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Abstract: In this work, we derive a generalized series expansion of the acrtangent function by using
the enhanced midpoint integration (EMI). Algorithmic implementation of the generalized series
expansion utilizes a two-step iteration without surd or complex numbers. The computational test we
performed reveals that such a generalization improves the accuracy in computation of the arctangent
function by many orders of magnitude with increasing integer M, associated with subintervals in
the EMI formula. The generalized series expansion may be promising for practical applications. It
may be particularly useful in practical tasks, where extensive computations with arbitrary precision
floating points are needed. The algorithmic implementation of the generalized series expansion
of the arctangent function shows a rapid convergence rate in the computation of digits of π in the
Machin-like formulas.
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1. Introduction

In 2010, Adegoke and Layeni published an interesting relation for derivatives of the
arctangent function [1]:

dn

dxn arctan(x) =
(−1)n−1(n− 1)!

(1 + x2)n/2 sin
(

n arcsin
(

1√
1 + x2

))
, n ∈ N+. (1)

Using this relation, they discovered a series expansion:

arctan(x) =
∞

∑
n=1

1
n

(
x2

1 + x2

)n/2

sin
(

n arcsin
(

1√
1 + x2

))
. (2)

Equations (1) and (2) have some restrictions. Specifically, when n is even, Equation (1)
remains valid only at x ∈ [0, ∞), while Equation (2) is valid only at x ∈ [0, ∞) for ∀n.

To resolve this problem, Lampret applied the signum function

sgn(x) =

{
−1, x < 0,

1, x ≥ 0,

and proved that for complete coverage x ∈ (−∞, ∞), the Equations (1) and (2) can be
modified as [2]

dn

dxn arctan(x) = sgn(−x)n−1 (n− 1)!
(1 + x2)n/2 sin

(
n arcsin

(
1√

1 + x2

))
(3)

AppliedMath 2023, 3, 395–405. https://doi.org/10.3390/appliedmath3020020 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath3020020
https://doi.org/10.3390/appliedmath3020020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://orcid.org/0000-0002-9949-3866
https://doi.org/10.3390/appliedmath3020020
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath3020020?type=check_update&version=1


AppliedMath 2023, 3 396

and

arctan(x) = sgn(x)
∞

∑
n=1

1
n

(
x2

1 + x2

)n/2

sin
(

n arcsin
(

1√
1 + x2

))
, (4)

respectively.
Equations (3) and (4) represent a theoretical interest. In particular, Lampret noticed

that, from Equation (3), it follows that [2]

sgn(0)n−1 · (n− 1)! · sin
(

n
π

2

)
=

{
(−1)(n−1)/2(n− 1)!, n odd,

0, n even.
(5)

Comparing the following relation (see [3] for detailed derivation procedure by induction),

dn

dxn arctan(x) =
(−1)n(n− 1)!

2i

(
1

(x + i)n −
1

(x− i)n

)
(6)

with Equation (3), we can find the following identity:

sgn(−x)n−1 (n− 1)!
(1 + x2)n/2 sin

(
n arcsin

(
1√

1 + x2

))
=

(−1)n(n− 1)!
2i

(
1

(x + i)n −
1

(x− i)n

)
.

(7)

It is not difficult to see that the relation (5) immediately follows from the identity (7).
Therefore, relation (5) is just a specific case of the identity (7) occurring at x = 0.

Identity (7) can be rewritten in the form

sin
(

n arcsin
(

1√
1 + x2

))
= −sgn(x)n−1 (1 + x2)n/2

2i

(
1

(x + i)n −
1

(x− i)n

)
.

Therefore, from Equation (4), it follows that

arctan(x) =

sgn(x)
∞

∑
n=1

1
n

(
x2

1 + x2

)n/2[
−sgn(x)n−1 (1 + x2)n/2

2i

(
1

(x + i)n −
1

(x− i)n

)]
or

arctan(x) =
i
2

∞

∑
n=1

xn

n

(
1

(x + i)n −
1

(x− i)n

)
.

As we can see, this series expansion of the arctangent function is just a reformulation of
Equation (4) and, since the relation (6) can be rearranged in the form

1
(x + i)n −

1
(x− i)n =

2i
(−1)n(n− 1)!

dn

dxn arctan(x),

we can express the arctangent function in terms of its derivatives as given by the following
equation:

arctan(x) =
∞

∑
n=1

(−1)n−1xn

n!
dn

dxn arctan(x)

that leads to
∞

∑
n=0

(−1)n−1xn

n!
dn

dxn arctan(x) = 0.

In our previous publication [4], using the identity (6), we have derived the following
series expansion of the arctangent function
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arctan(x) =

− 2
∞

∑
m=1

2m−1

∑
n=1

(−1)n

(2m− 1)(1 + x2/4)2m−1

( x
2

)2(2m−n)−1
(

2m− 1
2n− 1

)
,

from which, at x = 1, we obtain a formula for π expressed in terms of the binomial coefficients

π

4
= −2

∞

∑
m=1

2m−1

∑
n=1

(−1)n

(2m− 1)(1 + 1/4)2m−122(2m−n)−1

(
2m− 1
2n− 1

)
or

π

16
=

∞

∑
m=1

2m−1

∑
n=1

(−4)n−1

(2m− 1)52m−1

(
2m− 1
2n− 1

)
.

Later, using the same identity (6), we have also derived the following series expansion
(see [5,6]):

arctan(x) = 2
∞

∑
n=1

1
2n− 1

gn(x)
g2

n(x) + h2
n(x)

, (8)

where the expansion coefficients are computed by a two-step iteration:

gn(x) = gn−1(x)(1− 4/x2) + 4hn−1(x)/x,

hn(x) = hn−1(x)(1− 4/x2)− 4gn−1(x)/x,

such that
g1(x) = 2/x,

h1(x) = 1.

The series expansion (8) requires no surd or complex numbers in computation and it is
rapid in convergence.

Many new identities and series expansions related to the arctangent function have been
reported [7–15]. This shows that the discovery of new equations related to the arctangent
function as well as their applications remains a very interesting topic.

As a further development, in this work we derive a generalized series expansion of
the arctangent function. Such an approach may be used to improve further convergence in
the computation of the arctangent function. Due to rapid convergence without surd and
complex numbers in computation, the generalized series expansion may be promising for
applications with arbitrary precision floating points [16–23]. Furthermore, it may also be
promising in computing digits of π by using the Machin-like formulas [5,6,24–30]. To the
best of our knowledge, the generalized series expansion of the arctangent function is new
and has never been reported.

2. Derivation

The change of the variable x → xt in Equation (6) results in

∂n

∂tn arctan(xt) =
(−1)n(n− 1)!xn

2i

(
1

(xt + i)n −
1

(xt− i)n

)
or

∂n

∂tn
x

1 + x2t2 =
(−1)n+1n!xn+1

2i

(
1

(xt + i)n+1 −
1

(xt− i)n+1

)
(9)

since
∂n

∂tn arctan(xt) =
∂n−1

∂tn−1

(
x

1 + x2t2

)
.
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The Enhanced Midpoint Integration (EMI) formula is given by (see [31] for derivation
and [32] for application)

1∫
0

f (t) dt =
M

∑
m=1

∞

∑
n=0

(−1)n + 1
(2M)n+1(n + 1)!

dn

dtn f (t)
∣∣∣∣
t= m−1/2

M

, (10)

where integer M is associated with the subintervals of integration. It is interesting to note
that if the upper summation bound associated with variable n is an integer N ≥ 0, then we
can also use

1∫
0

f (t) dt = lim
M→∞

M

∑
m=1

N

∑
n=0

(−1)n + 1
(2M)n+1(n + 1)!

dn

dtn f (t)
∣∣∣∣
t= m−1/2

M

.

It is easy to show that, excluding all zero terms occurring at odd values of the variable
n, Equation (10) can be rewritten in a more convenient form:

1∫
0

f (t) dt = 2
M

∑
m=1

∞

∑
n=0

1
(2M)2n+1(2n + 1)!

d2n

dt2n f (t)
∣∣∣∣
t= m−1/2

M

. (11)

Equation (11) requires even derivatives of the integrand at the points t = (m −
1/2)/M, where m = 1, 2, 3, . . . M. Taking these derivatives manually is extremely tedious.
However, with the help of Computer Algebra Systems (CASs) such as Mathematica, Matlab
or Maple supporting symbolic programming, the application of Equation (11) may be very
efficient in numerical integration. Specifically, such an approach may be especially useful
for the numerical integration of the highly oscillating functions.

The EMI formula (11) can be used for numerical integration within any interval
t ∈ (a, b), since the following transformation formula

b∫
a

f (t) dt = (b− a)
1∫

0

f ((b− a)t + a) dt

can be applied to recast the integration interval within t ∈ (0, 1). The interested readers
can download the MATLAB code based on the integration Formula (11) on the MATLAB
Central website [33] (file ID #: 71037). The synopsis and brief instruction on how to
use the MATLAB code for numerical integration is also provided in the supplementary
readme.pdf file.

If an integrand represents a function of two variables f (x, t), then the integration
Formula (11) reads as

1∫
0

f (x, t) dt = 2
M

∑
m=1

∞

∑
n=0

1
(2M)2n+1(2n + 1)!

∂2n

∂t2n f (x, t)
∣∣∣∣
t= m−1/2

M

. (12)

The arctangent function can be given as an integral:

arctan(x) =
1∫

0

x
1 + x2t2 dt. (13)

Consequently, substituting the integrand from Equation (13)

x
1 + x2t2 =

x
2

(
1

1 + ixt
+

1
1− ixt

)
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into Equation (12) and using Equation (9) for differentiation, we can find that

arctan(x) =

i
M

∑
m=1

∞

∑
n=0

x2n+1

(2M)2n+1(2n + 1)

[
1

(x m−1/2
M + i)2n+1

− 1

(x m−1/2
M − i)2n+1

]
.

(14)

Series expansion (14) is rapid in convergence. However, it requires algebraic manipu-
lations with complex numbers. Therefore, it is very desirable to exclude them. This can be
achieved by induction based on a two-step iteration,

αn(x, t) = αn−1(x, t)(1− 1/(xt)2) + 2βn−1(x, t)/(xt),

βn(x, t) = βn−1(x, t)
(

1− 1/(xt)2
)
− 2αn−1(x, t)/(xt),

and
α1(x, t) = 1/(xt),

β1(x, t) = 1,

that transforms Equation (14) into the following series expansion:

arctan(x) = 2
M

∑
m=1

∞

∑
n=1

1
(2n− 1)(2m− 1)2n−1

αn(x, γm,M)

α2
n(x, γm,M) + β2

n(x, γm,M)
, (15)

where the argument is

γm,M =
m− 1/2

M
.

Equation (15) is a generalization of Equation (8). Consistency between these two equa-
tions can be observed by taking M = 1. In particular, the substitution of M = 1 into
series expansion (15) of the arctangent function implies that t = γ1,1 = 1/2. Consequently,
from Equation (15) we obtain Equation (8), where the expansion coefficients are

g1(x) = α1(x, γ1,1),

h1(x) = β1(x, γ1,1),

gn(x) = αn(x, γ1,1),

hn(x) = βn(x, γ1,1).

The following is a Mathematica code that generates the graphs shown in Figure 1 (this
code can be copy-pasted directly to the Mathematica notebook):

Clear[atan,\[Gamma],\[Alpha],\[Beta]];

(* Equation (15) *)
atan[x_,nMax_,M_] := 2*Sum[(1/(2*n - 1))*

(\[Alpha][x,\[Gamma][m,M],n]/((2*m - 1)^(2*n - 1)*
(\[Alpha][x,\[Gamma][m, M],n]^2 + \[Beta][x,

\[Gamma][m,M],n]^2))),{m,1,M},{n,1,nMax}];

(* Argument gamma *)
\[Gamma][m_,M_] := \[Gamma][m,M] = N[(m - 1/2)/M,1000];

(* Expansion coefficients *)
\[Alpha][x_,t_,1] := \[Alpha][x,t,1] = 1/(x*t);
\[Beta][x_,t_,1] := \[Beta][x,t,1] = 1;

\[Alpha][x_,t_,n_] := \[Alpha][x,t,n] =
\[Alpha][x,t,n - 1]*(1 - 1/(x*t)^2) +

2*(\[Beta][x,t,n - 1]/(x*t));

\[Beta][x_,t_,n_] := \[Beta][x,t,n] =
\[Beta][x,t,n - 1]*(1 - 1/(x*t)^2) -
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2*(\[Alpha][x,t,n - 1]/(x*t));

(* Computing data points *)
tabs := {Table[{x,atan[x,10,1]},{x,-20,20,Pi/20}],

Table[{x,atan[x,10,2]},{x,-20,20,Pi/20}],
Table[{x,atan[x,10,3]},{x,-20,20,Pi/20}]};

Print["Computing, please wait..."];

(* Plotting graphs *)
ListPlot[tabs,Joined->True,FrameLabel->{"Parameter x",

"Arctangent approximations"},PlotStyle->{Blue,Red,Green},
Frame->True,GridLines->Automatic]

Figure 1. Arctangent approximations computed by using series expansion (15) truncated at nmax = 10.
Blue, red and green curves correspond to M taken to be 1, 2 and 3, respectively.

The graphs in Figure 1 are generated by using series expansion (15) truncated at
nmax = 10. Blue, red and green curves correspond to integer M taken to be 1, 2 and 3,
respectively.

Consider Figure 2 showing approximation curves of the arctangent function arctan(x)
by using Equations (15)–(17) truncated at nmax = 10. The blue curve corresponding to the
Maclaurin series expansion

arctan(x) =
∞

∑
n=0

(−1)nx2n+1

2n + 1
, |x| ≤ 1, (16)

diverges beyond −1 and 1 due to the finite radius of convergence. Although one can
resolve this issue by using an elementary relation,

arctan(x) =



π

2
− arctan

(
1
x

)
, x > 0,

0, x = 0,

− π

2
− arctan

(
1
x

)
, x < 0,

our objective is just to visualize the convergence. The red curve shows the Euler series
expansion [22,34,35]:

arctan(x) =
∞

∑
n=0

22n(n!)2

(2n + 1)!
x2n+1

(1 + x2)
n+1 . (17)
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The green curve illustrates the series expansion (15) at M = 1. The black dashed curve
depicts the original arctangent function for comparison. As we can see from Figure 2, even
at the smallest M the series expansion (15) provides more rapid convergence as compared
to the Euler series expansion (17).

Figure 2. Arctangent approximations computed by series expansions (16) (blue), (17) (red) and (15)
(green) truncated at nmax = 10. Integer M in Equation (15) is taken to be equal to 1. The dashed black
curve shows the original artangent function.

Figure 3 shows the logarithms of absolute difference log10 ∆ between the arctangent
function and its approximations provided by Equations (15)–(17). All curves are also
computed with truncating integer nmax = 10 in all these equations. The blue and red
curves correspond to Equations (16) and (17) while the green, brown, gray, magenta and
black curves correspond to Equation (15) when M is equal to 1, 2, 3, 4 and 5, respectively.
As we can see from this figure, the increase of the integer M leads to a rapid decrease of
the absolute difference ∆ by many orders of the magnitude. These results indicate that the
series expansion (15) provides increasing convergence with increasing M.

Figure 3. Logarithms of absolute difference log10∆ between original arctangent function and series
expansions (16) (blue), (17) (red) and (15) (green-to-black) truncated at nmax = 10. Integer M in the
series expansion (15) is taken to be 1 (green), 2 (brown), 3 (gray), 4 (magenta) and 5 (black).
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3. Applications

There are two potentially possible applications of the series expansion (15). In partic-
ular, the series expansion (15) can be implemented as a function file for computation of
the arctangent for the libraries with arbitrary precision floating points that are required in
many fields of mathematical/computational physics and astronomy [16–23]. According
to [16,17,22,23], the Maclaurin and Euler series expansions (16) and (17) are used for the
arctangent function to provide arbitrary precision in the programming languages.

The Maclaurin series expansion (16) diverges at the points of argument 1 and −1. This
deteriorates the accuracy as argument x approaches 1 by the absolute value. Consequently,
its algorithmic implementation requires additional algebraic manipulations to overcome
this issue for computations with enhanced precision [16].

As Equation (15) is more rapid in convergence than Equations (16) and (17), its ap-
plication may also be efficient to reduce the run-time in many tasks, where extensive
computations (without surd or complex numbers) with largely extended precision in
floating point numbers are necessary. Moreover, Equation (15) may also provide addi-
tional flexibility for users, who can choose the parameter M according to their specific
requirements for high-accuracy computation.

Another application, where the series expansion (15) can also find its practical imple-
mentation, is a computation of digits of the constant π by using the Machin-like formu-
las [5,6,24–30].

Since computation of any irrational numbers is itself a big challenge, a rapid con-
vergence of the arctangent terms in the Machin-like formulas without undesirable surd
numbers can provide a significant advantage. Our empirical results show that even using
already known Machin-like formulas with sufficiently large integers in actangent argu-
ments, the expansion series (15) at any M ≥ 1 can provide more than 17 digits of π at
each increment by 1 of the variable n. It is interesting to note that this convergence rate
is faster than that provided by the Chudnovsky formula generating 14 to 16 digits of π
per increment [24,27]. Currently, the Chudnovsky formula remains the most efficient for
computing digits of π due to its rapid convergence and other advantages in algorithmic
implementation. Historically, however, there were several records that appeared due to
the application of the Machin-like formulas in computing π and, in 2002, an algorithm,
developed by Kanada on the basis of a self-checking pair of the Machin-like formulas, beat
the record, providing more than a trillion digits of π for the first time [25,27]. Therefore,
the discovery of new Machin-like formulas and rapidly convergent series expansions of
the arctangent function may be promising for computing digits of the constant π.

Consider the following example. Previously, we developed a method and generated a
two-term Machin-like formula for π by using a two-step iteration process [5].

π

4
= 226 arctan

(
1

85,445,659

)
− arctan


522,185,807 digits︷ ︸︸ ︷

9732933578 . . . 4975692799
2368557598 . . . 9903554561︸ ︷︷ ︸

522,185,816 digits

. (18)

Recently, the same identity has been generated by independent researchers, who developed
a different method for generating the two-term Machin-like formulas for π [30]. The method
we developed in [5] for generating two-terms Machin-like formulas for π is a complete
alternative to the method described in [30] for the formulas of the kind

π

4
= 2k−1 arctan

( a
b

)
+ arctan

( c
d

)
, a, b, c, d ∈ Z.

Specifically, all Machin-like formulas for π, shown in the Tables 1 and 2 from [30], can
also be generated by using the two-step iterative method that we proposed in our publica-
tion [5]. The two-term Machin-like formula (18) for π that is listed in Table 2 in the recent
publication [30], is just a specific case occurring at k− 1 = 26, a = 1 and b = 85,445,659.
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Due to the large number of digits in the numerator and denominator in the second
arctangent term of Equation (18), we cannot perform computation to observe the corre-
sponding convergence rate without a powerful computer. However, this problem can be
handled on a typical laptop or desktop computer with the help of the following identity
(see derivation in [5]):

π

4
= 2k−1 arctan

(
1
γ

)
+ arctan

1− sin
(

2k−1 arctan
(

2γ
γ2−1

))
cos
(

2k−1 arctan
(

2γ
γ2−1

))
, (19)

where the constant γ may be chosen such that

2k−1

γ
≈ π

4
. (20)

Since [32]
π

4
= 2k−1 arctan

(√
2− ak−1

ak

)
, k ≥ 1,

where a0 = 0 and ak+1 =
√

2 + ak, it is convenient to choose γ for equation as an integer

γ =

⌊
ak√

2− ak−1

⌋

that satisfies the condition (20). Consequently, at k = 27 we obtain the value 85,445,659 for
γ that is present in Equation (18) and the difference

226

85,445,659
− π

4
= 4.10922 . . .× 10−9

is small. More generally, the value of γ may be taken as a ratio rather than an integer.
For example, we can use [6]

γ =

⌊
10m ak√

2− ak−1

⌋
10−m

or

γ =

⌈
10m ak√

2− ak−1

⌉
10−m,

where m ∈ N+.
The identity (19) implies that if the argument of the first arctangent function is known,

then the argument of the second arctangent function can be found. Thus, if we take
γ = 85,445,659, then the argument of the second arctangent function in Equation (18) can be
calculated accordingly as

1− sin
(

2k−1 arctan
(

2γ
γ2−1

))
cos
(

2k−1 arctan
(

2γ
γ2−1

)) = −4.10922393614549022091 . . .× 10−9.

Once we obtain the argument of the second arctangent with, say, up to 1000 correct decimal
digits, we can see that the substitution of both arctangent arguments into Equation (15) at
M = 1 gives 15 to 17 correct digits of π per each increment of n. This example demonstrates
a rapid convergence rate of the generalized series expansion (15). Therefore, its algorithmic
implementation may be promising for rapid and highly accurate computation.
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4. Conclusions

We derived a generalized series expansion (15) of the arctangent function by using
the EMI Formula (12). The algorithmic implementation of Equation (15) is based on a two-
step iteration without surd or complex numbers. The computational test we performed
reveals that such a generalization significantly improves the convergence in computation
of the arctangent function with increasing integer M. The generalized series expansion
(15) may be promising in practical applications; it may be used for extensive computations
with arbitrary precision floating points and its algorithmic implementation shows a high
convergence rate in the computation of digits of π in the Machin-like formulas.
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