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Abstract: A multilevel Monte Carlo (MLMC) method is applied to simulate a stochastic optimal
problem based on the gradient projection method. In the numerical simulation of the stochastic
optimal control problem, the approximation of expected value is involved, and the MLMC method is
used to address it. The computational cost of the MLMC method and the convergence analysis of
the MLMC gradient projection algorithm are presented. Two numerical examples are carried out to
verify the effectiveness of our method.
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1. Introduction

The stochastic optimal control problem has been widely used in engineering, finance
and economics. Many scholars have studied the stochastic optimal control problem for
different controlled systems. Because it is difficult to find analytical solutions for these
problems, the application of numerical approximation is a good choice. As with numerical
methods for determining optimal control problems (see, e.g., [1–6]), numerical methods
for stochastic optimal control problems have also been extensively studied. For optimal
control problems governed by PDE with a random coefficient, the authors of [7–9] stud-
ied numerical approximations using different methods for different problems. For SDE
optimal control problems, the stochastic maximum principle in [10,11], Bellman dynamic
programming principle in [12] and Martingale method in [13] have been used to study
numerical approximation in recent years.

The gradient projection method is a common numerical optimization method. In [14–17],
the gradient projection method is used. For the numerical simulation of stochastic optimal
control problems, whether gradient projection or other optimization methods are used,
the approximation of expected value is always involved. For a class stochastic optimal
control problem, the authors of [16] combined the gradient projection method with condi-
tional expectation (which was used to solve forward and backward stochastic differential
equations) to solve the stochastic optimal control problem. This method is difficult because
it involves conditional expectation and numerical methods of solving forward and back-
ward stochastic differential equations. In [15], the expectation was calculated using the
Monte Carlo (MC) method, which is easy to understand and implement. However, the
convergence speed of the MC method is slow. If we want it to produce a relatively small
allowable error, we need to use a large sample. The MLMC method is a commonly used
method of improving the slow convergence rate. For the MLMC method and its applica-
tion, we can refer to the literature [7,18–24]. It is worth mentioning that in reference [18],
an MLMC method is proposed for the robust optimization of PDEs with random coeffi-
cients. The MLMC method can effectively overcome adverse effects when the iterative
solution is near the exact solution. However, the proof of the convergence for the gradient
algorithm is not given.

In this work, we apply the gradient projection method with the MLMC method to
solve a stochastic optimal control problem. An expected value is needed to compute in the
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simulation of the stochastic optimal control problem. To reduce the influence of statistical
and discrete errors brought about by the calculation of the gradient, we use the MLMC
method to estimate the gradient in each iteration. In the process of iteration, the mean
square error (MSE) is dynamically updated. We prove the convergence of the gradient
projection method combined with MLMC, and also extend the theory of MLMC which is
suitable for our stochastic optimal control problem.

The rest of this paper is organized as follows. We describe the stochastic optimal
control problem in Section 2. In Section 3, we review the gradient projection method and
MLMC theory. In Section 4, we expand the existing MLMC theory and apply it to the
gradient projection method for the stochastic optimal problem. The convergence analysis is
also presented in this section. Some numerical experiments are carried out to verify the
validity of our method in Section 5. Main contributions and future work are presented in
Section 6.

2. Stochastic Optimal Control Problem

Let (Ω,F , {Ft}t≥0,P) be a complete probability space and L2
F ([0, T];R) be a real-

valued square-integrable Ft-adapted process space such that ||y||L2(Ω,L2[0,T]) < ∞, where
{Ft}t≥0 is a natural filtration generated by a one-dimensional standard Brownian motion
{Wt}t≥0, and

||y||L2(Ω,L2[0,T]) =

(∫
Ω

∫ T

0
|y|2dtdP(ω)

)1/2

. (1)

The objective function of the optimal control problem that we consider is

min
u∈Uad

J(y, u) =
∫ T

0
E[h(y)]dt +

∫ T

0
j(u)dt, (2)

where h(·), j(·) are first-order continuous derivative functions. u ∈ Uad is a deterministic
control. Uad is a closed convex control set in the control space L2(0, T). E(·) stands for
expectation, which is defined by E(h) =

∫
Ω h(ω)dP(ω). The stochastic process y(u) ∈

L2
F ([0, T];R) is generated by the following stochastic differential equation:

dy = f (t, y, u)dt + g(t, y)dWt, y(0) = y0. (3)

Assume that f is a continuous differentiable function with respect to t, y, u; and g is a
continuous differentiable function with respect to t, y. Under these continuous differentiable
assumptions, we can find that for the problem (3) there exists a unique solution y(·) ∈
L2
F ([0, T];R) with (y0, u(·)) ∈ R×Uad (this can be seen in [25]). Here, y(·) is a function of

u(·). For the optimal control problem (2)–(3) there exists a unique solution. Let u∗ be the
optimal solution.

In the following, C denotes different positive constants at different occurrences, and is
independent of discrete parameters, sample parameters and iteration times.

3. Review of Gradient Projection Method and MLMC Method

The gradient projection method is a common numerical method for optimization
problems. The gradient projection method for stochastic optimal control problems usually
contains expectation, and MLMC is an important method for calculating expectations. This
section introduces the gradient projection and MLMC methods.

3.1. Gradient Projection Method

Let J(u) = J(y(u), u), where y(u) is the solution of (3). We assume that J(u) is a
convex function, U = L2([0, T],R) is a Hilbert space and K is a closed convex subset of
U. Let b(·, ·) be a symmetric and positive definite bilinear form and define b : U → U by
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(bu, v) = b(u, v). Combining the first order optimization condition with the projection
operator PK : U → K, we can obtain (see [15,16])

u∗ = PK(u∗ − ρb−1 J′(u∗)), (4)

where J′(u) is the Gâteaux derivative of J(u), ρ is a positive constant.
We introduce a uniform partition for time intervals: 0 = tN

0 < tN
1 < · · · < tN

N =
T, tN

n+1 − tN
n = T/N = h. Let IN

n = (tN
n−1, tN

n ]. The piecewise constant space UN is
denoted by

UN =

{
u ∈ U : u =

N

∑
n=0

αnχIN
n

, a.e., αn ∈ R
}

, (5)

where χIN
n

is the characteristic function of IN
n . u∗ can be approximated by:

u∗,N = PKN (u
∗,N − ρb−1 J′(u∗,N)), (6)

where KN = K ∩UN . Based on the analysis of (4)–(6), we can get an iterative scheme for
the numerical approximation of (2)–(3) as below:b(uN

i+ 1
2
, v) = b(uN

i , v)− ρi(J′N(u
N
i ), v), v ∈ KN ,

uN
i+1 = Pb

KN
(uN

i+ 1
2
),

(7)

where ρi is the iterative step size, and J′N is the numerical approximation of J′(·). The error
between J′(·) and J′N(·) is represented by the following formula:

εN = sup
i
||J′(uN

i )− J′N(u
N
i )||.

For the iterative scheme (7), the following convergence results hold (see [16]).

Lemma 1. Assume that J′(·) is Lipschitz continuous and uniformly monotone in the neighborhood
of u∗ and u∗,N , i.e., there exist positive constants c and C such that

||J′(u∗)− J′(v)|| ≤ C||u∗ − v|| ∀v ∈ K, (8)

(J′(u∗)− J′(v), u∗ − v) ≥ c||u∗ − v||2 ∀v ∈ K, (9)

||J′(u∗,N)− J′(v)|| ≤ C||u∗,N − v|| ∀v ∈ KN , (10)

(J′(u∗,N)− J′(v), u∗,N − v) ≥ c||u∗,N − v||2 ∀v ∈ KN . (11)

Suppose that
εN = sup

i
||J′(uN

i )− J′N(u
N
i )|| → 0, N → ∞, (12)

and ρi can be chosen such that 0 < 1− 2cρi + (1 + 2C)ρ2
i ≤ δ2 for some constant 0 < δ < 1.

Then the iteration scheme (7) is convergent, i.e.,

||u∗ − uN
i || → 0, (i→ ∞, N → ∞). (13)

In the iterative scheme (7), the gradient of the objective function (2) needs to be calcu-
lated. Using the stochastic maximum principle, the gradient is solved more conveniently
by introducing an adjoint equation:

− dp = [h′(y) + p f ′y(t, y, u)− pg′y(t, y)2]dt + pg′y(t, y)dWt, p(T) = 0. (14)
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The detail deduction can be seen in [26,27]. Thus the derivative of J(u) can be denoted by

J′(u)v =
∫ T

0
(E[p f ′u(t, y, u)] + j′(u))vdt, ∀v ∈ U. (15)

According to the Riesz representation theorem, we can get

J′(u) = E[p f ′u(t, y, u)] + j′(u). (16)

3.2. MLMC Method

In [19–21], the quantities of interest in the MLMC method are scalar value. The authors
of [18,21]) make an extension of the MLMC theory to fit function value. In the gradient
projection algorithm, the quantities of interest are unknown functions. In this section, we
will first briefly review the theoretical knowledge of MLMC. Then, we discuss in detail
how to estimate the expectation for the gradient projection method.

3.2.1. Scalar-Valued Quantities of Output

The quantity we are interested in is A : Ω → R. Generally, the exact sample of A is
not known. We can only get an approximate sample Ah(ω). It is assumed that A has an α
order weak convergence property, i.e.,

|E[Ah − A]| ≤ Chα, (17)

and the computational cost satisfies

C(Ah(ω)) ≤ Ch−γ, (18)

where γ is a positive constant. Usually, α, γ depend on the algorithm itself.
For the MLMC method (see, e.g., [19,21]), we consider the multiple approximations

Ah0 , Ah1 , · · · , AhL of A, where hl = M−lT (l = 0, 1, · · · , L) represents time step size at
the lth level. Here, M is a positive integer (in the later numerical experiments, M = 2).
The expectation of E[AhL ] can be defined by

E[AhL ] = E[Ah0 ] +
L

∑
l=1

E[Ahl
− Ahl−1

] =
L

∑
l=0

E[Yl ], (19)

where Yl = Ahl
− Ahl−1

, Ah−1 = 0. For each E[Yl ], we apply the standard MC method to
estimate. If the sample number is Ml , we can obtain

Ŷl = M−1
l

Ml

∑
i=1

Yl(ωi) =
1

Ml

Ml

∑
i=1

(Ahl
(wi)− Ahl−1

(wi)). (20)

In order to maintain a high correlation between samples under fine and coarse meshes,
we must produce samples Ahl

(ωi), Ahl−1
(ωi) in the same Brownian motion path. Combin-

ing (19) and (20), we can get the multilevel estimation Y = ∑L
l=0 Ŷl . Because the expectation

operator is linear, and each expectation is estimated independently, we have

E[Ŷl ] = E[Ahl
− Ahl−1

], Var[Y] =
L

∑
l=0

1
Ml

Var[Yl ]. (21)
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Moreover, Y is known as an approximation of E[A], and its mean square error (MSE) can
be described as:

E[(Y− E[A])2] = E[(Y− E[Y] + E[Y]− E[A])2]

=
L

∑
l=0

1
Ml

Var[Yl ] + (E[AhL − A])2,
(22)

where the first term is the statistical error and the second term is the algorithm error. To
make the MSE less than ε2, we may let both terms be less than ε2/2. Denote the cost of
taking a sample of Yl by Cl , and the sample size by Ml . The total cost can be represented as

C(Y) =
L

∑
l=0

MlCl . (23)

How should we choose Ml such that the multilevel estimated variance is less than ε2?
In [21], we find that the optimal sample number can be selected as

Ml =

⌈
2
ε2

√
Var[Yl ]C−1

l

L

∑
i=0

√
Var[Yi]Ci

⌉
. (24)

Here the symbol d·e indicates rounding up.
The complexity theorem for the MLMC is given in [19–21] when the quantities of

interest are scalar. Usually, l can not be taken from 0, because when the grid is too coarse,
the correlation of equation (SDE, SPDE) is lost. Especially when the quantity is a function,
an interpolation operator is needed. If the grid is too coarse, interpolation can cause
large errors.

3.2.2. Function Valued Quantities of Output

When the interest quantity is a function in Equation (16), a natural problem is how to
apply classical MLMC theory.

When the samples are a vector or matrix, the discrete time step size of each level is
different. Ahl

(ω) and Ahl−1
(ω) are not compatible. Thus they cannot be subtracted directly.

The most natural idea is processed by interpolation and compression. Reference [28]
introduced an abstract operator Il2

l1
: RMl1+1 → RMl2+1 for one-dimensional cases. If l1 < l2,

the operator is a bounded linear prolongation operator. If l1 > l2, the operator is a bounded
linear compression operator. If l1 = l2, it is an identity operator. We also require Il2

l1
= Il2

l3
Il3
l1

.

In real applications, Il2
l1

is often a linear interpolation operator. However, in order to be

consistent with the previous control space (5), we define Il : RMl+1 → UMl . Redefine

E[AhL ] = E[I0 Ah0 ] +
L

∑
l=1

E[Il Ahl
− Il−1 Ahl−1

] =
L

∑
l=0

E[Ȳl ], (25)

Ȳl =
1

Ml

Ml

∑
i=1

[
Il Ahl

(ωi)− Il−1 Ahl−1
(wi)

]
, (26)

and

Y =
L

∑
l=0

Ȳl , (27)

where I−1 Ah−1 = 0, Y ∈ UML . The MLMC theory of extending to vectors or functions can
be found in [18,21]. The MSE of each A is less than ε2, i.e.,

E[(Y− E[A])2] ≤ ε2. (28)
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The optimal sample number is determined by the maximum variance. Thus, the optimal
sample number can be revised as follows:

Ml =

⌈
2
ε2

√
||Var[Ȳl ]||∞C−1

l

L

∑
i=0

√
||Var[Ȳi]||∞Ci

⌉
. (29)

Next we consider the termination condition of the MLMC method, when the bias term
is less than ε2/2 (see, e.g., [20]). a . Cb if and only if a ≤ Cb and b ≤ a. Choosing M = 4,
we may assume that

||E[Il Ahl
− A]||∞ ' 4−αl , ||E[Il Ahl

− Il−1 Ahl−1
]||∞ ' 4−αl , (30)

where Il is a bounded linear prolongation operator, such as linear interpolation. Using the
inverse triangle inequality, we can obtain

||E[Il Ahl
− Il−1 Ahl−1

]||∞ = ||E[Il Ahl
− A + A− Il−1 Ahl−1

]||∞
≥ ||E[A− Il−1 Ahl−1

]||∞ − ||E[Il Ahl
− A]||∞.

(31)

From (30)–(31), we can derive

||E[A− Il−1 Ahl−1
]||∞ ' 4−α(l−1)

= C4−αl4α

' 4α||E[Il Ahl
− A]||∞.

(32)

Furthermore, we get

||E[Il Ahl
− A]||∞ ≤ C(4α − 1)−1||E[Il Ahl

− Il−1 Ahl−1
]||∞. (33)

Combining Equation (32) with (33), we can derive the following error estimate,

||E[Il Ahl
− Il−1 Ahl−1

]||∞ ≤ C
1√
2
(4α − 1)ε. (34)

To ensure that the bias term can be less than ε2/2, we use the following formula:

max
{

1
4
||Ȳl−1||∞, ||Ȳl ||∞

}
≤ C

1√
2
(4α − 1)ε. (35)

Based on the above analysis, the complexity theorem of MLMC is given below.

Theorem 1. Suppose that there are positive constants α, β, γ, α ≥ 1
2 min{β, γ}, and

||E[Il Ahl
− A]||∞ ≤ C4−αl , ||Var[Ȳl ]||∞ ≤ C4−βl , Cl ≤ C4γl . (36)

Then, there exists a positive integer L and a sequence {Ml}L
l=0 such that, for any ε < e−1

||E[(Y− E[A])2]||∞ ≤ ε2, (37)

and the cost

Cmlmc ≤


Cε−2, i f β > γ,

Cε−2(log ε)2, i f β = γ,

Cε−2− (γ−β)
α i f β < γ.

(38)

The proof of Theorem 1 is similar to that of Theorem 3.1 in [20]. The norm can be
replaced by || · ||Lp(D), 1 ≤ p ≤ ∞.
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Next, we introduce a combination of the MLMC method with the gradient projec-
tion method.

4. MLMC Method Based on Gradient Projection

For the expectation form E[p f ′u(t, y, u)] in formula (16), a more general expectation
estimation form may occur in the numerical approximation of stochastic optimal control
problems. We consider the expectation formula

E[A] = E[ f (y)g(p)], (39)

where y, p are the solutions of the state equation and the adjoint equation, respectively.
We assume that f , g have continuous derivatives. The numerical approximation is de-
noted by AhL = f (yhL)g(phL). Before the theoretical analysis, we first make the following
assumptions:

Hypothesis 1 (H1). Assume that the error estimate of state y is as

||ILyhL − y||2L4(Ω,L4[0,T]) ≤ Ch
βy
L . (40)

Hypothesis 2 (H2). Assume that the error estimate of the adjoint state p is as

||IL phL − p||2L4(Ω,L4[0,T]) ≤ Ch
βp
L . (41)

Hypothesis 3 (H3). Assume that the cost of calculating approximate sample A is as

CL ≤ C
(

h−γ1
L + h−γ2

L

)
, (42)

where the first and second terms are costs in sampling y, p, respectively.

4.1. Classic Monte Carlo Method

Let A ∈ L2(Ω, L2[0, T]). E[A] is estimated by the average value of the sample, i.e.,

EM[A] =
1
M

M

∑
i=1

A(ωi), (43)

where A(wi) ∈ L2[0, T]. For a fixed M, we have EM[A] ∈ L2[0, T]. Because the exact sample
is taken here, there is only statistical error (see, e.g., [7,22]). The statistical error can be given
by the following lemma.

Lemma 2. Assume that A ∈ L2(Ω, L2[0, T]). Then, for any M ∈ N, we have

||E[A]− EM[A]||L2(Ω,L2[0,T]) ≤ M−
1
2 ||A||L2(Ω,L2[0,T]). (44)

The approximation of E[A] can be defined by

EM[AhL ] =
1
M

M

∑
i=1

AhL(ωi), (45)

where AhL(ωi), i = 1, · · · , M is independent and identically distributed. From the
formula (45), we can obviously find that there are two sources of error: one is statisti-
cal error, and the other is discrete error. The detailed error estimate is described as follows.
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Theorem 2. Let assumptions H1–H2 hold and f , g be Lipschitz continuous. Then we have

||E[A]− EM[IL AhL ]||L2(Ω,L2[0,T])

≤ C
(

M−
1
2 ||IL AhL ||L2(Ω,L2[0,T]) + h

βy
L + h

βp
L

)
,

(46)

where Il Ahl
= f (Ilyhl

)g(Il phl
).

Proof. Firstly, applying Lemma 2 and triangle inequality, we obtain

||E[A]− EM[IL AhL ]||L2(Ω,L2[0,T]) ≤ ||E[ f (y)g(p)]− E[IL AhL ]||L2(Ω,L2[0,T])

+ ||E[IL AhL ]− EM[IL AhL ]||L2(Ω,L2[0,T])

≤ CM−
1
2 ||IL AhL ||L2(Ω,L2[0,T])

+ ||E[ f (y)g(p)]− E[ f (ILyhL)g(p)]||L2[0,T]

+ ||E[ f (ILyhL)g(IL phL)]− E[ f (ILyhL)g(p)]||L2[0,T].

(47)

Secondly, using Cauchy–Schwartz inequality and Lipschitz continuity, we have

||E[ f (y)g(p)]− E[ f (ILyhL)g(p)]||L2[0,T]

+ ||E[ f (ILyhL)g(IL phL)]− E[ f (ILyhL)g(p)]||L2[0,T]

≤ C
(

h
βy
L + h

βp
L

)
.

(48)

Combining (47) with (48), we can derive the desired result.

From Theorem 2, we can find that the numbers of statistical samples are affected by
the step size. Based on this, the complexity theorem of MC is given below:

Theorem 3. Let assumptions H1–H3 hold, A ∈ L2(Ω, L2[0, T]) and f , g be Lipschitz continuous.
Then, the MC sample number M can be derived as

M = O
(
(h

βp
L + h

βy
L )−2

)
, (49)

the error bound yields

||E[A]− EM[IL AhL ]]||L2(Ω,L2[0,T]) ≤ C
(

h
βp
L + h

βy
L

)
, (50)

and the total cost satisfies

Cmc ≤ C(h−γ1
L + h−γ2

L )(h
βp
L + h

βy
L )−2. (51)

Proof. Selecting M = O((h
βp
L + h

βy
L )−2), from Theorem 2 we have inequality (50). The

formula (51) can be obtained with assumption H3.

4.2. Multilevel Monte Carlo Method

According to Equations (26) and (27), a multilevel estimator is established for A in the
following theorem.

Theorem 4. Let assumptions H1–H2 hold, A ∈ L2(Ω, L2[0, T]) and f , g be Lipschitz continuous.
Then, using (26) and (27), the error of MLMC expectation for A is established as follows:

||E[A]−Y||L2(Ω,L2[0,T]) ≤ C

[
h

βy
L + h

βp
L +

L

∑
l=0

M−
1
2

l (h
βy
l + h

βp
l )

]
. (52)
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Proof. Using the triangle inequality, we get

||E[A]−Y||L2(Ω,L2[0,T])

≤ ||E[A]− E[IL AhL ]||+ ||E[IL AhL ]−Y||L2(Ω,L2[0,T]) := I1 + I2,
(53)

where
I1 = ||E[A]− E[IL AhL ]||, I2 = ||E[IL AhL ]−Y||L2(Ω,L2[0,T]). (54)

Now, the aim is to estimate the terms I1 and I2. For I1, employing Theorem 2, we can obtain

||E[A]− E[IL AhL ]|| ≤ C
(

h
βy
L + h

βp
L

)
. (55)

For the term I2, using the triangle inequality, Lemma 2, Cauchy–Schwarz inequality and
Lipschitz continuity, we get

||E[AhL ]−Y||L2(Ω,L2[0,T])

≤
L

∑
l=0
||E[Il Ahl

− Il−1 Ahl−1
]− EMl [Il Ahl

− Il−1 Ahl−1
]||L2(Ω,L2[0,T])

≤
L

∑
l=0

M−
1
2

l || f (Ilyhl
)g(Il phl

)− f (Il−1yhl−1
)g(Il−1 phl−1

)||L2(Ω,L2[0,T])

≤
L

∑
l=0

M−
1
2

l

(
|| f (Ilyhl

)g(Il phl
)− f (y)g(p)||L2(Ω,L2[0,T])

+|| f (Il−1yhl−1
)g(Il−1 phl−1

)− f (y)g(p)||L2(Ω,L2[0,T])

)
≤ C

L

∑
l=0

M−
1
2

l (h
βy
l + h

βp
l ),

(56)

where hl−1 = Mhl is used in the above derivation. Hence, substituting estimates of I1,I2
into equation (53), we derive

||E[A]−Y||L2(Ω,L2[0,T]) ≤ C

[
h

βy
L + h

βp
L +

L

∑
l=0

M−
1
2

l (h
βy
l + h

βp
l )

]
, (57)

which is the desired result.

The formula (52) shows that {Ml}L
l=0 is selected by balancing discrete and statistical

errors. We choose sample number {Ml}L
l=0 such that

L

∑
l=0

M−
1
2

l (h
βy
l + h

βp
l ) ≤ C0(h

βy
L + h

βp
L ), (58)

and the total cost Cmlmc =
L
∑

l=0
Cl Ml is as little as possible. According to [7], this is a convex

optimization minimization problem. Therefore, there exists an optimal sample number at
each level. Thus, we introduce a Lagrange function as

L(µ, M) =
L

∑
l=0
Cl Ml + µ

(
L

∑
l=0

M−
1
2

l (h
βy
l + h

βp
l )− C0(h

βy
L + h

βp
L )

)
. (59)

Letting the derivative of L(µ, N) with respect to Nl be zero, we can derive
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Ml ≈

(h−γ1
l + h−γ2

l )−
2
3 (h

βy
l + h

βp
l )

2
3

(
L

∑
l=0

(h−γ1
l + h−γ2

l )
1
3 (h

βy
l + h

βp
l )

2
3

)2

(h
βy
L + h

βp
L )−2

. (60)

Based on the above analysis, the complexity theorem of the MLMC method based on
gradient projection is given as follows.

Theorem 5. Let assumptions H1–H3 hold, A ∈ L2(Ω, L2[0, T]) and f , g be Lipschitz continuous.
Then, the MLMC estimator (27) can be obtained by the following choice of {Ml}L

l=0,

Ml =


O((h−γ1

l + h−γ2
l )−

2
3 (h

βy
l + h

βp
l )

2
3 (h

βy
L + h

βp
L )−2), i f τ > 0,

O((h−γ1
l + h−γ2

l )−
2
3 (h

βy
l + h

βp
l )

2
3 (L + 1)2(h

βy
L + h

βp
L )−2), i f τ = 0,

O((h−γ1
l + h−γ2

l )−
2
3 (h

βy
l + h

βp
l )

2
3 h

2τ
3

L (h
βy
L + h

βp
L )−2), i f τ < 0,

(61)

where

τ = min{2βy − γ1, 2βp − γ1, βp + βy − γ1, 2βp − γ2, 2βy − γ2, βy + βp − γ2}. (62)

Then the error bound is yielded as

||E[A]−Y||L2(Ω,L2[0,T]) ≤ C
(

h
βy
L + h

βp
L

)
. (63)

And the total computational cost Cmlmc is asymptotically bounded by L→ ∞

Cmlmc ≤


C(h

βy
L + h

βp
L )−2, i f τ > 0,

C(L + 1)3(h
βy
L + h

βp
L )−2, i f τ = 0,

Chτ
L(h

βy
L + h

βp
L )−2, i f τ < 0.

(64)

Proof. Firstly, we prove (63). Using Theorem 4 and hl−1 = Mhl , choosing

Ml ≈ (h−γ1
l + h−γ2

l )−
2
3 (h

βy
l + h

βp
l )

2
3 (h

βy
L + h

βp
L )−2, l = 0, · · · , L, (65)

we obtain

||E[A]−Y||L2(Ω,L2[0,T]) ≤ C

[
h

βy
L + h

βp
L +

L

∑
l=0

M−
1
2

l (h
βy
l + h

βp
l )

]

≤ C

[
h

βy
L + h

βp
L + (h

βy
L + h

βp
L )

L

∑
l=0

(h−γ1
l + h−γ2

l )
1
3 (h

βy
l + h

βp
l )

2
3

]
≤ C

(
h

βy
L + h

βp
L

)
,

(66)

thereby (63) is proved.
For formula (64), we discuss the proof of the first case that τ > 0. It is similar for the

latter two cases.
According to hypothesis H3, we get

Cmlmc =
L

∑
l=0

NlCl ≤ C(h
βy
L + h

βp
L )−2

L

∑
l=0

(h−γ1
l + h−γ2

l )
1
3 (h

βy
l + h

βp
l )

2
3 . (67)
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Let τ > 0, as L→ ∞. Then

L

∑
l=0

(h−γ1
l + h−γ2

l )
1
3 (h

βy
l + h

βp
l )

2
3 = O(1), (68)

Thus we have
Cmlmc ≤ C(h

βy
L + h

βp
L )−2. (69)

Here we complete the proof.

4.3. Gradient Projection Based on Optimization

Following the analysis of the former parts, the numerical iterative algorithm for the
optimal control problem (2)–(3) is given in [15].

From Lemma 1, Corollary 3.2 of [16], we know that their algorithm is convergent. The
error of the scheme in [15] has two main sources. One is the error caused by estimating the
expected E[p f ′u(t, y, u)]; the other is caused by the Euler scheme, which cannot be ignored.
The error of the estimation for expectation has little effect on the step size ρi at the initial
iteration step. When ρi is small, the estimated error from expectations may completely
distort the gradient direction. This causes the algorithm to be unable to converge, i.e., the
iterative error does not subsequently decrease.

To make the gradient valid, it is necessary that the MSE satisfies ε(i) < η||u(i) −
u(i−1)||L2(0,T), where η ∈ (0, 1) (η is determined by the optimal control problem). To reduce
the influence of statistical error, discrete error and unnecessary computation cost, we use
MLMC to estimate expectation.

4.4. MLMC Gradient Projection Algorithm

For the algorithm presented in [15], the MSE cannot decrease for a fixed time step
size, no matter how much the number of samples is increased, because it is a biased
estimate. Therefore, in an efficient algorithm, the time step size will not be fixed. Here
we apply the MLMC method to estimate the gradient, which can ensure that the MSE of
each iteration is within an allowable range. The detail step is presented in Algorithm 1.
Norm || · ||L2(Ω,L2[0,T]) is induced by the inner product (u, v)L2(Ω),L2[0,T] =

∫ T
0

∫
Ω uvdP(ω)dt.

J′(Li ,Mi)
(u(i−1)) = Y + j′(u(i−1)) is the MLMC approximation of (16). The definition of Y

can be seen in (27). Here, A = p f ′u(t, y, u) is involved in (28), Theorems 4 and 5.

Algorithm 1: MLMC gradient projection based optimization

1: input τ, ε(1), imax, u(0), η
2: for i = 1,· · · , imax do
3: estimate J′(Li ,Mi)

(u(i−1))

4: estimate u(i)

5: if ||u(i) − u(i−1)||L2[0,T] ≤ τ then
6: return u(i)

7: end if
8: if ε(i) ≥ η||u(i) − u(i−1)||L2[0,T] or ε(i) ≤ η2||u(i) − u(i−1)||L2[0,T] then
9: ε(i+1) = η||u(i) − u(i−1)||L2[0,T]

or ε(i+1) = max{τ, η||u(i) − u(i−1)||L2[0,T]}
10: else
11: ε(i+1) = ε(i)

12: end if
13: end for

Line 1: τ is the iterative permissible error; ε(1) is the given initial MSE; imax is the max
iterative steps; u(0) is the initial control function; η ∈ (0, 1) is a given parameter.
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Line 3: We use the MLMC method to estimate gradient according to MSE ε(i).
Line 4: We use the gradient projection formula (7) to update the control function.

To determine the new optimal iterative step size ρi, we need to calculate the objective
function. After a small number of iterations, the change of the objective function value is
small, which makes the MSE very small and the computation cost of MLMC very large,
especially through the Armijio search method. So for the iterative step size here we simply
use ρi =

1√
i+d

, where d is a positive constant.
Lines 8–12 determine the MSE of the next iteration, ensure that the MSE of the MLMC

estimation gradient will not affect the iterative error of each iteration, and also ensure that
the MSE cannot be less than the iterative error of each iteration. This avoids the waste of
unnecessary samples; especially when the iteration is close to termination, a very small
error change will lead to a large sample number difference.

Noting that the sample number Mi and max level Li are related to ε(i), and

J′(Li ,Mi)
(u(i−1)) ∈ UMLi , (70)

from Algorithm 1, we can see

ε(i) ' ||u(i) − u(i−1)||L2[0,T] (71)

hold.

4.5. Convergence Analysis of the Algorithm

First of all, we consider the accuracy of applying MLMC to estimate a gradient. For
the accuracy of the gradient estimate, Theorem 6.1 of [18] is discussed in detail. The
gradient estimated by MLMC is the exact gradient of a discrete objective function. When
the objective function is convex, the MLMC estimation remains convex.

Algorithm 1 eliminates the impact of ||u(i) − u(i−1)||L2[0,T] from discrete and statistical
errors as far as possible. According to formula (16), line 3 and line 9 in Algorithm 1, we have

||J′(u(i−1))− J′(Li ,Mi)
(u(i−1))||L2(Ω,L2[0,T]) ≤ C||u(i) − u(i−1)||L2(Ω,L2[0,T]), (72)

where J′(Li ,Mi)
(u(i−1)) is the MLMC estimate of the J′(u(i)).

From Lemma 1, Corollary 3.2 of [16] and Theorem 1 of [15], we know that Algorithm 1
is convergent and that the final iterative error is not affected by discrete or statistical errors.
We have the following convergence theorem as τ → 0:

Theorem 6. Suppose all the conditions of Lemma 1 hold,

||u(i) − u(i−1)||L2(Ω,L2[0,T]) → 0, i→ ∞, (73)

and ρi satisfies 0 < 1− 2cρi + C̄ρ2
i ≤

δ2

4 , where δ ∈ (0, 1). Then, Algorithm 1 based on multilevel
estimation is convergent, i.e.,

||u∗ − u(i)||L2(Ω,L2[0,T]) → 0, (i→ ∞). (74)

Proof. Triangle inequality implies

||u∗ − u(i)||2L2(Ω,L2[0,T]) ≤ 2||u∗ − u∗,N(i−1)||2L2[0,T] + 2||u∗,N(i−1) − u(i)||2L2(Ω,L2[0,T]), (75)
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where the definition of u∗,N(i−1) can be seen (6). Let ω1 = u∗ − ρi J′(u∗), ω2 = u∗,N(i−1) −
ρi J′(u∗,N(i−1)), ω3 = u(i−1) − ρi J′(Li ,Mi)

. Then, for the second term of the right hand side
(RHS) of (75), we have

||u∗,N(i−1) − u(i)||2L2(Ω,L2[0,T]) = ||PKN(i−1)
(ω2)− PKN(i)

(ω3)||2L2(Ω,L2[0,T])

≤ 2||PKN(i−1)
(ω2)− PKN(i)

(ω2)||2L2[0,T] + 2||PKN(i)
(ω2)− PKN(i)

(ω3)||2L2(Ω,L2[0,T]).
(76)

For the first term of the RHS of (76), we can get

||PKN(i−1)
(ω2)− PKN(i)

(ω2)||2L2[0,T]

≤ 2||PKN(i−1)
(ω2)− u∗||2L2[0,T] + 2||u∗ − PKN(i)

(ω2)||2L2[0,T]

≤ C
(
||PKN(i−1)

(ω2)− PKN(i−1)
(ω1)||2L2[0,T] + ||PKN(i−1)

(ω1)− PK(ω1)||2L2[0,T]

+||PK(ω1)− PKN(i)
(ω1)||L2[0,T] + ||PKN(i)

(ω1)− PKN(i)
(ω2)||L2[0,T]

)
≤ C

(
||u∗ − u∗,N(i−1)||2L2[0,T] + ||PK(ω1)− PKN(i)

(ω1)||2L2[0,T]

+||PKN(i−1)
(ω1)− PK(ω1)||2L2[0,T]

)
.

(77)

The second term of the RHS of (77) can be written as

||PKN(i)
(ω2)− PKN(i)

(ω3)||2L2(Ω,L2[0,T])

≤ ||u∗,N(i−1) − u(i−1) − ρi(J′(u∗,N(i−1))− J′(Li ,Mi)
(u(i−1)))||2L2(Ω,L2[0,T])

≤ ||u∗,N(i−1) − u(i−1)||2L2(Ω,L2[0,T])

− 2ρi(u∗,N(i−1) − u(i−1), J′(u∗,N(i−1))− J′(Li ,Mi)
(u(i−1)))L2(Ω,L2[0,T])

+ ρ2
i ||J′(u∗,N(i−1))− J′(Li ,Mi)

(u(i−1))||2L2(Ω,L2[0,T]).

(78)

Using (11), (72) and Cauchy–Schwartz inequality, we can obtain for the second term of the
RHS of (78)

− 2ρi(u∗,N(i−1) − u(i−1), J′(u∗,N(i−1))− J′(Li ,Mi)
(u(i−1)))L2(Ω,L2[0,T])

=− 2ρi(u∗,N(i−1) − u(i−1), J′(u∗,N(i−1))− J′(u(i−1)))L2(Ω,L2[0,T])

− 2ρi(u∗,N(i−1) − u(i−1), J′(u(i−1))− J′(Li ,Mi)
(u(i−1)))L2(Ω,L2[0,T])

≤− 2cρi||u∗,N(i−1) − u(i−1)||2L2(Ω,L2[0,T]) + ρiC||ε(i)||L2(Ω)||u∗,N(i−1) − u(i−1)||L2(Ω,L2[0,T]).

(79)

Substituting (77)–(79) into (76), we have

||u∗,N(i−1) − u(i)||2L2(Ω,L2[0,T])

≤ 2(1− 2cρi + C̄ρ2
i )||u∗,N(i−1) − u(i−1)||2L2(Ω,L2[0,T]) + C||ε(i)||

2
L2(Ω).

(80)

Triangle inequality and (80) imply

||u∗,N(i−1) − u(i−1)||2L2(Ω,L2[0,T])

≤ 2||u∗,N(i−1) − u(i)||2L2(Ω,L2[0,T]) + 2||u(i) − u(i−1)||2L2(Ω,L2[0,T])

≤ 4(1− 2cρi + C̄ρ2
i )||u∗,N(i−1) − u(i−1)||2L2(Ω,L2[0,T]) + 2||u(i) − u(i−1)||2L2(Ω,L2[0,T])

+ C||ε(i)||
2
L2(Ω).

(81)
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Choosing appropriate ρi, we can get

||u∗,N(i−1) − u(i−1)||2L2(Ω,L2[0,T]) ≤ C
(
||u(i) − u(i−1)||L2(Ω,L2[0,T]) + ||ε(i)||

2
L2(Ω)

)
. (82)

Combining (75) with (76) and (82), we have

||u∗ − u(i)||2L2(Ω,L2[0,T])

≤ C
(
||u∗ − u∗,N(i−1)||2L2[0,T] + ||u

(i) − u(i−1)||L2(Ω,L2[0,T]) + ||ε(i)||
2
L2(Ω)

+||PK(ω1)− PKN(i)
(ω1)||2L2[0,T] + ||PKN(i−1)

(ω1)− PK(ω1)||2L2[0,T]

)
.

(83)

It is known from Theorem 3.1 of [16] that

||u∗ − u∗,N(i−1)||2L2[0,T] → 0, as i→ ∞.

When i → ∞, according to the assumption and (71), we have ||ε(i)||L2(Ω) → 0. The fact
that KN(i) is dense in K (N(i) → ∞) implies that ||PK(ω1)− PKN(i)

(ω1)||L2[0,T] → 0 and
||PKN(i−1)

(ω1)− PK(ω1)||L2[0,T] → 0. This completes the proof.

5. Numerical Experiments

In this section, two numerical examples are presented. The effectiveness of Algorithm 1
is analyzed numerically.

5.1. Example 1

This example comes from the literature [16]. It is as follows:

min
u∈L2(0,T)

J(u) =
1
2

∫ T

0
E[(y− yd)

2]dt +
1
2

∫ T

0
u2dt,

s.t dyt = u(t)y(t)dt + σy(t)dWt, y(0) = y0,
(84)

The optimal control problem is equivalent to
dy = uydt + σydWt, y(0) = y0,
−dp = (y− yd + up− pσ2)dt + pσdWt, p(T) = 0,
u = −E[py].

(85)

The exact solution of the optimal control problem is

u∗ =
T − t

1
y0
− Tt + 1

2 t2
, yd =

eσ2t − (T − t)2

1
y0
− Tt + 1

2 t2
+ 1. (86)

The parameters are chosen as u(0) = 1, T = 1, y0 = 1, σ = 0.05, 0.1, 0.2, τ = 10−4,
ε(1) = 5e− 2, η = 0.5. Firstly, the parameters αy, αp, βy, βp, γ1, γ2 need to be simulated
when MLMC is used to estimate the gradient. Because the Euler algorithm is used
for numerically simulating adjoint equation and state equation, the relevant parameters
have been determined theoretically (the details are referred to in [20,29,30]). Therefore,
αy = αp = 1, βy = βp = 1

2 , γ1 = γ2 = 1. The experimental results are shown in
Figures 1–3 with h = 1/64. The final error values ||u(i) − u∗||L2[0,T] are 6.4 × 10−4,
1.22× 10−3, 9.9× 10−3, respectively.

Partial information about the computation process when σ = 0.2 is listed in Table 1.
In the table, Mk is the number of samples, k means time step h = T/2k. The total time of
iteration is 2.4E + 4s for σ = 0.2.



AppliedMath 2023, 3 112

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

exact

numerical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2
=0.1

exact

numerical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

exact

numerical

Figure 1. The exact solution and the numerical solutions (Left: σ = 0.05. Middle σ = 0.1. Right:
σ = 0.2).

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

0 5 10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

Figure 2. The changing process of ε(i) and ||u(i)−u(i−1)||L2[0,T] with iteration number i (Left: σ = 0.05.
Middle σ = 0.1. Right: σ = 0.2).
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Figure 3. The changing process of ||u(imax) − u(imax−1)||L2[0,T] with the iterative error τ (Left: σ = 0.05.
Middle σ = 0.1. Right: σ = 0.2).

Table 1. Behavior of MLMC gradient projection-based optimization (σ = 0.2).

i ε(i) ||u(i)− u(i−1)|| M3 M4 M5 M6 M7 t(i)/s

3 4.5× 10−2 5.6× 10−2 178 3 1 0.08
7 9.1× 10−3 1.3× 10−2 4273 55 10 0.09

11 2.6× 10−3 3.8× 10−3 53,203 749 126 0.20
15 8.4× 10−4 1.3× 10−3 508,312 6715 1181 254 1.70
19 3.1× 10−4 4.9× 10−4 3,816,292 51,158 8526 1880 463 11.63
23 1.3× 10−4 2.0× 10−4 23,879,767 321,838 54,732 11,887 2892 67.07

From Figures 1–3 and Table 1, it can be seen that ε(i) ' ||u(i) − u(i−1)||L2[0,T] → 0,
Algorithm 1 is convergent, and the MLMC method is efficient.

From Figure 3, we can see that when the τ gradually decreases, the error decreases
slowly (σ = 0.1, σ = 0.2). This is mainly caused by the direction we choose is the negative
gradient direction, which is the disadvantage of the gradient descent method itself.

5.2. Example 2

This example comes from [15]; it is as follows:

min
u≥0

J = 0.5[c1

∫ T

0
E[(y− yd)

2] + c2

∫ T

0
u2dt,

s.t dyt = [u(t)− r(t)]dt + σdWt, y(0) = y0,
(87)
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This optimal control problem is equivalent to:
dy = (u− r)dt + σdWt, y(0) = y0,
−dp = (y− yd)dt, p(T) = 0,
u = max(0,− c1

c2
E[p]),

(88)

where

c1 = c2 = 1, y0 = 0, yd = 0.5Tt− 0.25t2 + 1, r = 0.5(T − T), u∗ = T − t. (89)

The parameters are selected as u(0) = 1, T = 1, σ = 0.1, 3, 5, τ = 10−4, ε(1) = 1× 10−1,
η = 0.5. The computational results are shown in Figure 4, Figure 5 with h = 1/64. The final
error values ||u(i) − u∗||L2[0,T] are 3.4× 10−4, 1.39× 10−3, 8.34× 10−4 respectively.

When σ = 5, partial information about the computation process is listed in Table 2.
In this table, Mk has the same meaning as in Table 1. The total time of iteration is 1.841×
104 s when σ = 5.

From Figures 4–6 and Table 2, it can also be seen that ε(i) ' ||u(i) − u(i−1)||L2[0,T] → 0,
Algorithm 1 is convergent, and the MLMC method is efficient.
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Figure 4. The exact solution and the numerical solutions (Left: σ = 0.1. Middle σ = 3. Right: σ = 5).
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Figure 5. The changing process of ε(i) and ||u(i) − u(i−1)||L2[0,T] with iteration number i (Left: σ = 0.1.
Middle σ = 3. Right: σ = 5).

10
-5

10
-4

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 6. The changeing process of ||u(imax) − u(imax−1)||L2[0,T] with the iterative error τ (σ = 3).
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Table 2. Behavior of MLMC gradient projection-based optimization (σ = 5).

i ε(i) ||u(i)− u(i−1)|| M3 M4 M5 M6 t(i)/s

3 7.6× 10−2 7.7× 10−2 2785 19 3 0.05
7 7.2× 10−3 9.9× 10−3 329,983 2050 267 0.56

11 1.6× 10−3 2.3× 10−3 6,642,693 42,434 5277 9.23
15 4.4× 10−4 6.6× 10−4 85,982,855 549,800 69,370 119.30
19 1.4× 10−4 2.2× 10−4 821,441,011 5,264,257 656,891 82,911 1160.74

In the numerical approximation of the stochastic optimal control problem, statistical
error (or MSE) and discrete error have a great influence on the convergence of the gradient
projection method. If we use a Monte Carlo method as in [15], the optimization iteration
method (gradient projection method) may not converge for a fixed large time step. In order
to ensure the convergence of the iteration (gradient projection method), it is necessary to
select a small time step size h and a large sample size M. This means that each optimization
iteration will take a lot of time.

Our Algorithm 1 is actually an MLMC method with variable step size. The number
of samples in each iteration step is different, and the sample size is also different with
different time step sizes. It is optimal in a sense, just as the MLMC is superior to the MC
method. Compared with the method in [16], our method is much simpler.

6. Conclusions

In this paper, an MLMC method based on gradient projection is used to approximate
a stochastic optimal control problem. One of the contributions is that MLMC method
is used to compute expectation, reducing the influence of statistical and discrete errors
on the convergence of the gradient projection algorithm. The other contribution is that
the convergence proof of Algorithm 1 is given; to the best of our knowledge, this is not
found elsewhere. Two numerical examples are carried out to verify the effectiveness of the
proposed algorithm.

Our method can be applied to simulate other stochastic optimal control problems with
expected value in the optimality conditions (optimal control of SDE or SPDE).

The MLMC is used to reduce the MSE. Other methods include the most important sam-
pling method (see, e.g., [31,32]), quasi-Monte Carlo method and multilevel quasi-Monte
Carlo method (see, e.g., [33,34]). In future work, we can use the importance sampling
MLMC method and the multi-level quasi-Monte Carlo method to approximate the stochas-
tic optimal control problem with gradient projection or other optimization methods.
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