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Abstract: In the first part of this article, we present a new proof for Korn’s inequality in an n-
dimensional context. The results are based on standard tools of real and functional analysis. For the
final result, the standard Poincaré inequality plays a fundamental role. In the second text part, we
develop a global existence result for a non-linear model of plates. We address a rather general type of
boundary conditions and the novelty here is the more relaxed restrictions concerning the external
load magnitude.
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1. Introduction

In this article, we present a proof for Korn’s inequality in R”. The results are based on
standard tools of functional analysis and on the Sobolev spaces theory.

We emphasize that such a proof is relatively simple and easy to follow since it is
established in a very transparent and clear fashion.

About the references, we highlight that related results in a three-dimensional context
may be found in [1]. Other important classical results on Korn's inequality and concerning
applications to models in elasticity may be found in [2-4].

Remark 1. Generically, throughout the text we denote

1/2
020 = (/Q |u)? dx) , Yu € L2(Q),

[

and

[

1/2
n
02,0 = (2 Hu] %/2’Q> , Yu = (ul,. ..,Lln) S Lz(Q,'Rn).
j=1

Moreover,

[

1/2
n
2 2 12
120 = <||” 020 T 2 Il o,z,o) , Vu e W (Q)),
=

where we shall also refer throughout the text to the well-known corresponding analogous norm for
u € W2(Q;R").

At this point, we first introduce the following definition.

Definition 1. Let QO C R" be an open, bounded set. We say that 9Q) is C1 if such a manifold is
oriented and for each xo € 0Q), denoting £ = (x1, ..., x,—1) for a local coordinate system compatible
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with the manifold 0Q) orientation, there exist r > 0 and a function f(x,...,x,_1) = f(&) such
that
W =0QnNB,(xp) = {x € B(x0) | xn < f(x1,.,X_1) }-

Moreover, f(2) is a Lipschitz continuous function, so that

If(%) — f(9)] < C1|% — 7|2, onits domain,

(5

is classically defined, almost everywhere also on its concerning domain, so that f € W12,

for some Cy > 0. Finally, we assume

Remark 2. This mentioned set () is of a Lipschitzian type, so that we may refer to such a kind of
sets as domains with a Lipschitzian boundary, or simply as Lipschitzian sets.

At this point, we recall the following result found in [5], at page 222 in its Chapter 11.

Theorem 1. Assume Q) C R" is an open bounded set, and that 9Q) is CliLet1< p < oo, and let
V be a bounded open set such that () CC V. Then there exists a bounded linear operator

E: WY (Q) — WY (R"),

such that for each u € WP (Q) we have:

1. Eu=u,ae inQ),
2. Eu has supportin V;
3. |Eully,prr < Cllull1,p,0, where the constant depends only on p,Q), and V.

Remark 3. Considering the proof of such a result, the constant C > 0 may be also such that

leij(Eu)llo2,v < Clleij(1)lop0 + llullozn), Yu € WH(OR"), Vi j € {1,...,n},

for the operator e : WI2(Q; R™) — L?(Q; R" ") specified in the next theorem.

Finally, as the meaning is clear, we may simply denote Eu = u.

2. The Main Results, the Korn Inequalities

Our main result is summarized by the following theorem.

Theorem 2. Let () C R" be an open, bounded and connected set with a Cl( Lipschitzian) bound-
ary 0Q).
Define e : WY2(Q;R") — L2(Q; R"™ ") by

e(u) = {eij(u)}

where )
eij(u) = 5(”1’,]‘ +uji), Vi,je{l,...,n},

and where generically, we denote

du; . .
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Define also,
n n 1/2
le(u)llo2,0 = (Z Y. |eij(u)H%,2,Q> :
i=1j=1
Let L € R" besuch V = [—L, L]" is also such that O C V°.
Under such hypotheses, there exists C(Q), L) € R such that
lullz0 < CQ, L) (ulloga + lle(u)lloz), Yu € WHA(OQ;R"). @

Proof. Suppose, to obtain contradiction, that the concerning claim does not hold.

Thus, we are assuming that there is no positive real constant C = C((2, L) such that (1)
is valid.

In particular, k = 1 € N is not such a constant C, so that there exists a function
u; € WH2(Q; R") such that

luill12,0 > 1 (luilloz,a + lle(u1)lloz0)-

Similarly, k = 2 € N is not such a constant C, so that there exists a function up €
W1L2(0; R") such that

luzll12,0 > 2 (luzllo2,0 + lle(u2)lo20)-

Hence, since no k € N is such a constant C, reasoning inductively, for each k € N there
exists a function u; € W2(Q; R") such that

Nlull1,2,0 > k(|luelloz,0 + lle(u) lloz,0)-

In particular, defining

Uy
V1 =
‘ lukll1,2,0
we obtain
lvklliza =1 > k(|vklloza + le(@i)lloza),
so that :
(loxlloze + lle(@e)llozn) < £, Yk €N.
From this we obtain .
loklloz0 < £
and .
leij(@) o0 < 2, Yk €N,
so that
lloklloz0 — 0, ask — oo,
and
lleii(vi) loz,0 — 0, ask — oo.
In particular,
1(@6)ijlloza =0, Vje{1,...,n}.

At this point, we recall the following identity in the distributional sense, found in [3],
page 12:
a]‘(al’(]i) = ajel-l(v) + aleij(v) — aieﬂ(v), Vi, j,l € {1, e ,n}. 2)

Fix j € {1,...,n} and observe that

[(@K)jlli2v < Cll(wk)ill20
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so that
C 1

[(@)illzy = (@k)illL20

, Vk € N.
Hence,

l (Uk)j||1,2,0

= swp {(V(0);, Vo) iz + (005 )12y ¢ ol <1}
peCl(Q)

= vty
= <V( k)]'v<||(vk)]'|1,2,Q>>L2(Q)
N
]/ ||(vk)j||1,2,ﬂ 12(Q)
C (<V(Uk)ﬂv ( ||(vk)j||1,2,v> >L2(V) i <(vk)]’ <|(Uk)j||1,2,v> >L2(V))

= C sup {(V(Uk)j/v§0>L2(V)+<(Uk)j/§0>L2(V) : H€0||1,2,VS1}- ®)
peCt(V)

IN

Here, we recall that C > 0 is the constant concerning the extension Theorem 1. From
such results and (2), we have that

sup {<v(vk)jrv¢>L2(Q)+<(vk)j/(P>L2(Q) lellea Sl}

peCl(Q)
< C sup {(V(Uk)j:V@Lz(V)+<(Uk)jf§9>L2(V) : ||§9||1,2,VS1}
PeCL(V)
= C sup {<ejl(vk)f§9,l>L2(V)+<ejl(vk)f§9,l>L2(V)
peCl(V)
~(en(®), 9, 12wy + (), @)raqwy, + gl <1}, ()
Therefore,
1@l (w2 ()
= sup {(V(o); Vo) 2q) + (W) @) 120y ¢ ll@llizo <1}
peCl(Q)
< C( {||€jl(vk)||0,2,v+||6’11(Uk)||0,2,v}+||(Uk)j||o,z,v>
=1
<G (z{neﬂ@mo,z,g + llen(@)lloz0 } + ||<vk>j|o,z,n>
=1
G
< 7 ®)

for appropriate C; > 0 and C; > 0.
Summarizing,

C
||('Uk)j||(wl/2(0)) < ?2, Vk S N.

From this we obtain
llvkll1,20 — 0, ask — oo,
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which contradicts

||Z)k 12,0 = 1, Vk € N.

The proof is complete. [

Corollary 1. Let Q C R" be an open, bounded and connected set with a C' boundary 9Q). Define
e: WL2(Q;R") — L2(Q; R™ ") by

e(u) = {eij(u)}
where .
eij(u) = 5 (wij+wi), Vi j € {1,...,n}.

Define also,

n

; 1/2
le(u)llo2,0 = (Z Z |ez’j(u)||%,2,0> :

i=1j=1

Let L € RT besuch V = [—L, L]" is also such that O C V°.
Moreover, define

Ay ={uec W2(R") : u=0, onTy},

where Ty C 0Q) is a measurable set such that the Lebesgue measure mp,1(Ig) > 0.
Assume also Ty is such that for each j € {1,--- ,n} and each x = (x1,--- ,x,) € Q there
exists xo = ((x0)1, -+, (x0)n) € T such that

(xo)y =x;, VI #j, 1 €{L,---,n},

and the line B
Axpx CQ

where
Axgx = {(x1,- -+, (1= 1t)(x0)j +txj,- -+, xn) : t €0,1]}.

Under such hypotheses, there exists C(Q), L) € R" such that

[[u

120 < C(Q, L) [le(u)]loz,0, Vu € Hy.

Proof. Suppose, to obtain contradiction, that the concerning claim does not hold.
Hence, for each k € N there exists uy € Hy such that

lukll1,2,0 > k lle(ur)llo2,0-

In particular, defining
Uk
Uk

k20

similarly to the proof of the last theorem, we may obtain

[(v6)jjlloza — 0, ask = oo, Vj € {1,...,n}.

From this, the hypotheses on I'y and from the standard Poincaré inequality proof
we obtain
[(k)illopn — 0, ask — oo, Vj€ {1,...,n}.

Thus, also similarly as in the proof of the last theorem, we may infer that

lvkll12,0 — 0, ask — oo,
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which contradicts

||Uk 12,0 = 1, Vk € N.

The proof is complete. [

3. An Existence Result for a Non-Linear Model of Plates

In the present section, as an application of the results on Korn's inequalities presented
in the previous sections, we develop a new global existence proof for a Kirchhoff-Love
thin plate model. Previous results on the existence of mathematical elasticity and related
models may be found in [2-4].

At this point we start to describe the primal formulation.

Let O C R? be an open, bounded, connected set which represents the middle surface
of a plate of thickness h. The boundary of (), which is assumed to be regular (Lipschitzian),
is denoted by 9). The vectorial basis related to the cartesian system {xl, X2, x3} is denoted
by (as, a3), where & = 1,2 (in general, Greek indices stand for 1 or 2), and where aj is the
vector normal to (), whereas a; and a, are orthogonal vectors parallel to (2. Furthermore, n
is the outward normal to the plate surface.

The displacements will be denoted by

= {ﬁa, ﬁ3} = flya, + fizas.
The Kirchhoff-Love relations are

ﬁa(X1,XZ, x3) - Mﬂé(xlle) - x3w(xl/x2),ﬂt

and 73(x1, x2, x3) = w(xq, x2). (6)
Here, —h/2 < x3 < h/2 so that we have u = (u,, w) € U where

u = {(uw) € WAQRY) x W(Q),

ow
u,,é:w:E:OonaQ}

= WA (R?) x W2(Q).

It is worth emphasizing that the boundary conditions here specified refer to a
clamped plate.
We define the operator A: U — Y X Y, where Y = Y* = L2(Q; R?*?), by

Au) = {y(u),x(u)},

Uy g+ Ug, W W,
Yaplu) = LA 2E,

Kaﬁ(u) = —W a5

The constitutive relations are given by

Ntxﬁ(”) = Ha/%)\y"}’)\y(”)r @)

Mtxﬁ(u) = htxﬁ)\yK)\y (u)r 8)

where {Hgpr,} and {hapr, = %H,X/;M, }, are symmetric positive definite fourth-order
tensors. From now on, we denote {Hyg),, } = {Ha/%Ay}_l and {Eaﬁ)\y} = {halg/\y}_l.
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Furthermore, { N, 5} denote the membrane force tensor and {M,p} the moment one.
The plate stored energy, represented by (Go A) : U — R, is expressed by

1 1
(GoM)w) = 5 [ Nup(u)rap(u) dx+ 5 | Map(u)regp() dx ©)
Q Q
and the external work, represented by F : U — R, is given by
F(u) = (w, P>L2(Q) + <1/la, Pa>L2(Q)r (10)

where P, P, P, € LZ(Q) are external loads in the directions a3, aj, and a, respectively. The
potential energy, denoted by | : U — R, is expressed by

J() = (GoA)(u) - F(u)

Finally, we also emphasize from now on, as their meaning are clear, we may denote
L%(Q) and L?(Q; R?*2) simply by L?, and the respective norms by || - ||o. Moreover, deriva-
tives are always understood in the distributional sense, 0 may denote the zero vector in
appropriate Banach spaces, and the following and relating notations are used:

ow
Wy =
’ ox,”

S ’w
B 0x,9xg”

Juy
Hap = axﬁ’
BN,Xﬁ
06/.9,1 = ax1 7
and N
ap
Nalg,,z = ax2 .

4. On the Existence of a Global Minimizer

At this point, we present an existence result concerning the Kirchhoff-Love plate model.
We start with the following two remarks.

Remark 4. Let {P,} € L®(Q;R?). We may easily obtain by appropriate Lebesgue integration
{T.p} symmetric and such that

Tﬂcﬁ,ﬁ = —P,X, in Q.

Indeed, extending { Py} to zero outside ) if necessary, we may set

Tu(xy) = - [ “Piey) de,

Tzz(x,y) = — Ay PZ(x/C) dg/

and
Tiz(x,y) = T (x,y) =0, in QL.

Thus, we may choose a C > 0 sufficiently big, such that

{Taﬁ} = {Taﬁ + C‘Saﬁ}
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is positive definite in (), so that

Tocﬁ,/S = Taﬁ,ﬁ = —P,

where
{‘Stx B }

is the Kronecker delta.

Therefore, for the kind of boundary conditions of the next theorem, we do not have any
restriction for the { Py } norm.

In summary, the next result is new and it is really a step forward concerning the previous one
in Ciarlet [3]. We emphasize that this result and its proof through such a tensor {T,p} are new,
even though the final part of the proof is established through a standard procedure in the calculus
of variations.

Finally, more details on the Sobolev spaces involved may be found in [5-8]. Related duality
principles are addressed in [5,7,9].

At this point, we present the main theorem in this section.

Theorem 3. Let QO C R? be an open, bounded, connected set with a Lipschitzian boundary denoted
by 9Q) = T. Suppose (G o A) : U — R is defined by

G(Au) = Gi(y(u)) + Ga(x(u)), Yu € U,

where .
Gi(1) = 5 [ Hapruap () au(u)
and
1
Go(xu) = 5 /Qha/g,\yxw(u)x)\y(u) dx,
where
Au) = (v(u), k() = {rap() ), {xap(u)}),
_ Ug,p + Upx W8
%xﬂ(u) - 2 2 7
Kocﬁ(”) = —W,ap,
and where
J(u) = W(y(u),x(u)) = (P, tta) 12(q0)
—(w, P20y — (P tha) 12(r,)
—(P", w)r2(r,), (11)
where,
U = {u=(ug,w) = (u,uz,w) € W2(R?) x W2(Q) :
d
Uy =W = a—: =0, onTy}, (12)

where 0Q) = I'g U Tt and the Lebesgue measures
mr(LoNT¢) =0,

and
mr(l"o) > 0.
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Y

We also define

Fi(u) = —(w,P)raq) — (e, Pa)r2iay — (P ta) 12(ry)
—(P, >L2 )+ <£t¥rui>L2(D)
= —(uf)+ (e u 2>L2(1“t)
—(u, 1) 12 — (o, Pa) 2(0) + (€0 U2) 121, (13)
where
(u,f1)p2 = (u, £) 2 — <u0HPDé>L2(Q)/

€y >0, Voo € {1,2} and
f = (P, P) € L®(O;R3).

Let | : U — R be defined by
J(u) = G(Au) + Fy(u), Yu € U.
Assume there exists {c,g} € R**? such that c,g > 0, Vo, p € {1,2} and
Galk(w)) > cupwug 3, Ve € U
Under such hypotheses, there exists ug € U such that

J(up) = min J (u).

uel
Proof. Observe that we may find T, = {(Tx)p} such that
divTy = Tpgp = —Pa,
and also such that {T,X/g} is positive, definite, and symmetric (please see Remark 4).
Thus, defining
Vap(U) = u“ﬁl_ﬂ+ SWat,p, (14)

we obtain

G1({vap(u)}) + Ga(x(u)) —
G1({vap(u)}) + Ga(x(u)) +

u +u
T R

u, f>L2 + (ea, u >L2(I})
T“AB B u"‘>L2 Q) — <” f1>L2 + <€er 2>L2(1—~r)

(
(
+<Tuc‘[37’1‘3/u1x>L2(rt) <1/l fl 12 + Eﬂ” >L2(Ft)
G1({vap(u)}) + Ga(x < wps Vap (1 w“wﬁ>L2(Q) —(u, f1)2 + <€o¢/u02¢>L2(l"t)
+<T”‘,3n,5'u“>L2(l"t)

1
cupll g8+ 5 (Tap a0 ) 2y = i)z - enr ) 3y + Gal{oup ()
7< aﬁrvaﬁ( )> ( ) < ,X/gn/g,u“)Lz(rt), (15)

From this, since {T,g} is positive definite, clearly ] is bounded below.
Let {u,} € U be a minimizing sequence for J. Thus, there exists &7 € R such that

lim J(us) = inf J(u) = ay.

n—o00 uel
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From (15), there exists K; > 0 such that
[(wn) apll2 < K1, Ve, p € {1,2}, n € N.
Therefore, there exists wy € W2?(Q) such that, up to a subsequence not relabeled,
(wn) ap = (w0) ap, Weakly in L?,

Va, B € {1,2}, asn — oo.
Moreover, also up to a subsequence not relabeled,

(wn) a0 — (wg)a, stronglyin L2 and L*, (16)

Va, € {1,2}, asn — oo.
Furthermore, from (15), there exists K, > 0 such that,

[ (n)ap(u)ll2 < Kz, Ve, p € {1,2}, n €N,

and thus, from this, (14) and (16), we may infer that there exists K3 > 0 such that

[ (tn)ap + (1n)pallz < K, Vo, p € {1,2}, n € N.

From this and Korn’s inequality, there exists K4 > 0 such that
[tnllwr2(or2) < Ka, V1 € N.
Therefore, up to a subsequence not relabeled, there exists {(u)s} € W'2(Q, R?), such that
(tn)ap + (1n)pa — (U0)ap + (10) g0, weakly in L2,
Va,B € {1,2}, asn — oo, and
(ttn)a — (Up)a, strongly in L?,

Va € {1,2}, asn — oo.
Moreover, the boundary conditions satisfied by the subsequences are also satisfied for
wp and 1 in a trace sense, so that

up = ((ug)a, wp) € U.
From this, up to a subsequence not relabeled, we obtain
')’aﬁ(“n) - ’)/a‘[;(u()), weakly in Lz,

Va,B € {1,2},and
Kap(tin) = Kap(uo), weakly in L?,

Va, B € {1,2}.
Therefore, from the convexity of G; in 7y and G in x, we obtain

inf J(u) = m
ucl
= hg_‘)g)lf](”n)
= J(uo). (17)

Thus,
J(ug) = min J(u).

uel
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The proof is complete. [J

5. Conclusions

In this article, we have developed a new proof for Korn’s inequality in a specific
n-dimensional context. In the second text part, we present a global existence result for
a non-linear model of plates. Both results represent some new advances concerning the
present literature. In particular, the results for Korn’s inequality known so far are for a
three-dimensional context such as in [1], for example, whereas we have here addressed a
more general n-dimensional case.

In a future research, we intend to address more general models, including the corre-
sponding results for manifolds in R”.
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