〈(vk)j, ϕ〉L2(Ω) : ‖ϕ‖1,2,Ω ≤ 1

}
≤ C sup

ϕ∈C1
c (V)

{
〈∇(vk)j,∇ϕ〉L2(V) + 〈(vk)j, ϕ〉L2(V) : ‖ϕ‖1,2,V ≤ 1

}
= C sup

ϕ∈C1
c (V)

{
〈ejl(vk), ϕ,l〉L2(V) + 〈ejl(vk), ϕ,l〉L2(V)

−〈ell(vk), ϕ,j〉L2(V) + 〈(vk)j, ϕ〉L2(V), : ‖ϕ‖1,2,V ≤ 1
}

. (4)

Therefore,

‖(vk)j‖(W1,2(Ω))

= sup
ϕ∈C1(Ω)

{〈∇(vk)j,∇ϕ〉L2(Ω) + 〈(vk)j, ϕ〉L2(Ω) : ‖ϕ‖1,2,Ω ≤ 1}

≤ C

(
n

∑
l=1

{
‖ejl(vk)‖0,2,V + ‖ell(vk)‖0,2,V

}
+ ‖(vk)j‖0,2,V

)

≤ C1

(
n

∑
l=1

{
‖ejl(vk)‖0,2,Ω + ‖ell(vk)‖0,2,Ω

}
+ ‖(vk)j‖0,2,Ω

)

<
C2

k
, (5)

for appropriate C1 > 0 and C2 > 0.
Summarizing,

‖(vk)j‖(W1,2(Ω)) <
C2

k
, ∀k ∈ N.

From this we obtain
‖vk‖1,2,Ω → 0, as k→ ∞,
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which contradicts
‖vk‖1,2,Ω = 1, ∀k ∈ N.

The proof is complete.

Corollary 1. Let Ω ⊂ Rn be an open, bounded and connected set with a Ĉ1 boundary ∂Ω. Define
e : W1,2(Ω;Rn)→ L2(Ω;Rn×n) by

e(u) = {eij(u)}

where
eij(u) =

1
2
(ui,j + uj,i), ∀i, j ∈ {1, . . . , n}.

Define also,

‖e(u)‖0,2,Ω =

(
n

∑
i=1

n

∑
j=1
‖eij(u)‖2

0,2,Ω

)1/2

.

Let L ∈ R+ be such V = [−L, L]n is also such that Ω ⊂ V0.
Moreover, define

Ĥ0 = {u ∈W1,2(Ω;Rn) : u = 0, on Γ0},

where Γ0 ⊂ ∂Ω is a measurable set such that the Lebesgue measure mRn−1(Γ0) > 0.
Assume also Γ0 is such that for each j ∈ {1, · · · , n} and each x = (x1, · · · , xn) ∈ Ω there

exists x0 = ((x0)1, · · · , (x0)n) ∈ Γ0 such that

(x0)l = xl , ∀l 6= j, l ∈ {1, · · · , n},

and the line
Ax0,x ⊂ Ω

where
Ax0,x = {(x1, · · · , (1− t)(x0)j + txj, · · · , xn) : t ∈ [0, 1]}.

Under such hypotheses, there exists C(Ω, L) ∈ R+ such that

‖u‖1,2,Ω ≤ C(Ω, L) ‖e(u)‖0,2,Ω, ∀u ∈ Ĥ0.

Proof. Suppose, to obtain contradiction, that the concerning claim does not hold.
Hence, for each k ∈ N there exists uk ∈ Ĥ0 such that

‖uk‖1,2,Ω > k ‖e(uk)‖0,2,Ω.

In particular, defining

vk =
uk

‖uk‖1,2,Ω

similarly to the proof of the last theorem, we may obtain

‖(vk)j,j‖0,2,Ω → 0, as k→ ∞, ∀j ∈ {1, . . . , n}.

From this, the hypotheses on Γ0 and from the standard Poincaré inequality proof
we obtain

‖(vk)j‖0,2,Ω → 0, as k→ ∞, ∀j ∈ {1, . . . , n}.

Thus, also similarly as in the proof of the last theorem, we may infer that

‖vk‖1,2,Ω → 0, as k→ ∞,
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which contradicts
‖vk‖1,2,Ω = 1, ∀k ∈ N.

The proof is complete.

3. An Existence Result for a Non-Linear Model of Plates

In the present section, as an application of the results on Korn’s inequalities presented
in the previous sections, we develop a new global existence proof for a Kirchhoff–Love
thin plate model. Previous results on the existence of mathematical elasticity and related
models may be found in [2–4].

At this point we start to describe the primal formulation.
Let Ω ⊂ R2 be an open, bounded, connected set which represents the middle surface

of a plate of thickness h. The boundary of Ω, which is assumed to be regular (Lipschitzian),
is denoted by ∂Ω. The vectorial basis related to the cartesian system {x1, x2, x3} is denoted
by (aα, a3), where α = 1, 2 (in general, Greek indices stand for 1 or 2), and where a3 is the
vector normal to Ω, whereas a1 and a2 are orthogonal vectors parallel to Ω. Furthermore, n
is the outward normal to the plate surface.

The displacements will be denoted by

û = {ûα, û3} = ûαaα + û3a3.

The Kirchhoff–Love relations are

ûα(x1, x2, x3) = uα(x1, x2)− x3w(x1, x2),α

and û3(x1, x2, x3) = w(x1, x2). (6)

Here, −h/2 ≤ x3 ≤ h/2 so that we have u = (uα, w) ∈ U where

U =
{
(uα, w) ∈W1,2(Ω;R2)×W2,2(Ω),

uα = w =
∂w
∂n

= 0 on ∂Ω}

= W1,2
0 (Ω;R2)×W2,2

0 (Ω).

It is worth emphasizing that the boundary conditions here specified refer to a
clamped plate.

We define the operator Λ : U → Y×Y, where Y = Y∗ = L2(Ω;R2×2), by

Λ(u) = {γ(u), κ(u)},

γαβ(u) =
uα,β + uβ,α

2
+

w,αw,β

2
,

καβ(u) = −w,αβ.

The constitutive relations are given by

Nαβ(u) = Hαβλµγλµ(u), (7)

Mαβ(u) = hαβλµκλµ(u), (8)

where {Hαβλµ} and {hαβλµ = h2

12 Hαβλµ}, are symmetric positive definite fourth-order
tensors. From now on, we denote {Hαβλµ} = {Hαβλµ}−1 and {hαβλµ} = {hαβλµ}−1.
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Furthermore, {Nαβ} denote the membrane force tensor and {Mαβ} the moment one.
The plate stored energy, represented by (G ◦Λ) : U → R, is expressed by

(G ◦Λ)(u) =
1
2

∫
Ω

Nαβ(u)γαβ(u) dx +
1
2

∫
Ω

Mαβ(u)καβ(u) dx (9)

and the external work, represented by F : U → R, is given by

F(u) = 〈w, P〉L2(Ω) + 〈uα, Pα〉L2(Ω), (10)

where P, P1, P2 ∈ L2(Ω) are external loads in the directions a3, a1, and a2, respectively. The
potential energy, denoted by J : U → R, is expressed by

J(u) = (G ◦Λ)(u)− F(u)

Finally, we also emphasize from now on, as their meaning are clear, we may denote
L2(Ω) and L2(Ω;R2×2) simply by L2, and the respective norms by ‖ · ‖2. Moreover, deriva-
tives are always understood in the distributional sense, 0 may denote the zero vector in
appropriate Banach spaces, and the following and relating notations are used:

w,α =
∂w
∂xα

,

w,αβ =
∂2w

∂xα∂xβ
,

uα,β =
∂uα

∂xβ
,

Nαβ,1 =
∂Nαβ

∂x1
,

and

Nαβ,2 =
∂Nαβ

∂x2
.

4. On the Existence of a Global Minimizer

At this point, we present an existence result concerning the Kirchhoff–Love plate model.
We start with the following two remarks.

Remark 4. Let {Pα} ∈ L∞(Ω;R2). We may easily obtain by appropriate Lebesgue integration
{T̃αβ} symmetric and such that

T̃αβ,β = −Pα, in Ω.

Indeed, extending {Pα} to zero outside Ω if necessary, we may set

T̃11(x, y) = −
∫ x

0
P1(ξ, y) dξ,

T̃22(x, y) = −
∫ y

0
P2(x, ξ) dξ,

and
T̃12(x, y) = T̃21(x, y) = 0, in Ω.

Thus, we may choose a C > 0 sufficiently big, such that

{Tαβ} = {T̃αβ + Cδαβ}
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is positive definite in Ω, so that

Tαβ,β = T̃αβ,β = −Pα,

where
{δαβ}

is the Kronecker delta.
Therefore, for the kind of boundary conditions of the next theorem, we do not have any

restriction for the {Pα} norm.
In summary, the next result is new and it is really a step forward concerning the previous one

in Ciarlet [3]. We emphasize that this result and its proof through such a tensor {Tαβ} are new,
even though the final part of the proof is established through a standard procedure in the calculus
of variations.

Finally, more details on the Sobolev spaces involved may be found in [5–8]. Related duality
principles are addressed in [5,7,9].

At this point, we present the main theorem in this section.

Theorem 3. Let Ω ⊂ R2 be an open, bounded, connected set with a Lipschitzian boundary denoted
by ∂Ω = Γ. Suppose (G ◦Λ) : U → R is defined by

G(Λu) = G1(γ(u)) + G2(κ(u)), ∀u ∈ U,

where
G1(γu) =

1
2

∫
Ω

Hαβλµγαβ(u)γλµ(u) dx,

and
G2(κu) =

1
2

∫
Ω

hαβλµκαβ(u)κλµ(u) dx,

where
Λ(u) = (γ(u), κ(u)) = ({γαβ(u)}, {καβ(u)}),

γαβ(u) =
uα,β + uβ,α

2
+

w,αw,β

2
,

καβ(u) = −w,αβ,

and where

J(u) = W(γ(u), κ(u))− 〈Pα, uα〉L2(Ω)

−〈w, P〉L2(Ω) − 〈Pt
α, uα〉L2(Γt)

−〈Pt, w〉L2(Γt)
, (11)

where,

U = {u = (uα, w) = (u1, u2, w) ∈W1,2(Ω;R2)×W2,2(Ω) :

uα = w =
∂w
∂n

= 0, on Γ0}, (12)

where ∂Ω = Γ0 ∪ Γt and the Lebesgue measures

mΓ(Γ0 ∩ Γt) = 0,

and
mΓ(Γ0) > 0.
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We also define

F1(u) = −〈w, P〉L2(Ω) − 〈uα, Pα〉L2(Ω) − 〈Pt
α, uα〉L2(Γt)

−〈Pt, w〉L2(Γt)
+ 〈εα, u2

α〉L2(Γt)

≡ −〈u, f〉L2 + 〈εα, u2
α〉L2(Γt)

≡ −〈u, f1〉L2 − 〈uα, Pα〉L2(Ω) + 〈εα, u2
α〉L2(Γt)

, (13)

where
〈u, f1〉L2 = 〈u, f〉L2 − 〈uα, Pα〉L2(Ω),

εα > 0, ∀α ∈ {1, 2} and
f = (Pα, P) ∈ L∞(Ω;R3).

Let J : U → R be defined by

J(u) = G(Λu) + F1(u), ∀u ∈ U.

Assume there exists {cαβ} ∈ R2×2 such that cαβ > 0, ∀α, β ∈ {1, 2} and

G2(κ(u)) ≥ cαβ‖w,αβ‖2
2, ∀u ∈ U.

Under such hypotheses, there exists u0 ∈ U such that

J(u0) = min
u∈U

J(u).

Proof. Observe that we may find Tα = {(Tα)β} such that

divTα = Tαβ,β = −Pα,

and also such that {Tαβ} is positive, definite, and symmetric (please see Remark 4).
Thus, defining

vαβ(u) =
uα,β + uβ,α

2
+

1
2

w,αw,β, (14)

we obtain

J(u) = G1({vαβ(u)}) + G2(κ(u))− 〈u, f〉L2 + 〈εα, u2
α〉L2(Γt)

= G1({vαβ(u)}) + G2(κ(u)) + 〈Tαβ,β, uα〉L2(Ω) − 〈u, f1〉L2 + 〈εα, u2
α〉L2(Γt)

= G1({vαβ(u)}) + G2(κ(u))−
〈

Tαβ,
uα,β + uβ,α

2

〉
L2(Ω)

+〈Tαβnβ, uα〉L2(Γt)
− 〈u, f1〉L2 + 〈εα, u2

α〉L2(Γt)

= G1({vαβ(u)}) + G2(κ(u))−
〈

Tαβ, vαβ(u)−
1
2

w,αw,β

〉
L2(Ω)

− 〈u, f1〉L2 + 〈εα, u2
α〉L2(Γt)

+〈Tαβnβ, uα〉L2(Γt)

≥ cαβ‖w,αβ‖2
2 +

1
2
〈

Tαβ, w,αw,β
〉

L2(Ω)
− 〈u, f1〉L2 + 〈εα, u2

α〉L2(Γt)
+ G1({vαβ(u)})

−〈Tαβ, vαβ(u)〉L2(Ω) + 〈Tαβnβ, uα〉L2(Γt)
. (15)

From this, since {Tαβ} is positive definite, clearly J is bounded below.
Let {un} ∈ U be a minimizing sequence for J. Thus, there exists α1 ∈ R such that

lim
n→∞

J(un) = inf
u∈U

J(u) = α1.
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From (15), there exists K1 > 0 such that

‖(wn),αβ‖2 < K1, ∀α, β ∈ {1, 2}, n ∈ N.

Therefore, there exists w0 ∈W2,2(Ω) such that, up to a subsequence not relabeled,

(wn),αβ ⇀ (w0),αβ, weakly in L2,

∀α, β ∈ {1, 2}, as n→ ∞.
Moreover, also up to a subsequence not relabeled,

(wn),α → (w0),α, strongly in L2 and L4, (16)

∀α,∈ {1, 2}, as n→ ∞.
Furthermore, from (15), there exists K2 > 0 such that,

‖(vn)αβ(u)‖2 < K2, ∀α, β ∈ {1, 2}, n ∈ N,

and thus, from this, (14) and (16), we may infer that there exists K3 > 0 such that

‖(un)α,β + (un)β,α‖2 < K3, ∀α, β ∈ {1, 2}, n ∈ N.

From this and Korn’s inequality, there exists K4 > 0 such that

‖un‖W1,2(Ω;R2) ≤ K4, ∀n ∈ N.

Therefore, up to a subsequence not relabeled, there exists {(u0)α} ∈W1,2(Ω,R2), such that

(un)α,β + (un)β,α ⇀ (u0)α,β + (u0)β,α, weakly in L2,

∀α, β ∈ {1, 2}, as n→ ∞, and

(un)α → (u0)α, strongly in L2,

∀α ∈ {1, 2}, as n→ ∞.
Moreover, the boundary conditions satisfied by the subsequences are also satisfied for

w0 and u0 in a trace sense, so that

u0 = ((u0)α, w0) ∈ U.

From this, up to a subsequence not relabeled, we obtain

γαβ(un) ⇀ γαβ(u0), weakly in L2,

∀α, β ∈ {1, 2}, and
καβ(un) ⇀ καβ(u0), weakly in L2,

∀α, β ∈ {1, 2}.
Therefore, from the convexity of G1 in γ and G2 in κ, we obtain

inf
u∈U

J(u) = α1

= lim inf
n→∞

J(un)

≥ J(u0). (17)

Thus,
J(u0) = min

u∈U
J(u).
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The proof is complete.

5. Conclusions

In this article, we have developed a new proof for Korn’s inequality in a specific
n-dimensional context. In the second text part, we present a global existence result for
a non-linear model of plates. Both results represent some new advances concerning the
present literature. In particular, the results for Korn’s inequality known so far are for a
three-dimensional context such as in [1], for example, whereas we have here addressed a
more general n-dimensional case.

In a future research, we intend to address more general models, including the corre-
sponding results for manifolds in Rn.
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