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1. Introduction

In 1989, Hibi [1] made several conjectures on the h-vectors of Cohen–Macaulay
standard graded algebras over a field. In particular, he conjectured that the h-vector
of a standard graded Cohen–Macaulay domain is flawless ([1], Conjecture 1.4). The h-
vector (h0, h1, . . . , hs), hs 6= 0, of a Cohen–Macaulay standard graded algebra is flawless
if hi ≤ hs−i for 0 ≤ i ≤ bs/2c and hi−1 ≤ hi for 1 ≤ i ≤ bs/2c. Niesi and Robbiano [2]
disproved this conjecture by constructing a Cohen–Macaulay standard graded domain
whose h-vector is (1, 3, 5, 4, 4, 1). Further, Hibi and Tsuchiya [3] showed that the Ehrhart
rings of the stable-set polytopes of cycle graphs of length 9 and 11 have non-flawless
h-vectors by computation using the software Normaliz [4]. Moreover, the present author
showed that the Ehrhart ring of the stable-set polytope of any odd cycle graph whose
length is at least 9 has non-flawless h-vectors ([5], Theorem 5.2) by proving the conjecture
of Hibi and Tsuchiya ([3], Conjecture 1).

However, these examples have the slightest flaws, i.e., there exists i with 0 ≤ i ≤
bs/2c and hi = hs−i + 1. In this paper, we construct a sequence of standard graded
Cohen–Macaulay domains that have h-vectors with exponentially deep flaws, i.e., we show
the following.

Theorem 1. Let K be a field and ` an integer with ` ≥ 2. Then, there exists a standard graded
Cohen–Macaulay domain A〈`〉 over K such that dim A〈`〉 = 8` − 3, a(A〈`〉) = −4, and an
h-vector (h0, h1, . . . , hs`), hs` 6= 0, with hbs`/2c = hs`−bs`/2c + 22`−3. In particular, A〈2〉, A〈3〉,
. . . is a sequence of Cohen–Macaulay standard graded domains over K who have exponentially deep
flaws.

This theorem is proved at the end of this paper.

2. Preliminaries

In this section, we establish notation and terminology. For unexplained terminology
of commutative algebra and graphy theory we consult [6] and [7], respectively.

In this paper, all rings and algebras are assumed to be commutative with an identity
element. Further, all graphs are assumed to be finite, simple and without loops. We denote
the set of non-negative integers, the set of integers, the set of rational numbers, the set of
real numbers and the set of non-negative real numbers by N, Z, Q, R and R≥0, respectively.
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For a set X, the cardinality of X is denoted by #X. For sets X and Y, we define
X \ Y := {x ∈ X | x 6∈ Y}. For non-empty sets X and Y, we denote the set of maps from
X to Y by YX . If Y1 is a subset of Y2, then we treat YX

1 as a subset of YX
2 . If X is a finite set,

we identify RX with the Euclidean space R#X. For f , f1, f2 ∈ RX and a ∈ R, we define
maps f1 ± f2 and a f by ( f1 ± f2)(x) = f1(x)± f2(x) and (a f )(x) = a( f (x)), for x ∈ X. Let
A be a subset of X. We define the characteristic function χA ∈ RX of A by χA(x) = 1 for
x ∈ A and χA(x) = 0 for x ∈ X \ A. We denote the zero map, i.e., a map which sends all
elements of X to 0, by 0. Further, if X1 is a subset of X, then we treat RX1 as a coordinate
subspace of RX, i.e., we identify RX1 with { f ∈ RX | f (x) = 0 for any x ∈ X \ X1}. For a
non-empty subset X of RX , the convex hull (resp. affine span) of X is denoted by convX
(resp. affX ).

Definition 1. Let X be a finite set and ξ ∈ RX . For B ⊂ X, we set ξ+(B) := ∑b∈B ξ(b).

For a field K, the polynomial ring with n variables over K is denoted by K[n]. Let
R =

⊕
n∈N Rn be an N-graded ring. We say that R is a standard graded K-algebra if R0 = K

and R is generated by R1 as a K-algebra. Let R =
⊕

n∈N Rn and S =
⊕

n∈N Sn be N-graded
rings with R0 = S0 = K. We denote the Segre product

⊕
n∈N Rn ⊗K Sn of R and S by R#S.

Let Y be a finite set. Suppose that there is a family {Ty}y∈Y of indeterminates indexed

by Y. For f ∈ ZY, the Laurent monomial, ∏y∈Y T f (y)
y , is denoted by T f . A convex polyhe-

dral cone in RY is a set C of the form C = R≥0a1 + · · ·+R≥0ar, where a1, . . . , ar ∈ RY. If
one can take a1, . . . , ar ∈ QY, we say that C is rational.

Let C be a rational convex polyhedral cone. For a field K, we define K[ZY ∩ C] by
K[ZY ∩ C] :=

⊕
f∈ZY∩C KT f . By Gordon’s lemma, we see that K[ZY ∩ C] is a finitely

generated K-algebra. In particular, K[ZY ∩ C] is Noetherian. Further, by the result of
Hochster [8], we see that K[ZY ∩ C] is normal and Cohen–Macaulay.

A subspace W of RY is rational if there is a basis of W contained in QY. Let W1 and W2
be rational subspaces of RY with W1 ∩W2 = {0} and Ci be a rational convex polyhedral
cone in Wi for i = 1, 2. Then, C1 + C2 is a rational convex polyhedral cone in RY that
is isomorphic to the Cartesian product C1 × C2 and K[ZY ∩ (C1 + C2)] ∼= K[ZY ∩ C1]⊗
K[ZY ∩ C2].

Let X be a finite set and let P be a rational convex polytope in RX, i.e., a convex
polytope in RX whose vertices are in QX. In addition, let −∞ be a new element that is
not contained in X. We set X− := X ∪ {−∞}. Further, we set C(P) := R≥0{ f ∈ RX− |
f (−∞) = 1, f |X ∈ P}. Then, C(P) is a rational convex polyhedral cone in RX− . We
define the Ehrhart ring EK[P ] of P over a field K by EK[P ] := K[ZX− ∩ C(P)]. We
define deg T−∞ = 1 and deg Tx = 0 for x ∈ X. Then, EK[P ] is an N-graded K-algebra.

Note that if W1 and W2 are rational subspaces of RX with W1 ∩W2 = {0} and Pi is a ra-
tional convex polytope in Wi for i = 1, 2, then P1 +P2 is a rational convex polytope in RX

that is isomorphic to the Cartesian product P1×P2 and EK[P1 +P2] = EK[P1]#EK[P2].
It is known that dim EK[P ] = dim P + 1. Moreover, by the description of the

canonical module of a normal affine semigroup ring by Stanley ([9], p. 82), we have the
following.

Lemma 1. The ideal ⊕
f∈ZX−∩relint(C(P))

KT f

of EK[P ] is the canonical module of EK[P ], where relint(C(P)) denotes the interior of C(P) in
the topological space aff(C(P)).

The ideal of the above lemma is denoted by ωEK[P ] and is called the canonical ideal
of EK[P ]. Note that the a-invariant (cf. ([10], Definition 3.1.4)) , a(EK[P ]), of EK[P ] is
−min{ f (−∞) | f ∈ ZX− ∩ relint(C(P))}.
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A stable set of a graph G = (V, E) is a subset S of V whose no two elements are
adjacent. We treat the empty set as a stable set.

Definition 2. The stable-set polytope STAB(G) of a graph G = (V, E) is

conv{χS ∈ RV | S is a stable set of G}.

Note that χ{v} ∈ STAB(G) for any v ∈ V and χ∅ ∈ STAB(G). In particular,
dim STAB(G) = #V.

We set

TSTAB(G) :=
{

f ∈ RV
∣∣∣∣ 0 ≤ f (x) ≤ 1 for any x ∈ V, f+(e) ≤ 1 for any e ∈ E

and f+(C) ≤ #C−1
2 for any odd cycle C

}
.

Then, TSTAB(G) is a rational convex polytope in RV with TSTAB(G) ⊃ STAB(G). If
TSTAB(G) = STAB(G), we say that G is t-perfect.

Let G = (V, E) be an arbitrary graph and n ∈ Z. Set K := {K ⊂ V | K is a clique and
#K ≤ 3}. We define tU (n)(G) by

tU (n)(G) :=

µ ∈ ZV−

∣∣∣∣∣∣∣
µ(z) ≥ n for any z ∈ V, µ+(K) + n ≤ µ(−∞) for
any maximal element of K and µ+(C) + n ≤ µ(−∞) ·
#C−1

2 for any odd cycle C without chord and length at
least 5

.

We abbreviate tU (n)(G) as tU (n) if it is clear from the context.
By the definition of EK[TSTAB(G)], we see that

EK[TSTAB(G)] =
⊕

µ∈tU (0)

KTµ.

Further, for µ ∈ ZV− , µ ∈ relint(C(EK[TSTAB(G)])) if and only if µ(z) > 0, µ+(K) <
µ(−∞) and µ+(C) < µ(−∞) · #C−1

2 , where z ∈ V, K is a maximal element of K and C is
an odd cycle without chords. However, since the values appearing in these inequalities
are integers, these inequalities are equivalent to µ(z) ≥ 1, µ+(K) + 1 ≤ µ(−∞) and
µ+(C) + 1 ≤ µ(−∞) · #C−1

2 , respectively. Therefore, by Lemma 1, we see that

ωEK[TSTAB(G)] =
⊕

µ∈tU (1)

KTµ.

3. Construction

Let K be a field. In this section, for each integer ` ≥ 2, we construct a standard graded
Cohen–Macaulay K-algebra, A〈`〉, which has a non-flawless h-vector. The flaw of the
h-vector is computed in the next section.

Let ` be an integer with ` ≥ 2. We define a graph G` = (V`, E`) by the following way.
Set
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I`,i :=
{
{1, 2, 3} 0 ≤ i ≤ 2`− 4
{1} 2`− 3 ≤ i ≤ 2`

,

C` := {c0, c1, . . . , c2`},
B` := {bik | 0 ≤ i ≤ 2`, k ∈ I`,i},
V` := C` ∪ B`,

E` := {{ci, cj} | j− i ≡ 1 (mod 2`+ 1)} ∪ {{ci, bik} | k ∈ I`,i}
∪{{cj, bik} | j− i ≡ 1 (mod 2`+ 1), k ∈ I`,i}

and

G` := (V`, E`).

The cases where ` = 3 and 4 are as follows.

G3:

c0

c1

c2

c3 c4

c5

c6

b01b02
b03

b11

b12

b13

b21

b22

b23

b31

b41

b51

b61

G4:

c0
c1

c2

c3

c4 c5

c6

c7

c8

b01b02b03

b11
b12

b13

b21

b22

b23

b31
b32

b33
b41 b42 b43

b51

b61

b71

b81

In addition, set

A〈`〉 := EK[TSTAB(G`)] and R〈`〉 := EK[TSTAB(G(C`))],

where G(C`) is the induced subgraph of G` by C`.
In the following, up to the end of the proof of Lemma 5, we fix ` and write G`, V`, E`,

C`, B`, A〈`〉, R〈`〉 and I`,i as just G, V, E, C, B, A, R and Ii, respectively. Further, we consider
the subscripts of ci, Ii and the first subscript of bi,k modulo 2`+ 1. For example, c2`+1 = c0,
I−2 = I2`−1 and b−3,1 = b2`−2,1.

We set
ei := {ci, ci+1} and Ki,k := {ci, ci+1, bi,k}
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for 0 ≤ i ≤ 2` and k ∈ Ii. We also consider the subscript of ei and the first subscript of Ki,k
modulo 2`+ 1.

We define µJ
i ∈ ZV− for 0 ≤ i ≤ 2` and J ⊂ Ii−2 by

µJ
i (z) =

 1 z = cj for some j with j− i ≡ 0, 2, . . . , 2`− 2 (mod 2`+
1), z = bi−2,k with k ∈ J or z = −∞,

0 otherwise.

It is easily verified that µJ
i ∈ tU (0). We also consider the subscript of µJ

i modulo
2`+ 1. Note that (µJ

i )
+(C) = ` and (µJ

i )
+(Kj,k) = 1 if j 6≡ i− 2 (mod 2`+ 1) or j ≡ i− 2

(mod 2`+ 1) and k ∈ J. Otherwise, (µJ
i )

+(Kj,k) = 0.
First we show the following.

Proposition 1. The ring A is a standard graded K-algebra.

Proof. Since
A =

⊕
µ∈tU (0)

KTµ,

it is enough to show that for any µ ∈ tU (0) with µ(−∞) = n > 0 there are µ1, . . . , µn ∈ tU (0)

with µi(−∞) = 1 for 1 ≤ i ≤ n and µ = µ1 + · · · + µn (i.e., TSTAB(G) has the integer
decomposition property). We prove this fact by induction on n.

The case where n = 1 is trivial. Suppose that n > 1. We first consider the case where
µ(c) > 0 for any c ∈ C. Since

2`

∑
i=0

µ+(ei) = 2µ+(C) ≤ 2`n < (2`+ 1)n,

we see that there exists j with µ+(ej) < n. Set J = {k | µ(bj,k) > 0}. Then, we claim that

µ− µJ
j+2 ∈ tU (0).

First, since µ(c) > 0 for any c ∈ C by assumption and µ(bj,k) > 0 for any k ∈ J, we see

that (µ− µJ
j+2)(z) ≥ 0 for any z ∈ V.

Next let i be an integer with 0 ≤ i ≤ 2` and k ∈ Ii. If i 6≡ j (mod 2`+ 1) or i ≡ j
(mod 2`+ 1) and k ∈ J, then (µJ

j+2)
+(Ki,k) = 1. Thus, (µ− µJ

j+2)
+(Ki,k) ≤ µ(−∞)− 1 =

(µ − µJ
j+2)(−∞). If i ≡ j (mod 2` + 1) and k 6∈ J, then µ+(ei) < n and µ(bi,k) = 0.

Therefore, (µ− µJ
j+2)

+(Ki,k) = µ+(ei) ≤ n− 1 = (µ− µJ
j+2)(−∞).

Finally, (µ− µJ
j+2)

+(C) = µ+(C)− (µJ
j+2)

+(C) ≤ n`− ` = `(µ− µJ
j+2)(−∞). There-

fore, µ− µJ
j+2 ∈ tU (0).

Next, suppose that µ(ci) = 0 for some i. Take i0 with µ(ci0) = 0. We define µ′ ∈ ZV−

by the following way.
First, we define µ′(ci0+j) (0 ≤ j ≤ 2`) by induction on j. We define µ′(ci0+0) = 0.

Suppose that 1 ≤ j ≤ 2` and for any ′ with 0 ≤ ′ ≤ j− 1, µ′(ci0+′) is defined so that
µ′(ci0+′) ∈ {0, 1}, µ′(ci0+′) ≤ µ(ci0+′) for 0 ≤ ′ ≤ j − 1, and µ′(ci0+′) = 1 implies
µ′(ci0+′+1) = 0 for 0 ≤ ′ ≤ j− 2 (these assumptions are trivially satisfied when j = 1). We
set

µ′(ci0+j) =

{
1 if µ′(ci0+j−1) = 0 and µ(ci0+j) > 0,
0 if µ′(ci0+j−1) = 1 or µ(ci0+j) = 0.
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Then, µ′(ci0+j) ∈ {0, 1}, µ′(ci0+j) ≤ µ(ci0+j) and µ′(ci0+j−1) = 1 implies µ′(ci0+j) = 0.
Thus, we can continue the induction procedure up to j = 2`. We also set

µ′(bi,k) =

{
1 if µ′(ci) = µ′(ci+1) = 0 and µ(bi,k) > 0,
0 otherwise,

µ′(−∞) = 1

and we define µ′ ∈ ZV− . Note that Imµ′ ⊂ {0, 1}. Note also that µ′(ci) = 1 implies
µ′(ci+1) = 0 and µ′(ci) = 0 implies µ′(ci−1) = 1 or µ(ci) = 0, for any i ∈ Z.

Next we prove that µ′ ∈ tU (0).
First since Imµ′ ⊂ {0, 1}, we see that µ(z) ≥ 0 for any z ∈ V.
Next we show that µ′(Ki,k) ≤ 1, for any i ∈ Z and k ∈ Ii. First consider the case where

µ′(ci) = 1. Then, µ′(ci+1) = 0. Further, µ′(bi,k) = 0 by the definition of µ′. Therefore, we
see that (µ′)+(Ki,k) = 1. Next, consider the case where µ′(ci) = 0. Since µ′(bi,k) ≤ 1 and
µ′(ci+1) = 1 implies that µ′(bi,k) = 0, we see that (µ′)+(Ki,k) ≤ 1.

Finally, since Imµ′ ⊂ {0, 1} and µ′(ci) = 1 implies µ′(ci+1) = 0 for any i ∈ Z, we see
that (µ′)+(C) ≤ ` = `µ′(−∞). Thus, we see that µ′ ∈ tU (0).

Next, we prove that µ− µ′ ∈ tU (0).
First, by the definition of µ′, we see that µ(z) = 0 implies µ′(z) = 0 for any z ∈ V.

Since µ′(z) ∈ {0, 1} for any z ∈ V, we see that (µ− µ′)(z) ≥ 0 for any z ∈ V.
Next, we show that (µ−µ′)+(Ki,k) ≤ (µ−µ′)(−∞) for any i and k ∈ Ii. If (µ′)+(Ki,k) =

1, then (µ − µ′)+(Ki,k) = µ+(Ki,k) − 1 ≤ µ(−∞) − 1 = (µ − µ′)(−∞). Assume that
(µ′)+(Ki,k) = 0. Then, µ′(ci) = µ′(ci+1) = µ′(bi,k) = 0. Thus, we see that µ(bi,k) = 0 by
the definition of µ′. Since µ′(cı′) = 0 implies µ′(cı′−1) = 1 or µ(cı′) = 0, for any ı′ ∈ Z, we
see that µ(ci+1) = 0. If µ(ci) = 0, then (µ− µ′)+(Ki,k) = 0 ≤ (µ− µ′)(−∞). Suppose that
µ(ci) > 0. Then, µ′(ci−1) = 1 by the property of µ′ noted above. Therefore, µ(ci−1) > 0.
Since µ(ci−1) + µ(ci) ≤ µ+(Ki−1,1) ≤ µ(−∞), we see that µ(ci) ≤ µ(−∞)− 1. Therefore,
(µ− µ′)+(Ki,k) = µ(ci) ≤ (µ− µ′)(−∞).

Finally we show that (µ− µ′)+(C) ≤ `(µ− µ′)(−∞). Since µ(ci0) = µ′(ci0) = 0, we
see that

(µ− µ′)+(C) = (µ− µ′)(ci0) +
`

∑
j=1

(µ− µ′)+(ei0+2j−1)

=
`

∑
j=1

(µ− µ′)+(ei0+2j−1)

≤
`

∑
j=1

(µ− µ′)+(Ki0+2j−1,1)

≤
`

∑
j=1

(µ− µ′)(−∞)

= `(µ− µ′)(−∞).

Remark 1. The functions µJ
j+2 and µ′ in the proof of Proposition 1 are the characteristic function

of some stable set of G. Therefore, the above proof shows that G is a t-perfect graph.

4. Structure of the Canonical Module

In this section, we study the generators and the structure of the canonical module of
A. First, we set

W := { f ∈ RV− | f+(C) = ` f (−∞)}.
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Then, W is a codimension 1 vector subspace of RV− with W ⊃ RB. Further, we set

tU (0)
0 = tU (0)

0 (G) := {µ ∈ tU (0)(G) | µ+(C) = `µ(−∞)},

tU (0)
0 (G(C)) := {µ ∈ tU (0)(G(C)) | µ+(C) = `µ(−∞)}

and
A(0) :=

⊕
µ∈tU (0)

0

KTµ.

Then, A(0) is a K-subalgebra of A (we denote this ring by (A〈`〉)(0) when it is necessary
to express `). Further, since

µ ∈ tU (0)
0 (G) ⇐⇒ µ|C− ∈ tU (0)

0 (G(C)),

for µ ∈ tU (0), we see that
R ∩ A(0) =

⊕
µ∈tU (0)

0 (G(C))

KTµ.

We denote this ring by R(0). Note that µJ
i ∈ tU (0)

0 for any i ∈ Z and J ⊂ Ii−2. By ([5],
Lemma 4.3) and the argument following the proof of it, we see the following.

Theorem 2. The elements µ∅
0 , µ∅

1 , . . . , µ∅
2` of RV− are linearly independent and

R(0) = K[Tµ∅
0 , Tµ∅

1 , . . . , Tµ∅
2` ].

Further, we see the following.

Lemma 2. It holds that

A(0) = K[Tµ
J
i | 0 ≤ i ≤ 2`, J ⊂ Ii−2] = K[ZV− ∩

(
2`

∑
i=0

∑
J⊂Ii−2

R≥0µJ
i

)
].

Proof. It is clear that

K[Tµ
J
i | 0 ≤ i ≤ 2`, J ⊂ Ii−2] ⊂ K[ZV− ∩

(
2`

∑
i=0

∑
J⊂Ii−2

R≥0µJ
i

)
] ⊂ A(0).

In order to prove the inclusion A(0) ⊂ K[Tµ
J
i | 0 ≤ i ≤ 2`, J ⊂ Ii−2], it is enough to

show that for any µ ∈ tU (0)
0 , Tµ ∈ K[Tµ

J
i | 0 ≤ i ≤ 2`, J ⊂ Ii−2]. We prove this fact by

induction on µ(−∞).
The case where µ(−∞) = 0 is trivial. Let µ be an arbitrary element of tU (0)

0 with
µ(−∞) > 0. By the proof of Lemma 4.3 in [5], we see that there is i with (µ− µ∅

i )(c) ≥ 0
for any c ∈ C and (µ− µ∅

i )
+(ej) ≤ (µ− µ∅

i )(−∞) for any j. Set J = {k | µ(bi−2,k) > 0}.
Then, it holds that µ− µJ

i ∈ tU (0)
0 .

In fact, (µ− µJ
i )(z) ≥ 0 for any z ∈ V by the choice of i and the definition of J. If

j 6≡ i− 2 (mod 2`+ 1) or j ≡ i− 2 (mod 2`+ 1) and k ∈ J, then (µJ
i )

+(Kj,k) = 1. Thus,

(µ− µJ
i )

+(Kj,k) = µ+(Kj,k)− 1 ≤ µ(−∞)− 1 = (µ− µJ
i )(−∞). If j ≡ i− 2 (mod 2`+ 1)

and k 6∈ J, then µ(bi−2,k) = µJ
i (bi−2,k) = 0 by the definition of J. Therefore, by the choice of

i, we see that (µ− µJ
i )

+(Kj,k) = (µ− µJ
i )

+(ei−2) = (µ− µ∅
i )

+(ei−2) ≤ (µ− µ∅
i )(−∞) =

(µ− µJ
i )(−∞). Finally, (µ− µJ

i )
+(C) = µ+(C)− (µJ

i )
+(C) = `µ(−∞)− ` = `(µ− µJ

i )(C).

Thus, we see that µ− µJ
i ∈ tU (0)

0 .



AppliedMath 2023, 3 312

Since (µ− µJ
i )(−∞) = µ(−∞)− 1, we see, by the induction hypothesis, that

Tµ−µ
J
i ∈ K[Tµ

J′
i | 0 ≤ i ≤ 2`, J′ ⊂ Ii−2].

Thus, we see that

Tµ = Tµ
J
i Tµ−µ

J
i ∈ K[Tµ

J′
i | 0 ≤ i ≤ 2`, J′ ⊂ Ii−2].

Since
RV− = RC− ⊕RB and W ⊃ RB,

we see that
W = (RC− ∩W)⊕RB.

Thus, RC− ∩W is a codimension 1 vector subspace of RC− . Since dimRC− = #C− =

2`+ 2 and µ∅
i ∈ RC− ∩W for any 0 ≤ i ≤ 2`, we see, by Theorem 2, that µ∅

0 , µ∅
1 , . . . , µ∅

2` is
a basis of RC− ∩W. Set

W ′i = ∑
k∈Ii−2

Rχ{bi−2,k} and Wi = Rµ∅
i ⊕W ′i

for 0 ≤ i ≤ 2`. Then,

RB = W ′0 ⊕W ′1 ⊕ · · · ⊕W ′2`, W = W0 ⊕W1 ⊕ · · · ⊕W2` and Wi = ∑
J⊂Ii−2

RµJ
i

for 0 ≤ i ≤ 2`. Set
Ci = ∑

J⊂Ii−2

R≥0µJ
i

for 0 ≤ i ≤ 2`. Then, by Lemma 2, we see that

A(0) = K[ZV− ∩
(

2`

∑
i=0

Ci

)
] ∼= K[ZV− ∩ C0]⊗ · · · ⊗K[ZV− ∩ C2`].

It is easily verified that K[ZV− ∩ Ci] is isomorphic to the Ehrhart ring of the unit cube
for 2 ≤ i ≤ 2`− 2. Therefore,

K[ZV− ∩ Ci] ∼= K[2]#K[2]#K[2]

for 2 ≤ i ≤ 2`− 2. Further, it is easily verified that

K[ZV− ∩ Ci] ∼= K[2]

for i = 0, 1, 2`− 1 and 2`. Thus, we see that

A(0) ∼= (K[2]#K[2]#K[2])⊗2`−3 ⊗K[8].

It is verified by a direct computation, or by Theorem 2.1 in [11], that the Hilbert series
of K[2]#K[2]#K[2] is 1+4λ+λ2

(1−λ)4 . Therefore, the Hilbert series of A(0) is

(1 + 4λ + λ2)2`−3

(1− λ)8`−4 .
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For each integer k with 1 ≤ k ≤ 2`− 1, we define ηk ∈ ZV− by

ηk(z) =


1 z ∈ B,
k z ∈ C,
2k + 2 z = −∞.

It is easily verified that ηk ∈ tU (1) and `ηk(−∞)− η+
k (C) = 2`− k. Further, we see

the following.

Lemma 3. It holds that a(A) = −4.

Proof. Since for any η ∈ tU (1), η(−∞) ≥ η+(K0,1) + 1 ≥ #K0,1 + 1 = 4 and η1(−∞) = 4,
we see that a(A) = −min{η(−∞) | η ∈ tU (1)} = −4.

Consider the graded A-homomorphism, ϕ : A → ωA(4), Tν 7→ Tν+η1 , of degree 0.
Then Imϕ is a submodule of ωA(4) generated by Tη1 . Further, we have the following.

Lemma 4. It holds that

Imϕ(−4) =
⊕

ν∈tU (1),`ν(−∞)−ν+(C)≥2`−1

KTν.

Further, Imϕ is a rank-1-free A-module with basis Tη1 .

Proof. This lemma is proved almost identically to Lemma 4.2 in [5].

Set
Dk =

⊕
η∈tU (1),`η(−∞)−η+(C)=2`−k

KTη

for 2 ≤ k ≤ 2`− 1. Then, the following holds.

Lemma 5. Dk is a rank-1-free A(0)-module with basis Tηk for 2 ≤ k ≤ 2`− 1.

Proof. This lemma is proved almost identically to Lemma 4.5 in [5].

Now, we prove Theorem 1. First, note that dim A〈`〉 = #V−` + 1 = 8` − 3. Let
(h0, h1, . . . , hs`), hs` 6= 0, be the h-vector of A〈`〉. Then,

s` = dim A〈`〉 + a(A〈`〉) = 8`− 7 and bs`/2c = 4`− 4.

By the second proof of Theorem 4.1 in [9], we see that

H(ωA〈`〉(4), λ) =
hs` + hs`−1λ + · · ·+ h0λs`

(1− λ)8`−3 ,

where H(M, λ) denotes the Hilbert series of a graded module M. Since

ωA〈`〉 =
⊕

η∈tU (1)(G`)

KTη

=

 ⊕
η∈tU (1)(G`)

`η(−∞)−η+(C`)≥2`−1

KTη

⊕ 2`−1⊕
k=2

 ⊕
η∈tU (1)(G`)

`η(−∞)−η+(C`)=2`−k

KTη

,
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and there is an exact sequence

0→ A〈`〉
ϕ→ ωA〈`〉(4)→ Cokϕ→ 0,

we see by Lemmas 4 and 5 that

H(ωA〈`〉(4), λ) = H(A〈`〉, λ) +
2`−1

∑
k=2

H((A〈`〉)(0), λ)λ2k−2,

since deg Tηk = ηk(−∞) = 2k + 2 for 1 ≤ k ≤ 2`− 1. Therefore,

(hs` − h0) + (hs`−1 − h1)λ + · · ·+ (h0 − hs`)λ
s`

(1− λ)8`−3

=
2`−1

∑
k=2

(1 + 4λ + λ2)2`−3λ2k−2

(1− λ)8`−4

=
2`−1

∑
k=2

(1 + 4λ + λ2)2`−3(λ2k−2 − λ2k−1)

(1− λ)8`−3

=
(1 + 4λ + λ2)2`−3(λ2 − λ3 + · · ·+ λ4`−4 − λ4`−3)

(1− λ)8`−3 .

By comparing the coefficient of λ4`−3 in the numerators, we see that

h4`−4 − h4`−3

=

(
the sum of the coefficients of the odd powers of λ of
(1 + 4λ + λ2)2`−3

)
−
(

the sum of the coefficients of the even powers of λ of
(1 + 4λ + λ2)2`−3

)
= (−1 + 4− 1)2`−3

= 22`−3.

Since bs`/2c = 4`− 4 and s` − bs`/2c = 4`− 3, we see that

hbs`/2c = hs`−bs`/2c + 22`−3.
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