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Abstract: In this work, we studied convergence rates using quotient convergence factors and root
convergence factors, as described by Ortega and Rheinboldt, for Hestenes’ Gram–Schmidt conjugate
direction method without derivatives. We performed computations in order to make a comparison
between this conjugate direction method, for minimizing a nonquadratic function f , and Newton’s
method, for solving ∇ f = 0. Our primary purpose was to implement Hestenes’ CGS method with
no derivatives and determine convergence rates.
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1. Introduction

The conjugate gradient (CG) and conjugate direction (CD) methods have been ex-
tended to the optimization of nonquadratic functions by several authors. Fletcher and
Reeves [1] gave a direct extension of the conjugate gradient (CG) method. An approach to
conjugate direction (CD) methods using only function values was developed by Powell [2].
Davidon [3] developed a variable metric algorithm, which was later modified by Fletcher
and Powell [4]. According to Davidon [3], variable metric methods are considered to be
very effective techniques for optimizing a nonquadratic function.

In 1952, Hestenes and Stiefel [5] developed conjugate direction (CD) methods for
minimizing a quadratic function defined on a finite dimensional space. One of their
objectives was to find efficient computational methods for solving a large system of linear
equations. In 1964, Fletcher and Reeves [1] extended the conjugate gradient (CG) method
of Hestenes and Stiefel [5] to nonquadratic functions. The method presented here is related
to those described by G.S. Smith [6], M.J.B. Powell [2] and W.I. Zangwill [7]. The method of
Smith is also described by Fletcher [8] on pp. 9–10, Brent [9] on p. 124 and Hestenes [10]
on p. 210. In addition to that, Nocedal [11] explored the possibility of nonlinear conjugate
gradient methods converging without restarts and with the use of practical line search. In
the field of numerical optimization, a number of additional authors, including Kelley [12],
Zang and Li [13], among others, investigated a wide range of approaches in the use of
conjugate direction methods.

The primary purpose of this work is to implement Hestenes’ Gram–Schmidt conjugate
direction method without derivatives, which uses function values with no line searches.
We will refer to this method as the GSCD method; Hestenes refers to it as the CGS method.
We illustrate the procedure numerically, computing asymptotic constants and the quotient
convergent factors of Ortega and Rheinboldt [14]. In reference to Hestenes [10], p. 202,
where he states that the CGS has Newton’s algorithm as its limit, Russak [15] shows that
n-step superlinear convergence is possible. We verify numerically that the GSCD procedure
converges quadratically under appropriate conditions.
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As for notation, we use capital letters, such A, B, C, . . ., to denote matrices and lower
case letters, such as a, b, c, . . ., for scalars. The value A∗ denotes the transpose of matrix A.
If F is a real-valued differentiable function of n real variables, we denote its gradient at x
by F′(x) and the Hessian of F at x by F′′(x). We use subscripts to distinguish vectors and
superscripts to denote components when these distinctions are made together, for example,
xk=(x1

k , . . . , xn
k ).

The method of steepest descent is due to Cauchy [16]. It is one of the oldest and most
obvious ways to find a minimum point of a function f .

There are two versions of steepest descent. The one due to Cauchy, which we call an
iterative method, uses line searches and another, described by Eells [17] in Equation (10), p.
783, uses a differential equation of steepest descent. In Equation (4.3) we describe another
version of the differential equation of steepest descent. However, numerically, both have
flaws. The iterative method is generally quite slow, as shown by Rosenbrock [18] in his
banana valley function.

Newton’s method applied to ∇ f = 0, where f is a function to be minimized, is
another approach for finding a minimum of the function f . Newton’s method has rapid
convergence, but it is costly because of derivative evaluations. Hestenes’ CGS method
without derivatives [10], p. 202, has Newton’s method as its limit as σ→ 0.

If the minimizing function is strongly convex quadratic and the line search is exact,
then, in theory, all choices for the search direction in standard conjugate gradient algorithms
are equivalent. However, for nonquadratic functions, each choice of the search direction
leads to standard conjugate gradient algorithms with very different performances [19].

In this article, we investigate quotient convergence factors and root convergence
factors. We computationally compare the conjugate Gram–Schmidt direction method
with Newton’s method. There are other types of convergence for the conjugate gradient,
the conjugate direction, the gradient method, Newton’s method and the steepest descent
method, such as superlinear convergence [20–22], Wall [23] root convergence and Ostrowski
convergence factors [24], but, for the sake of this research, quotient convergence is the one
that is the most appropriate for the quadratic convergence.

In this article, the well-known conjugate directions algorithm, for minimizing a
quadratic function, is modified to become an algorithm for minimizing a nonquadratic
function, in the manner described in Section 2. The algorithm uses the gradient estimates
and Hessian matrix estimates described in Section 3. In Section 4, a test example for mini-
mizing a nonquadratic function by the developed conjugate direction algorithm without
derivatives is analyzed. The advantage of this approach compared to Newton’s method
is efficiency. The proposed approach is justified in sufficient detail. The results obtained
are of certain theoretical and practical interest for specialists in the theory and methods of
optimization.

2. Methodology

In this section, we present a class of CD algorithms for minimizing functions defined
on an n-dimensional space. The reader is directed to refer to Stein [25] and Hestenes [10],
pp. 135–137 and pp. 199–202, respectively, for more details.

2.1. The Method of CD

Let A be a positive definite real symmetric n× n matrix, let k be a constant n-vector
and let c be a fixed real scalar. Throughout this section, F denotes the function defined on
Euclidean n-space En by

F(x) =
1
2

x∗Ax− k∗x + c, (1)

where x is in En.
Suppose 1 ≤ m ≤ n. Let Sm be the linear subspace spanned by the set {p1, . . . , pn} of

m linearly independent and, hence, nonzero vectors. Let x1 be any vector in En. Then, the
m-dimensional plane Pm through x1 obtained by translating the subspace Sm is defined by
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Pm =

{
x : x = x1 + α1 p1 + . . . + αm pm, αi ∈ R (i = 1, . . . , m)

}
. (2)

Two vectors, p and q, in En are said to be A-orthogonal or conjugate if p∗Ap = 0. A
set {p1, . . . , pm} of nonzero vectors in En is said to be mutually A-orthogonal or mutually
conjugate if

p∗i Apj = 0 f or i 6= j (i = 1, . . . , m).

Theorem 1 ([25]). Let Sm be a subspace of En, where {p1, . . . , pn} is a basis for Sm, 1 ≤ m ≤ n.
Further assume that p1, . . . , pm is a mutually A-orthogonal set of vectors. Let x1 be any vector in
En. Let x be in Pm. Then, the following conditions are equivalent:

1. x minimizes F on Pm.
2. F′(x), the gradient of F at x, is orthogonal to the subspace Sm.

3. x = x1 + a1 p1 + . . . + am pm, where ai =
ci
di

, ci = −p∗i F′(x1), di = p∗i Api, i = 1, . . . , m.

Let xi = x1 + a1 p1 + . . . + ai pi, i = 1, . . . , m. Then the quantity ci defined in (3) above is
also given by

ci = −p∗i F′(xi), i = 1, . . . , m.

Then, there is a unique vector x0 in the m-dimensional plane Pm through x1 translating Sm
such that x0 minimizes the function F given by (1) on Pm.

Proof. First, we are going to show that F has at least one minimizing vector in Pm. Let p
be any vector in Pm and let M = F(p). Since A is positive definite, there is an R ∈ R > 0
such that ||x|| > R implies F(x) > M. Hence, F(x) ≤ M implies ||x|| ≤ R. Since
C = {x : ||x|| ≤ R} ∩ Pm is a compact set in En on which F assumes values and is
continuous, then F has at least one minimizing vector p0 in the compact set C. Outside this
compact set C, F assumes only larger values. Thus, p0 is a minimizing vector for F in Pm.

To show that (1) implies (2), assume that x minimizes F on Pm. Then,

p∗j F′(x) =
dF
dα

(x + αpj)∣∣
α=0

= 0, (3)

for j = 1, . . . , m. Thus,
p∗j F′(x) = 0 (j = 1, . . . , m). (4)

So F′(x) is orthogonal to every vector in the basis of Sm and, hence, is orthogonal to
Sm.

To show (2) implies (1), suppose that F′(x) is orthogonal to Sm. Let v be any vector in
Pm. We are going to show that F(v) > F(x) unless v = x. By Taylor’s theorem we have the
following:

F(v) = F(x) + (v− x)∗F′(x) +
1
2
(v− x)∗A(v− x). (5)

Since (v− x) is a vector in Sm, then (v− x)∗F′(x) = 0. In addition, (v− x)∗A(v− x) >
0 unless v = x, because A is positive definite. Thus,

F(v) > F(x) unless v = x. (6)

Hence, x is a unique absolute minimum for F in Pm.
Now we can prove that there is a unique vector x0 in Pm minimizing F on Pm. Earlier

we established that there is at least one minimizing vector p0 for F in Pm. Since (1) implies
(2), then F′(p0) is orthogonal to Sm. From the proof of (2) implies (1), it now follows that p0
is a unique absolute minimum for F in Pm.

To show that (2) implies (3), let x = x1 + a1 p1 + . . .+ am pm since x is in Pm, and assume

that F′(x) is orthogonal to the subspace Sm. We are going to show that ai =
ci
di

, where

ci = −p∗i F′(x1), di = p∗i Api, i = 1, . . . , m. Note that Ax = Ax1 + a1 Ap1 + . . . + am Apm. In
addition, Ax− k = Ax1 − k + a1 Ap1 + . . . + am Apm.
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Since F′(x) = Ax− k, then

F′(x) = F′(x1) + a1 Ap1 + . . . + am Apm.

For i = 1, . . . , m, we have

p∗i F′(x) = p∗i F′(x1) + a1 p∗i Ap1 + . . . + am p∗i Apm.

Since {p1, . . . , pm} is a mutually A-orthogonal set of vectors, then p∗i F′(x) = p∗i F′(x1)+
ai p∗i Api, i = 1, . . . , m. Since F′(x) is orthogonal to the subspace Sm, then p∗i F′(x) = 0,
i = 1, . . . , m. Thus, ai p∗i Api = −p∗i F′(x1). Since pi 6= 0, i = 1, . . . , m, and A is positive
definite, then p∗i Api 6= 0, i = 1, . . . , m. If we let ci = −p∗i F′(x1) and di = p∗i Api, then

ai =
ci
di

, i = 1, . . . , m. (7)

To show that (3) implies (2), we can use what was established in the previous proof.
An indication of this is proved below.

Suppose that x = x1 + a1 p1 + . . . + am pm, where ai =
ci
dI

, ci = −p∗i F′(x1), di = p∗i Api,

i = 1, . . . , m. We want to show that p∗i F′(x) = 0, i = 1, . . . , m. Since

p∗i F′(x) = p∗i F′(x1) + ai p∗i Api,

and ai =
−p∗i F(x1)

p∗i Api
, then we have p∗i F′(x) = 0, i = 1, . . . , m. Hence, F′(x) is orthogonal to

Sm. Thus, (1)–(3) are equivalent.
Now we are going to show that the quantity ci defined by ci = −p∗i F′(x1), i =

1, . . . , m, in (3) is also given by ci = −p∗i F′(xi), i = 1, . . . , m.
Since xi+1 = xi + ai pi, i = 1, . . . , (m− 1), then

Axi+1 = Axi + ai Api,

Axi+1 − k = Axi − k + ai Api,

F′(xi+1) = F′(xi) + ai Api i = 1, . . . , (m− 1).

Thus,

F′(xi+1) = F′(x1) + ai Api + . . . + a1 Ap1, i = 1, . . . , (m− 1), (8)

and, by conjugacy of {p1, . . . , pm}, we have

p∗i F′(xi) = p∗i [F
′(x1) + a1 Ap1 + . . . + ai−1 Api−1 = p∗i F′(x1), i = 1, . . . , m. (9)

Hence,
p∗i F′(x1) = p∗i F′(xi), i = 1, . . . , m. (10)

This completes the proof of the theorem.

2.2. A Class of Minimization Algorithms

Now, we shall describe a class of minimization algorithms known as the method of
CDs. The significance of the formulas given in (3) of Theorem 1 is indicated below.

Suppose {p1, . . . , pm}, 1 ≤ m ≤ n, is a conjugate set of nonzero vectors and that Pm is
the m-dimensional plane through x1 obtained by translating the subspace Sm generated
by {p1, . . . , pm}. Then, the minimum of F given by (1) on Pm is attained at x0, which we
will call xm+1, where xm+1 = x1 + a1 p1 + . . . + am pm, refer to Theorem 1. Now we assume
that pm+1 is a nonzero vector that has been constructed to be conjugate to pi, i = 1, . . . , m,
and let Pm+1 denote the (m + 1)-dimensional plane through x1 obtained by translating the
subspace Sm+1 generated by {p1, . . . , pm, pm+1}. It turns out that it is not necessary to solve
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a new (m + 1)-dimensional minimization problem to determine the minimizing vector
xm+2 on Pm+1.

The minimizing vector xm+2 on Pm+1 is obtained by a one-dimensional minimization
of F about the vector xm+1 in the direction pm+1. This follows directly from the following
formulas found in Theorem 1:

xm+2 = xm+1 + am+1 pm+1,

and

am+1 =
cm+1

dm+1
, cm+1 = −p∗m+1F′(xm+1), dm+1 = p∗m+1 Apm+1.

Note that am+1 depends upon xm+1 and pm+1 and explicitly involves no other x or p
terms. Thus, the minimizing vector xm+1 on Pm results from m consecutive one-dimensional
minimizations starting at x1 and preceding along the CDs p1, . . . , pm successively. The ways
of obtaining a mutually conjugate set {p1, . . . , pm} of vectors are not specified in general.
Thus, the method of CDs is really a class of algorithms, where a specific algorithm depends
upon the choice of {p1, . . . , pm}. In practice, the vector pk, k = 1, . . . , m, needed for the
(k + 1)th iteration in finding xk+1, k = 1, . . . , m, is usually constructed from information
obtained at the kth iteration, k = 1, . . . , m. The following class of algorithms is referred to as
the method of CDs: for k = 1, . . . , n, we find

xk+1 = xk + ak pk,

ak =
ck
dk

, ck = −p∗k F′(x1), dk = p∗k Apk.

Alternatively, ck may be given by

ck = −p∗k F′(xk).

If F′(xm) = 0 for 1 ≤ m ≤ n, then the algorithm terminates and xm minimizes F on En.
Furthermore, any algorithm terminates in n steps or less since F is quadratic.

2.3. Special Inner Product and the Gram–Schmidt Process

Let A be a positive definite symmetric n× n matrix. Define a special inner product
(x, y) by

(x, y) = x∗Ay,

where x and y are column vectors.
Let

u∗1 = (1, 0, · · · , 0), u∗2 = (0, 1, 0, · · · , 0) and u∗n = (0, 0, · · · , 0, 1).

Then, using the special inner product above, we apply the Gram–Schmidt process to
the linearly independent vectors u1, u2, . . . , un to obtain a set of mutually A-orthogonal
vectors p1, p2, . . . , pn, where the property of A-orthogonality is relative to the special inner
product as performed by Hestenes and Stieffel [5] on p. 425.

3. Results

A brief description of the CG method is given below using a quadratic function:

F(x) =
1
2

x∗Ax− k∗x + c.

The CG method is the CD method, which is described previously, with the first CD
being in the direction of the negative gradient of function F. The remaining CDs can be
determined in a variety of ways, and the CG procedure described by Hestenes [10] is
given below.
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3.1. CG—Algorithms for Nonquadratic Approximations

One can apply the CG method to the quadratic function in z, namely F(z), to obtain a
minimum of F(z). Let f be a function of n variables, then

F(z) = f (x1) + ( f ′(x1))
∗z +

1
2

z∗ f ′′(x1)z.

Assume that a Hessian matrix is a positive definite symmetric matrix, which implies
that F(z) has a unique minimum z̄min. Then,

∇F(z) = f ′(x1) + f ′′(x1)z.

Applying Newton’s method to ∇F(z) = 0, we get

f ′(x1) + f ′′(x1)z = 0,

( f ′′(x1))
−1( f ′(x1)) + z = 0 multiplied by ( f ′′(x1))

−1,

z̄min = −( f ′′(x1))
−1( f ′(x1)).

Remark 1. We solved ∇F(z̄) = 0̄ directly to obtain min F(z).

In general, Newton’s method is used to solve ~f (z̄) = 0̄ for z̄. It is given by

zn+1 = zn − J−1
n f (zn), n = 0, 1, 2, . . .

where z0 is an initial guess and Jn is the Jacobian matrix, i.e.,

Jn =


∂ f (1)(zn)

∂z1 · · · ∂ f (1)(zn)
∂zn

...
. . .

...
∂ f (1)(zn)

∂z1 · · · ∂ f (1)(zn)
∂zn

.

Now, we apply Newton’s method by taking f̄ to ∇F and assuming that F and its
second partial derivatives are continuous. So, one can apply Newton’s method to ∇F(z) =
0̄, with z1 = 0 as the initial point, to obtain the minimum point z̄min of F, where

zn+1 = zn − J−1
n (∇Fzn) = zn − (F′′(x1))

−1(∇Fzn).

Then,

z2 = z1 − (F′′(x1))
−1(∇Fz1) = 0̄− (F′′(x1))

−1(∇F ~(0)),

where we take z1 = 0̄.
Since

∇F(z̄) = F′(x1) + F′′(x1)(z̄),

∇F(0̄) = F′(x1) + F′′(x1)(0̄),

∇F(0̄) = F′(x1).

Then,
z2 =~0− (F′′(x1))

−1F′(x1).

For convenience in exposition, we include formulas below from Hestenes [10], pp. 136–
137 and pp. 199–202.
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Here, the first step of Newton’s method is applied to ∇F(~z) =~0 and z2 also turns out
to be the only min of F(z) (a quadratic equation with positive definite symmetric term), i.e.,

z2 = −(F′′(x1))
−1F′(x1),

which satisfies ∇F(z2) =~0. Therefore, Newton’s method terminates in one iteration [10].
The initial formulas for bk and ck given in Algorithm 1 imply the basic CG relations

p∗k rk+1 = 0, s∗k pk+1 = 0.

Algorithm 1 CG algorithm

Step 1: Select an initial point x1. Set r1 = − f ′(x1), p1 = r1, z1 = 0.
for k = 1, . . . , n do perform the following iteration:

Step 2: sk = f ′′(x1)pk,
Step 3: ak =

ck
dk

, dk = p∗k sk, ck = p∗k rk or ck = p∗k r1,
Step 4: zk+1 = zk + ak pk, rk+1 = rk − aksk,

Step 5: pk+1 = rk+1 + bk pk, bk = −
s∗k rk+1

dk
or bk =

|rk+1|2

|r2
k |

.

end for
Step 6: When k = n consider the next estimate of the minimum point x0 of f to be the
point x̄1 = x1 + zn+1.
Then choose x̄1 as the final estimate, if | f ′(x̄1)| is sufficiently small enough.
Otherwise, reset x1 = x̄1 and the CG cycle (Step1)–(Step5) is repeated.

The CG cycle in Step 1 can terminate prematurely at the mth step if rm+1 = 0. In this
case, we replace x1 by x̄1 = x1 + zm+1 and restart the algorithm.

If we take A = f ′′(x1), where A is positive definite symmetric, then we establish
the formula

f ′′(x1)
−1 =

n

∑
k=1

pk pk∗
dk

,

for the inverse of f ′′(x1).
Since Step 2 implies that sk = f ′′(x1)pk, then, in Algorithm 1, we find

lim
σ→0

f ′(x1 + σpk)− f ′(x1)

σ
= f ′′(x1)pk.

We obtain the difference quotient by rewriting the vector sk in Algorithm 1 (see
Hestenes [10]). Therefore, without computing the second derivative we find

sk =
f ′(x1 + σpk)− f ′(x1)

σ
.

In view of the development of Algorithms 1 and 2, each cycle of n steps is clearly
comparable to one Newton step.

Thus, we replace ck = p∗k rk by ck = p∗k r1 and obtain the following relation

zn+1 =
n

∑
k=1

ck pk
dk

=
n

∑
k=1

pk p∗k r1

dk
= H(x1, σ)(−r1) = −H(x1, σ) f ′(x1),

where

H(x1, σ) =
n

∑
k=1

pk p∗k
dk

, r1 = − f ′(x1).
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Algorithm 2 CG algorithm without derivative

Step 1: Initially select x1 and choose a positive constant σ. Set z1 = 0, r1 = − f ′(x1),
p1 = r1.
for k = 1, . . . , n do perform the following iteration:

Step 2: sk =
f ′(x1 + σpk)− f ′(x1)

σ
, σk =

σ

|pk|
,

Step 3: ak =
ck
dk

, dk = p∗k sk, ck = p∗k rk,

Step 4: zk+1 = zk + ak pk, rk+1 = rk − aksk,

Step 5: pk+1 = zk + ak pk, bk = −
s∗k rk+1

dk
.

end for
Step 6: When k = n, then x̄1 = x1 + zn+1 is to be the next estimate of the minimum point
x0 of f .
Then accept x̄1 as the final estimate of x0, if | f ′(x̄1)| is sufficiently small.
Otherwise, reset x1 = x̄1 and repeat the CG cycle (Step1)–(Step5).

The new initial point x̄1 = x1 + zn+1 generated by one cycle of the modified Algorithm 2
is, therefore, given by the Newton-type formula

x̄1 = x1 − H(x1, σ) f ′(x1).

So, we have lim
σ→0

H(x1, σ) = f ′′(x1)
−1. The above algorithm approximates the Newton

algorithm
x̄1 = x1 − f ′′(x1)

−1 f ′(x1)

and has this algorithm as a limit as σ→ 0. Therefore, Algorithm 2 will have nearly identical

convergence features to Newton’s algorithm if σ is replaced by
σ

2
at the end of each cycle.

3.2. Conjugate Gram–Schmidt (CGS)—Algorithms for Nonquadratic Functions

With an appropriate initial point x1, we can derive the algorithm that is described by
Hestenes [10] on p. 135, which relates Newton’s method to a CGS algorithm. Since [10]

lim
σ→0

f ′(x1 + σpk)− f ′(x1)

σ
= f ′′(x1)pk. (11)

We can approximate the vector f ′′(x1)pk by the vector

sk =
f ′(x1 + σpk)− f ′(x1)

σ
, (12)

with a small value of σk. Then, we obtain the following modification of Newton’s algorithm,
the CGS algorithm (see Hestenes [10]):

In Step 2 of Algorithm 3, substitute sk with the following formula

sk = f ′′(x1)pk

and repeat the CGS algorithm. Then, we obtain Newton’s algorithm.
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Algorithm 3 CGS algorithm

Step 1: Select a point x1. a small positive constant, σ > 0 and n linearly independent
vectors u1, . . . , un; set z1 = 0, r1 = − f ′(x1), p1 = u1.
for k = 1, . . . , n and having obtained zk, rk and pk do perform the following iteration:

Step 2: sk =
f ′(x1 + σpk)− f ′(x1)

σ
, σk =

σ

|pk|
,

Step 3: dk = p∗k sk , ck = p∗k r1, ak =
ck
dk

,

Step 4: zk+1 = zk + ak pk,

Step 5: bk+1, j =
s∗j uk+1

dj
(j = 1, . . . , k),

Step 6: pk+1 = uk+1 − bk+1,1 p1 − . . .− bk+1,k pk.
end for
Step 7: When when zn+1 has been computed, the cycle is terminated.
Then choose x̄1 as the final estimate, if | f ′(x̄1)| is sufficiently small enough.
Otherwise, reset x1 = x̄1 and repeat the CGS cycle (Step1)–(Step6).

In view of (11), for small σ > 0, the CGS Algorithm 3 is a good approximation of
Newton’s algorithm as a limit as σ→ 0.

A simple modification of Algorithm 3 is obtained by replacing the following formulas
in Step 2 and Step 3, as described in Hestenes [10].

sk =
f ′(x1 + σpk)− f ′(x1)

σ
, σk =

σ

|pk|
,

xk = x1 + zk , dk = p∗k sk , ck = −p∗k f ′(xk), ak =
ck
dk

.

A CGS algorihtm for nonquadratic functions is obtained form the following relation,
where the ratios

c(σ) =
f (x− σp)− f (x + σp)

2σ
,

d(σ) =
( f − σp)− 2 f (x) + f (x + σp)

σ2 ,
have the properties

lim
σ→0

c(σ) = −p∗ f ′(x), lim
σ→0

d(σ) = p∗ f ′′(x)p,

and p is a nonzero vector. Moreover, for a given vector u 6= 0 , the ratio

c(α, σ) =
f (x + αu− σp)− f (x + αu + σp)

2σ
,

has the property that

lim
α→0

lim
σ→0

c(σ)− c(α, σ)

α
= u∗ f ′′(x)p.

The details are as follows. Suppose p1, p2, . . . , pn is an orthogonal basis that spans the
same vector space as that spanned by u1, u2, . . . , un, which are linearly independent vectors.
The inner product (x, y) is defined by x∗Ay, where A is a positive definite symmetric matrix.
Then, the Gram–Schmidt process works as follows:
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p̄1 = u1, p1 =
p̄1

| p̄1|
= u1

p̄2 = u2 −
(u2, p1)

(p1, p1)
p1, p2 =

p̄2

| p̄2|

p̄3 = u3 −
(u3, p1)

(p1, p1)
p1 −

(u3, p2)

(p2, p2)
p2, p3 =

p̄3

| p̄3|

p̄3 = u3 −
(p∗1 Au3)

(p∗1 Ap1)
p1 −

(p∗2 Au3)

(p∗2 Ap2)
p2,

. . .

p̄k+1 = uk+1 −
(p∗1 Auk+1)

(p∗1 Ap1)
p1 − · · · −

(p∗k Auk+1)

(p∗k Apk)
pk, pk+1 =

p̄k+1
| p̄k+1|

.

Take A = f ′′(x1), then

p̄k+1 = uk+1 −
(p∗1 f ′′(x1)uk+1)

(p∗1 f ′′(x1)p1)
p1 − · · · −

(p∗k f ′′(x1)uk+1)

(p∗k f ′′(x1)pk)
pk.

We already proved that

p∗Ap = D or p∗ f ′′(x1)p = D.

Then,

p̄k+1 = uk+1 −
(p∗1 f ′′(x1)uk+1)

d1
p1 − · · · −

(p∗k f ′′(x1)uk+1)

dk
pk.

We also know that
p∗k f ′′(x1) = sk.

Therefore,

p̄k+1 = uk+1 −
s1uk+1

d1
p1 − · · · −

skuk+1
dk

pk,

pk+1 = uk+1 − bk+1,1 p1, . . . , bk+1,k pk,

p̄k+1 = uk+1 − bk+1,1 p1, . . . , bk+1,k pk, since pk+1 =
p̄k+1
| p̄k+1|

.

Now using function values only, a conjugate Gram–Schmidt process without derivatives is
described by Hestenes [10] as follows, as the CGS routine without derivatives (Algorithm 4):
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Algorithm 4 CGS algorithm without derivatives

Step 1: select an initial point x1, small σ > 0 and a set of unit vectors u1, . . . , un, which
are linearly independent; set z1 = 0, p1 = u1, α = 2σ, γ0 = 0; compute f (x1).
for k = 1, . . . , n and having obtained zk, p1, . . . , pk and γk−1, do perform the following
iteration:

Step 2: dk =
f (x1 − σpk)− 2 f (x1) + f (x1 + σpk)

σ2 ,

Step 3: dck =
f (x1 − σpk)− f (x1 + σpk)

2σ
,

Step 4: γk = max[γk−1, |ck|],
Step 5: ak =

ck
dk

, zk+1 = zk + ak pk,

Step 6: pk+1 = uk+1 − bk+1,1 p1 − . . .− bk+1,k pk.
end for
Step 7: When zn+1 has been computed, the cycle is terminated.
Then choose x̄1 as the final estimate, if | f ′(x̄1)| is sufficiently small, x̄1 is the minimum
of f .
Otherwise, reset x1 = x̄1 and repeat the CGS cycle (Step1)–(Step6) with the initial
condition γ0 = 0.

In addition, the conjugate Gram–Schmidt method without derivatives is described
by Dennemeyer and Mookini [26]. In this program, they used different notations from
Hestenes’ notations, but they provided the same procedure.

Initial step: select an initial point x1, a small σ > 0 and a set of linearly independent
vectors u1, . . . , un;

set h1 = 0, p1 = u1, α = 2σ, γ0 = 0 and compute f (x1).
Iterative steps: given x1, p1, . . . , pk, hk, compute

dk =
f (x1 − σpk)− 2 f (x1) + f (x1 + σpk)

σ2 ,

ck =
f (x1 − σpk)− f (x1 + σpk)

2σ
,

γk = max[γk−1, |ck|], ak =
ck
dk

, hk+1 = hk + ak pk;

for j = 1, . . . , k compute

ck+1,j =
f (x1 + αuj − σpk)− f (x1 + αuj + σpk)

2σ
,

ak+1,j =
ck+1,j

dj
, bk+1,j =

ak+1,j−aj

α
,

then,

pk+1 = uk+1 +
k

∑
j=1

bk+1,j pj.

Terminate when hn+1 is obtained, and set xn+1 = x1 + hn+1. If the value γn is small
enough, xn+1 is the minimum point of f . Otherwise, set x1 = xn+1 and repeat the program.

The term γn is used to terminate the algorithm because the gradient is not explicitly
computed. Another termination method would be to test if max |aj| < ε is chosen before-
hand. Both of these tests were used on the computer by Dennemeyer and Mookini [26] and
the results were comparable.

4. Discussion

In this section, we present a computation to illustrate convergence rates, as well
as the relationship between that computation and Newton’s method. Two of the most
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important concepts in the study of iterative processes are the following: (a) when the
iterations converge; and (b) how fast the convergence is. We introduce the idea of rates of
convergence, as described by Ortega and Rheinboldt [14].

4.1. Rates of Convergence

A precise formulation of the asymptotic rate of convergence of a sequence xk converg-
ing to x∗ is motivated by the fact that estimates of the form

||xk+1 − x∗|| ≤ ||xk − x∗||p, (13)

for all k = 1, 2, . . ., often arise naturally in the study of certain iterative processes.

Definition 1. Let xk be a sequence of points in Rn that converges to a point x∗. Let 1 ≤ p < ∞.
Ortega and Rheinboldt [14] define the quantities

Qp{xk} =


0 if xk = x∗ for all but finitely many k,

lim sup
k→∞

‖xk+1−x∗‖
‖xk−x∗‖p if xk 6= x∗ for all but finitely many k,

+∞ otherwise,

and refer to them as quotient convergence factors, or Q-factors for short.

Definition 2. Let C(I , x∗) denote the set of all sequences having a limit of x∗ that are generated
by an iterative process I .

Qp(I , x∗) = sup{Qp{xk}|{xk} ∈ C(I , x∗)} 1 ≤ p < +∞,

are the Q-factors of I at x∗ with respect to the norm in which the Qp{xk} are computed.

Note that if Qp{xk} < +∞ for some p where 1 ≤ p < ∞, then, for any ε > 0, there is
some positive integer K such that (13) above holds for C = Qp{xk}+ ε. If 0 < Qp{xk} < ∞,
then we say that xk converges to x∗ with Q-order of convergence p, and if Qp{xk} = 0, for
some fixed p satisfying 1 ≤ p < ∞, then we say that xk has superconvergence of Q-order p
to x∗. For example, if 0 < Qp{xk} < +∞ when p = 1, then we also have 0 < C < 1 in (13),
we say that {xn} converges to x∗ linearly. In addition, if Qp{xk} = 0 when p = 1, we say
that {xn} converges to x∗ superlinearly.

Definition 3. One other method of describing convergence rate involves the root convergence
factors. See ([14]).

Rp(xn) =


lim sup

k→∞
||xn − x∗||1/n i f p = 1,

lim sup
k→∞

||xn − x∗||1/pn
i f p > 1.

4.2. Acceleration

One acceleration procedure is the following: first, apply n CD steps to an initial point
x1 to obtain a point xn+1 = y1; then, take xn+1 to be a new initial point and apply n
CD steps again to obtain another xn+1 = y2; finally, check for acceleration by evaluating
Q = F(y2 − (Y2 − y1)), if Q < F(y2); then, we accelerate by taking [y2 − (y2 − y1)] as our
initial point; if Q > F(y2), then take y2 as a new initial point; after two more applications
of the CD method, we check for acceleration again. The procedure continues in this
manner [25].
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4.3. Test Function
4.3.1. Rosenbrook’s Banana Valley Function

We carry out the following computations for Rosenbrook’s banana valley function
(n = 2). This function possesses a steep sided valley that is nearly parabolic in shape.
First, we determine values in the domain of Rosenbrock’s function for which its Hessian
matrix is positive definite symmetric. Since the Rosenbrock’s banana valley function is
non-negative, i.e.,

f (x, y) = [100(y− x2)2 + (x− 1)2] ≥ 0,

then we have

fx = 200(y− x2)(−2x) + 2(x− 1) = −400x(y− x2) + 2(x− 1),

and

fxx = −400(y− x2)− 400x(−2x) + 2 = −400y + 400x2 + 800x2 + 2 = 1200x2 − 400y + 2,

and

fxy = −400x, fy = 200(y− x2), fyy = 200.

Therefore, the Hessian matrix is positive definite symmetric if and only if Sylvester’s
criterion holds:

(1200x2 − 400y + 2) > 0, and
(
(200)(1200x2 − 400y + 2)− 160000x2

)
> 0,

which implies that 1200x2 + 2 > 400y,⇔ y < 3x2 + 1
200 , and

1200x2 − 400y + 2− 800x2 > 0,⇔ 400x2 + 2 > 400y,⇔ y < x2 +
1

200
.

So, the Hessian matric is positive definite symmetric if and only if y < x2 + 1
200 .

Figure 1 shows the maximal convex level set on which the Hessian is positive definite
symmetric in the interior for Rosenbrock’s Banana Valley Function.

4.3.2. Kantorovich’s Function

The following function

F(x, y) = (3x2y + y2 − 1)2 + (x4 + xy3 − 1)2,

which is non-negative, i.e., F(x1, x2) ≥ 0, is called Kantorovich’s Function.
Calculating the Hessian matrix for Kantorovich’s function, we find that

Fxx = 72x2y2 + 12(3x2y + y2 − 1)y + 2(4x3 + y3)2 + 24(x4 + xy3 − 1)x2,

Fxy = 12(3x2 + 2y)xy + 12(3x2y + y2 − 1)x + 6xy2(4x3 + y3) + 6(x4 + xy3 − 1)y2

and
Fyy = 2(3x2 + 2y)2 + 12x2y + 4y2 − 4 + 18x2y4 + 12(x4 + xy3 − 1)xy.

Minimizing this function is equivalent to solving the nonlinear system of equations.
Therefore, for the initial point (0.98, 0.32), we obtain the minimum point at (0.992779,
0.306440) [25].
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Figure 1. Maximal conves level set for Rosenbrock’s banana valley function.

4.4. Numerical Computation

The goal of this numerical computation is to provide a system of iterative approaches
for finding these extreme points [10]. A significant point is that a Newton step can be
performed instead by a CD sequence of n linear minimizations in n appropriately cho-
sen directions.

It is important to keep in mind that a function acts like a quadratic function when it is
in the neighborhood of a nondegenerate minimum point. Conjugacy can be thought of as a
generalization of the concept of orthogonality. Conjugate direction methods include substi-
tuting conjugate bases for orthogonal bases in the foundational structure. The formulas for
determining the minimum point of a quadratic function can be reduced to their simplest
forms by following the CD technique.

The conjugate direction algorithms for minimizing a quadratic function, which are
discussed in the current work, were initially presented in Hestenes and Stiefel, 1952 [5].
These algorithms can be found in the present work. The authors Davidon [3], Fletcher and
Powell [4] are most known for the modifications and additions that they made to these
methods. However, numerous other authors also made these changes.

The iterative methods described above apply to many problems. They are used in least
squares fitting, in solving linear and nonlinear systems of equations and in optimization
problems with and without constraints [25]. The computing performances and numerical
results of these techniques and comparisons have received a significant amount of attention
in recent years. This interest has been focused on the solving of unconstrained optimization
problems and large-scale applications [19,27].

The Rosenbrock function of two variables, considered in Section 4.3, was introduced by
Rosenbrock [18] as a simple test function for minimization algorithms. We chose (x1, y1) =
(−1.2, 1) as the initial point. We applied algorithm (4.4a)–(4.4 f ) with σ = 0.1× 10−120,
using 400-digit accuracy. Algorithm (4) is basically Newton’s algorithm.

The final estimate of (x0, y0) has more than 150-digit accuracy. The successive values
0.8574 . . ., 0.0274 . . ., 0.2433 . . ., 0.0030 . . ., 0.2000 . . ., 0.0030 . . ., 0.2000 . . ., . . . of quotients
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that lead to the quotient convergence factor oscillate. The lim sup of these quotients give the
quotient converge factor, which indicates quadratic convergence. The lim sup is .2000 . . ..

For σ = 0.1× 10−120, ρ = 0.2× 10−120, ε = 0.1× 10−60 and the initial values, we
obtained the following computations for Rosenbrock’s function f using the Gram-Schmidt
Conjugate Direction Method without Derivatives or the CGS method, no derivatives, and
Newton’s Method applied to ∇ f = 0: (See [28])

For additional information regarding the programming, please refer to the supplemen-
tary material.

4.5. Differential Equations of Steepest Descent

The following equations are known as the differential equations of steepest descent:

dx(t)
dt

= −∇F(x(t)), (14)

and
dx(t)

dt
=
−∇F(x(t))
||∇F(x(t))||2

. (15)

The solution to either differential equation of steepest descent with initial condition
x1(0) = −1.2, x2(0) = 1.0 is shown in Figure 2, one can refer to Equation (10), p. 783, in
Eells [17]. For Equation (14), the solution will not include the minimum for finite values
of t. For Equation (15), the solution will approach the minimum, but will blow up at
the minimum.

From a numerical point of view, the differential equation approach has to be used with
caution. Rosenbrock [15] pointed out that the iterative method of steepest descent with
line searches was not effective with steep valleys. The iterative method was introduced by
Cauchy [16].

In summary, the method of steepest descent is not effective and does not compare
with Hestenes’ CGS method with no derivatives, which is almost numerically equivalent
to Newton’s method applied to grad( f ) = 0, where f is the function to be minimized.

Below are level curves of Rosenbrock’s banana valley function. We used this function
to compare Hestenes’ CGS method, Newton’s method and the steepest descent methods. In
Figure 2, the level curves of Rosenbrock’s Banana Valley Function show that the minimizer
is at (1, 1). Level curves are plotted for function values 4.0, 4.1, 4.25, 4.5 in Figure 3. For
steepest descent, the iterative method and the ODE approach are illustrated. The curve
y = x2 appears to parallel the valley floor in the graph.

We use the CGS method for computation. The Rosenbrock’s banana valley function

F(x1, x2) = (1− x1)
2 + 100(x2 − x2

1)
2,

gives the minimum point at (1, 1).
This example provided us with geometric illustrations in Figure 2. For specific algo-

rithms, please refer to Section 3 for the Gram–Schmidt conjugate direction method and the
Newton method in order to compare the two methods along side one another.

The outcomes of the numerical experiments performed on the standard test function
using the CGS method are reported above. Based on these data, it is clear that this particular
implementation of the CGS method is quite effective.
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Figure 2. Level Curves of Rosenbrock’s banana valley function.

Figure 3. Curve of steepest descent and level curves for Rosenbrock’s banana valley function.
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5. Conclusions

In this paper, we introduced a class of CD algorithms that, for small values of n,
provided effective minimization methods. As n grew, however, the algorithms became
more and more costly to run.

The computer program above showed that the CGS algorithm without derivatives
could generate Newton’s method. Since the Hessian matrix of Rosenbrock’s function was
positive definite symmetric and satisfied Sylvester’s criterion, the CGS method converged
if we began anywhere in the closed convex set in the nearby area of a minimum. This
was because the CGS method is based on the fact that the Hessian matrix of Rosenbrock’s
function is positive definite symmetric.

Using quotient convergence factors, one can see that for Rosenbrock’s function one
sequence converged quadratically. In particular, the numerical computation on p. 21 re-
vealed that the asymptotic constant oscillated between 0.20000 and 0.00307, so the quotient
convergence factor by Ortega and Rheinboldt [14] was, approximately, Q2{xk} = 0.200002,
which indicated quadratic convergence. The results agreed for Newton’s method.

Moreover, the CGS algorithm uses function evaluations and difference quotients
for gradient and Hessian evaluations, it does not require accurate gradient evaluation
nor function minimization. This approach is the most efficient algorithm that has been
discussed in this study; yet, it is extremely sensitive to both the choice of σ that is used for
difference quotients and the choice of ρ that is used for scaling.

The Gram–Schmidt conjugate direction method without derivatives has been used
quite successfully in a variety of applications, including radar designs by Norman Olsen [27]
in developing corporate feed systems for antennas and aperture distributions for antenna
arrays. He tweaked the parameters sigma and rho in our GSCD computer programs to
obtain successful radar designs.
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