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Abstract: Different hypotheses of carcinogenesis have been proposed based on local genetic factors
and physiologic mechanisms. It is assumed that changes in the metric invariants of a biologic system
(BS) determine the general mechanisms of cancer development. Numerous pieces of data demonstrate
the existence of three invariant feedback patterns of BS: negative feedback (NFB), positive feedback
(PFB) and reciprocal links (RL). These base patterns represent basis elements of a Lie algebra sl(2, R)
and an imaginary part of coquaternion. Considering coquaternion as a model of a functional core of a
BS, in this work a new geometric approach has been introduced. Based on this approach, conditions
of the system are identified with the points of three families of hypersurfaces in R4

2: hyperboloids of
one sheet, hyperboloids of two sheets and double cones. The obtained results also demonstrated the
correspondence of an indefinite metric of coquaternion quadratic form with negative and positive
entropy contributions of the base elements to the energy level of the system. From that, it can be
further concluded that the anabolic states of the system will correspond to the points of a hyperboloid
of one sheet, whereas catabolic conditions correspond to the points of a hyperboloid of two sheets.
Equilibrium states will lie in a double cone. Physiologically anabolic and catabolic states dominate
intermittently oscillating around the equilibrium. Deterioration of base elements increases positive
entropy and causes domination of catabolic states, which is the main metabolic determinant of cancer.
Based on these observations and the geometric representation of a BS’s behavior, it was shown
that conditions related to cancer metabolic malfunction will have a tendency to remain inside the
double cone.

Keywords: biologic system; feedback; malignant transformations; Lie algebra; coquaternion; indefi-
nite metric; quadratic form; hierarchy; entropy; anabolism; catabolism

1. Introduction

Much is known about the molecular mechanisms of the regulation of cell, organ and
system functions. System mechanisms of interactions of these structural elements, mainly
related to negative feedback and positive feedback circuits, have also been an object of
discussions for decades. On the other hand, little is known about the general principles
of organization of biologic systems as whole structures [1–6]. The lack of this knowledge
prevents understanding of the basic mechanisms of the formation of pathologic derivatives
of normal biologic systems, which includes cancer [7–11].

The uniqueness of cancer lies in its ability to invade and destroy normal biological
tissue. Invasive growth is the single most important determinant of cancer. This property
seems to be acquired by pathologic changes in the normal functional structure of BS,
resulting in the inability of the deteriorated system to maintain its wholeness. Unlike
the classical medico-biologic approaches based on local characteristics of cancer, and
finding biochemical mechanisms and markers of pathologic proliferation of immature cells,
encouraging results have also been obtained using mathematical methods. Mathematical
models devoted to cancer development are mostly based on the properties of cancer cells,
namely, their ability to multiply, and factors controlling pathologic proliferation [12–15].
On the other hand, malignant transformations considered as pathologic structures that
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originated from normal systemogenesis, were linked to the irreversible changes in the
base mechanisms, mainly reciprocal interactions between proliferating cells [16]. In the
scope of this approach, functional invariants of BS determining the system as a functional
module were also examined, whose properties could be modeled using algebraic structures.
Lie algebra sl(2, R) and coquaternions have natural representations in the known base
regulatory elements of BS, namely, PFB, NFB and RL (PNR) [16,17].

The goal of this work is to continue the use of algebraic approaches with new applica-
tions related to the metabolic properties of BS. In the scope of this work, another aim is the
development of new geometric methods describing the structural and functional changes
in the basis PNR patterns of BS leading to cancer development (Figure 1).
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properties. Input and output relate a BS to the surrounding systems considered as its 
environment. Examples of a BS are biological cells, tissues, organs and functional sys-
tems, such as cardiovascular, endocrine, digestive systems, etc., (Figure 2). 

Figure 1. Exaggerated sketch images of normal tissue (left) benign tumor (middle) and cancer
invasion (right). There are two main groups of tumors–benign and malignant. Benign tumors do
not destroy and always preserve normal tissue; malignant tumors invade and destroy surrounding
tissue.

2. Functional Properties of a Biologic System

For the purposes of this work, the commonly used and poorly defined term “a biologic
system (BS)” will be specified. A biologic system is a morphological and functional unit
maintaining its internal structure and outcome. More formally, a BS is a set of morphologic
elements and internal links, among them providing a BS with autoregulatory properties.
Input and output relate a BS to the surrounding systems considered as its environment.
Examples of a BS are biological cells, tissues, organs and functional systems, such as
cardiovascular, endocrine, digestive systems, etc., (Figure 2).
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Life span of biologic matter is short, and the system’s reproductive mechanism provides
its continuity in the development of species (phylogenesis) and individuals (ontogene-
sis). Through a reproductive mechanism, a BS maintains its functional and morphological
wholeness. During the early stages of individual development (ontogenesis), it determines
dominating proliferative activity of cells over the apoptosis (active elimination of mal-
functioning cells) [18,19]. It is assumed that apoptotic and cell’s proliferation mechanisms
are organized in a cycle and it will be termed a cell renewal cycle (CRC). It should not be
confused with the cell’s mitotic cycles, which are included in the CRC as parts determining
chromosomal changes before division.

A biologic cell is a minimal functional and morphological unit whose self-regulatory
mechanisms possess certain levels of autonomy. The regeneration of biological tissues and
organs after mechanical injury or microbial or viral invasion seems to also use features of
the cell renewal mechanism [20].

Cell renewal processes embrace larger functional systems than cells themselves provid-
ing viability and integrity of tissues and organs. In this context, a CRC is a basic mechanism
of reproduction of biological cells, tissues and organs, etc. The accuracy of the reproduction
will determine the ability of a functional system to maintain the stability and longevity
of its structural and functional units. The CRC is a dynamic process consisting of two
main components: apoptosis (the elimination of malfunctioning cells) and cell divisions
(Figure 3) [21,22].
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Figure 3. Cell Renewal Cycle (CRC).

There are two major populations of cells: mature (differentiated) and cambial (stem)
cells. Accordingly, there are two kinds of cell divisions: symmetric, when the result of the
division is two identical cells, and asymmetric, when a cambial cell is divided into two com-
plementary yet differentiated cells. Symmetric division simply copies the functional and
morphological characteristics of a cell-progenitor, whereas asymmetric division splits the
main characters of the cell precursors into two complementary classes [23,24]. A symmetric
division keeps newly formed cells within the existing spectrum of functional properties,
whereas asymmetric division increases the number of distinguishable characteristics of
cells. In other words, asymmetric division increases the dimensionality of the space, where
the newly formed cells could specifically contribute to the system’s outcome. It transforms
the functional space of a cambial cell into a space containing two complementary subspaces,
causing the cambial functions to be “distributed” between the two populations of differen-
tiated cells. Thus, cell differentiation splits the characters controlled by cambial cells, and
increases the number of distinguishable and separable characteristics of a BS (Figure 4).
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Asymmetric division also bridges the functional levels of stem cells and differentiated
cells. Mechanisms regulating the transformations from stem cells to mature differentiated
cells may play a key role among the factors preventing malignant transformations.

Splitting is also considered to be a mechanism of the evolution of a species. It possibly
follows the same strategy during the adaptation of the characters, which were drifting
from their initial phenotypic and genotypic features. The links between the gaps, when
compared with their ancestors, were possibly encoded in chromosomes, thus bridging
separable stages of evolution within a species.

The existence of the separable stages of evolution is fairly well demonstrated by
similarities of phenotype features of mammalian embryos of different species, indicating
the possibility of having common roots of development. Ontogenesis mimics phylogenetic
stages during the embryonic period, splitting functional levels into stem and differentiated
cells. The CRC metabolic machine provides interactions between hierarchical levels, while
maintaining them as separable systems.

It seems that only the core functions of BS can be reproduced during the life cycle
of individuals. Other, supplemental, features being developed use additional functional
mechanisms. The development and realization of these features strictly depend on the
surrounding system environment. For instance, the anatomical and functional organiza-
tion of the human body, the structure of regulations of cardiovascular (CV), endocrine,
respiratory, etc., systems, including metabolic pathways and behavioral reactions such
as conditional reflexes, are some examples of the genetically determined functions, then
inherited by individuals. On the other hand, physical training will result in accelerated
biochemical reactions and newly formed metabolic pathways. The same applies to the
skills and behavioral patterns obtained through conditional reflexes, which are examples of
traits developed additionally to the properties of the core functions. Morphological and
functional features acquired during an individual life circle cannot be inherited.

The partition of the functional structure of a BS into two components makes sense
not only because additional regulatory mechanisms (“periphery, superstructure”) make an
ideal correspondence between the inherited (“core”) functions and specific environmental
features, but also because supplementary functional mechanisms play a role in the forma-
tion of new, congruent to the environment and becoming genetically established characters.
The “core” and “periphery” are two components that provide structural wholeness of
the developing BS. A functional core has the “privilege” to provide the system with basic
mechanisms, keeping a BS stable.

From clinical and experimental observations, it follows that the stability of the system
and its components is determined by functional mechanisms capable of changing and even
reversing the system’s current conditions. In other words, a system’s stability depends on
its ability to redirect the deviated metabolic or other functional processes back towards
equilibrium. If measured, these processes could be shown as fluctuations in the system’s
conditions around the equilibrium. Equilibrium states are known as physiologic constants
(the glucose level of the blood, concentration of hormones, electrolytes, body temperature,
heart beats, respiratory rate, etc.). It is suggested that the behavior of a BS observed
through the system’s regulatory mechanisms may have mathematical group properties. The
group structure of regulatory mechanisms may be considered as one of the system’s core
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features [17,25]. Not every biochemical reaction is invertible; however, the normal system
is capable of returning deviated states to the equilibrium, bypassing virtually existing
reversal pathways. In the case of deterioration of a regulatory mechanism, the system
will acquire this tendency in displacing the equilibrium from the acceptable margins. A
displaced equilibrium is a direct cause for the development of pathological conditions. In
practice, the equilibrium is considered as a state when all of the components of the system
are balanced and do not require additional metabolic pathways. A normally functioning
system is capable of returning currently deviating states back to equilibrium.

Regulatory mechanisms observed on different functional levels of a BS are supposed
to have some properties additional to the mathematical group [16,17,25].

3. The Structure of Functional Invariants (Basis Patterns) of Biologic Systems

Clinical and physiologic observations demonstrate the existence of regulatory patterns
which possess universal (invariant) functional properties. They have been found in different
levels of the system’s organization- the level of biological cells [26] and the levels where
cells are grouped in organs and functional systems such as CV, GI, respiratory endocrine
systems, etc. The functional invariants are negative feedback (NFB), positive feedback (PFB)
and reciprocal links (RL) [26–31]. The latter was recently introduced as a third functional
invariant of the inner functional structure of a BS (Figure 5) [17,25].

These invariants presented in a matrix form in Figure 5 are linearized structures (phase
flows) obtained as approximations of feedback circuits between the two subsystems.
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Figure 5. Feedback base regulatory patterns of a biologic system. PFB—positive feedback; NFB—
negative feedback; RL—reciprocal links; (PNR). PNR are functional invariants of a biologic system
on molecular, cell and organ levels.

Here are some examples demonstrating the existence of PNR links between sub-
systems at different functional levels. On the level of biological cells, NFB, PFB and RL
(PNR) regulate the key functional properties of intracellular biochemical pathways [26].
Cardiovascular (CV), endocrine and gastrointestinal (GI) systems will be considered on
the levels of biological organs and functional systems. NFB in a CV system determines
the values of arterial blood pressure, depending on cardiac contractions during physical
exercises. It also regulates atrial and ventricular volumetric strokes and pressure param-
eters, depending on cardiac preload and afterload values. In the endocrine system, NFB
represents hypothalamic–pituitary, hypothalamic–suprarenal and pituitary–thyroid inter-
actions. In the GI system, NFB controls the filling–emptying cycles of intestinal segments
in different parts of the GI tract through the relationships between smooth muscle tone and
stretching [32,33].

In the CVS, contraction and relaxation phases between the atria and ventricles occur re-
ciprocally. Rheology of the blood is also regulated by reciprocally acting clot formation and
clot degradation cascades. In the endocrine system, insulin- and glucagon-releasing mecha-
nisms have reciprocal interactions. In the digestive system, contractions and relaxations
of intestinal wall muscles and sphincters occur reciprocally during the filling–emptying
cycle [32–34].
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In the CV system, tachycardia causes ischemia of the conductive system, which in turn
may cause its progression up to severe forms of cardiac arrhythmias (PFB). Tachycardia
could also be a form of PFB mechanism accelerating oxygen supply to the muscles during
strenuous physical exercises. In the reproductive system, during the first stage of delivery,
the release of oxytocin stimulates uterus contractions, which, in turn, accelerates oxytocin-
releasing mechanisms causing more oxytocin production. In GI system, during rectal
emptying, the contractions of rectal wall and pelvic floor musculature occur simultaneously
with the relaxation of anal sphincters (RL). The contractile forces and degree of relaxation
become more pronounced during the following propulsive waves (PFB).

4. Ordinary Differential Equations and Matrix Structure of Functional Base Elements

The properties of NFB, PFB and RL acquire more functional details, if these patterns

are expressed in a matrix form relative to a standard basis. S0 =

(
0 1
−1 0

)
, S1 =

(
1 0
0 −1

)
,

S2 =

(
0 1
1 0

)
are matrices of NFB, RL and PFB, respectively [25]. These matrices have

some special properties as basis elements of a Lie algebra sl(2, R) of a Special Linear Group
SL(2, R) (SL for the group is in capital letters) [17,35–38]. The physiologic properties corre-
sponding to these functional patterns could be demonstrated by the integral curves which
are one-parameter group of diffeomorphisms ft : t→ exp(tSi) determinedby infinitesimal
generators of these groups, which are the Lie algebra elements equipped by the defined
basis {S0, S1, S2} [16,25,36]. Integral curves are solutions of the ordinary differential
equations (ODE)

.
u = Su, where the matrix of the operator S is an element of the algebra

sl(2, R). Each element of the basis {S0, S1, S2} is a non-singular (invertible), traceless
(TrSi = 0) matrix, determining neither convergent nor divergent processes. This means
that for the closed, isolated system and ideal conditions, these subsystems are autonomous
functional structures whose actions do not require additional (external) sources of energy.
Their integral curves lie in the same energy level that confirms the system’s autonomy
(Figure 6) [39].
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Figure 6. Sketch of dynamical images of NFB, RL and PFB patterns as phase curves of ODE. Matrices
of NFB, PFB and RL determine the character of phase curves of ODE. Variables are expressed in a
vector form {S0, S1, S2} represents basis elements of a Lie algebra sl(2, R) of traceless matrices and
imaginary basis elements of coquaternions.

Besides the {S0, S1, S2} basis, sl(2, R) may also be equipped with other bases. For
example, the {Si, N+, N−} basis contains nilpotent elements N+, N−, which are singular
(not invertible) and related to the non-reproducible regulatory elements; thus, they cannot
serve as base functions of a BS. The space created by the PNR basis is a three-dimensional
space comprising regulatory patterns of a BS.

It is assumed that the basis {S0, S1, S2} determines the structure of a functional core
of a BS [24]. Because of the distinguishable morphological features of a BS (cells, organs,
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etc.), it is also proposed that formation of steady morphological structures with established
functional links provided by the base patterns is a property of a BS to reproduce its own
elements, which must be encoded in chromosomes [40–42]. Depending on the context,
either terms “base” or “basis” regarding PNR patterns can be used.

5. A Functional Superstructure and Hierarchy Built from Base Elements

For two-element dynamical systems, only three types of matrices satisfy the conditions
to be traceless, invertible (non-singular) and contain a minimal number of non-zero entries-
±S0, ±S1, ±S2. These matrices are the basis elements of a Lie algebra sl(2, R) and formal
expressions for NFB, RL and PFB, respectively.

Lie algebra sl(2, R) is a linear approximation of the SL(2, R) group. Elements of
sl(2, R) lie in the tangent to the SL(2, R) space, and in this sense, SL(2, R) are “closer” to
real physiologic processes. In a small neighbourhood, these two structures describe similar
relationships between variables, and, for simplicity, the algebra elements are considered
as functional patterns adequately describing the internal structure of a BS (Figure 7). The
dynamical relationships between variables of a BS (2D carrier space) could be visualized
through integral curves obtained as solutions of (linearized) differential equations. Each
curve belongs to a 1-dimensional manifold of M(2,R)-related variables and will determine
behavior of a system considered as a whole structure on some hierarchical level.
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It was mentioned before that integral curves corresponding to S0, S1, and S2 operators
lie in the same energy level, so that the corresponding functional structures will require no
additional sources of energy. Thus, these patterns determine the functional flows inherent
or naturally possessed by for conservative (autonomous) systems. It indicates the system’s
independence from the environment. The system’s autonomy also implies the stability
of Si patterns as intrinsic regulatory elements providing the whole system with a unique
self-regulatory mechanism.

On each level of functional systems (molecular, cell, organ, etc.), a set of variables
always exists, which are related to each other by functional patterns (Si), so that they are Si-
linked. Si-linked pairs form steady groups of elements united (using physiologic language)
by reciprocal links, negative feedback loops or positive feedback. Because of the functional
stability of Si patterns, morphological units being grouped by each of these patterns may
be considered as separable subsystems and potentially new variables belonging to the
next level of morphological and functional organization. These groups, considered as
whole structures, will represent morphological units of the next level formed as classes of
equivalent elements. Examples of the established distinguishable classes include molecules,
cells, tissues, organs, etc. Formation of the steady functional triplets (S0, S1, S2) makes
a corresponding structural level functionally closed; this is a required condition for the
beginning of the creation of the next, higher in the hierarchical scale, level.



AppliedMath 2023, 3 67

Formation of hierarchical levels of a BS could agree with the following scenario: con-
sider an initial level as a homogeneous space of structural (biochemical) units related to
each other through the chaotic interactions. Due to the permanent forces of the surrounding
environment, some elements will form steady, resistant to the destructive environmental
forces, pairs involved in the orbits of the united by Si-pattern elements. Only the three
steady, orthogonal to each other, two-dimensional spaces (independent vector fields) could
be formed according to S0, S1, and S2 invariants. Thus, the next to the homogeneous space
functional level will be presented by a three-dimensional space spanned by {S0, S1, S2}
basis acting on the elements of two-dimensional space of morphologic elements. Because
two components are finalizing the stages of phylo-ontogenetic splitting, Si-linked elements
(subsystems, systems) will be named splitors. These pairs of elements considered as sepa-
rable variables will fill the newly formed hierarchical level (3-dimensional C-module) or
(6-dimensional R-module). Before the system is able to reproduce Si-linked morphological
structures, temporary morphological associations and functional relationships, including
nilpotent patterns, will also be formed.

Between temporary elements, all theoretically possible relations could be created that
may be formally demonstrated by any of M(2,R) matrices used in ODE, where temporary
elements may also play the role of variables. These relationships form a superstructure
linking the current and the next in the hierarchical scale levels. Thus, the formation
of the next to the homogeneous space functional level will correspond to the mapping:
f : R×R→C. Formally, if an operator (matrix) and its related variables (vector-variable) are
to be considered as a single new variable, it will belong to the set of elements representing
functional subsystems of the next level. Thus, a functional hierarchy is being formed, where
the whole (irreducible) functional pattern with its corresponding carrier space will represent
a single variable or character. In other words, if the M(2,R) module is substituted by the
M(2,C) module, then M(2,C) will represent a regulatory structure of the new carrier space
and new irreducible variables for two-element systems and matrix operations on them.

Reciprocal Splitting and Hierarchical Structure of Biologic Functions

A BS is a complex multi-element structure, and because of its complexity the system’s
reproductive mechanisms should presume hierarchy in organizing its structural elements.
The formation of a hierarchical structure seems to be a part of a long phylo-ontogenetic
development.

Phylogenetic tree is an acceptable model of development of species. It is organized
in a sequence of split taxonomic units. Splitting is a characteristic feature of a large-scale
development. Ontogenesis mimics phylogenesis as a stage-dependent process of individual
development; thus, they both follow the same principles of development.

A phylo-ontogenetic tree is also a graph where each branch with its input and output
is represented by a functional system (Figure 8).

The splitting mechanism differentiates the system into two autonomous reciprocal sub-
systems. As a system integrated from two components, it possesses a PNR basis, whereas
each component, due to its autonomy, must also be operated through the functional space
spanned by its own PNR elements. A two-element system of split branches determines
the primary hierarchy between the regulatory structures of differentiated elements and the
integrated system. The progenitor’s functional structure existing in a relatively rudimental
form will be transformed into a two-element system. Thus, the vertical sequence of the
layers of split branches, especially in cases of asymmetric divisions of stem cells, will
explicitly show hierarchy, for instance, between the level of cambial cells (initial branch)
and the next level in a row of differentiated cells (split branches).
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Figure 8. Hierarchical organization of biologic systems and phylo-ontogenetic tree. Each branch is
a self-regulating BS (functional module). Same-colored branches represent differentiated systems
linked by PNR patterns. PNR: Positive feedback; Negative feedback; Reciprocal links.

If a system is viewed as a part of another system, the inner structural elements of
subsystems can be considered indistinguishable. In this case, the system is involved as the
whole undifferentiated element in another, more complex, differentiated, system; structural
(inner) properties of subsystems will be characterized only by input and output as signaling
agents for other subsystems. Signaling agents will form the whole space of a regulatory
network determining an inner functional structure of the integrated system. The inner
structure of the whole system is also formed by functional links reducible to invariant
patterns in any level as PNR base or basis elements. PFB, NFB and RL (PNR) can always be
observed directly, or as enucleated, linearized patterns obtained from the complex system
at each level.

Consider a biologic system with undetermined internal structure, associated with a
branch of a phylo-ontogenetic tree. In this case, a system will only be characterized by
input and output and realize its function by a single operator (a) (scalar), which transforms
the input (x) to the output (ax).

For differentiation, not yet separated morphologically, a two-element system, a in an
orthonormal basis, will be presented by a 2 × 2 in a general configuration matrix over

R, A =

(
µ ξ
ν o

)
. A as a matrix of a second-order ODE represents the simple (linear)

internal functional structure of a BS of two elements. Elements should satisfy the system’s
requirements, i.e., together, they must form a self-regulatory unit. Similar to A diagonal
matrix A′ will have entries obtained as solutions (roots) of the characteristic equation.

λ1,2 = 1/2
[
(µ + o)±

√
(µ− o)2 + 4ξν

]
. A′ will indicate the property of the system to be

presented as two separable subsystems with eigenvalues as input–output characteristics of
split subsystems. Formally, it could be finalized as a direct sum of the operators, dividing
the carrier space into two invariant subspaces. This property can be considered as a
physiologic basis for biologic differentiation involved in a systemogenesis as a program of
individual development towards more complex structures.

To describe mechanisms of hierarchical transformations we should relate outer links
of the split elements with the internal functional structure of a system originating from
the cambial element (branch–progenitor). Two differentiated elements comprise a system
because they originated from the system: a common branch possesses the system’s structure
by definition. Therefore, two differentiated, relatively autonomous, elements form a two-
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element system, which is also an auto regulatory unit of two separable elements. The
system’s structure implies the existence of a 3D space of regulatory patterns between two
elements spanned by PNR base represented by {Si} matrices. Expressed as a system of
two ODEs, a second-order (linearized) operator will determine “infinitesimal” relations
between variables representing main characters or outcomes of the split branches.

The second-order self-adjoint (traceless) operators S over R on the 2D space of biologic
variables V are considered in this case. Because operators are acting on pseudo-Euclid
space, being discussed further, they may have either diagonal or skew-symmetric spectrum
(form) over R. The spectrum of an operator will determine the partition of the space V;
thus, it will tell us whether it may separate the space into two 1D invariant subspaces and
act on each of them independently, or considered operating on a 2D space as irreducible
over R.

On an orthonormal basis, a matrix of an operator S for a two-element system having sep-

arable (not obviously separate) subsystems, has the form A =

{(
µ ξ
ν o

)
: (µ, ν, ξ, o) ∈ R

}
.

The space of the second-order matrices M(2,R), A ∈ M(2,R) is isomorphic to the space of
coquaternions cH:

A↔ q =
1
2

[(
µ + o 0

0 µ + o

)
+

(
0 ξ − ν

ν− ξ 0

)
+

(
0 ν + ξ

ν + ξ 0

)
+

(
µ− o 0

0 −µ + o

)]
.q ∈ cH.

Basis elements of coquaternion are presented as four second-order unit matrices

with entries combined from coefficients of A : 1
2 [(µ + o)

(
1 0
0 1

)
+ (ξ − ν)

(
0 1
−1 0

)
+

(ν + ξ)

(
0 1
1 0

)
+(µ− o)

(
1 0
0 −1

)
]. Thus, a coquaternion q can be associated with the regu-

latory (functional) structure of a two-element system, and A can be written in the equivalent

form A ∼= q =

(
a + d b + c
b− c a− d

)
. The obtained matrix represents regulatory structure of the

system as combination of four basis regulatory patterns. Similarity transformation of A will
present coquaternion coefficients as diagonal or skew diagonal real entries in cases where
the roots of the characteristic equation are complex numbers. For the second-order matrices
over R, only four Jordan canonical forms exist. The roots (eigenvalues) of the characteristic
equation associated with A or coquaternion q are λ1,2 = a ±

√
b2 + d2 − c2.λ1,2 are the

eigenvalues of the similar to q diagonal matrix q′ acting on the simultaneously transformed
basis vectors. New vectors are splitors (eigenvectors) obtained as linear combinations of the
initial basis elements.

For simplicity, we can skip the unit element of coquaternion and leave the imaginary
part provided by the {Si} basis, making q′ traceless (a = 0).

This technique assigns invariant subspaces to scalars (eigenvalues), which can only
be interpreted as the values of the outcomes associated with the subsystems. The internal
functional structure of subsystems remains uncertain, and can only be treated as a black
box for each subsystem.

In order to demonstrate the splitting of each base element and actions on differentiated
subsystems as separate patterns, we have to present their entries as matrix coefficients
associated with the newly formed separable regulatory structures. In this case, coefficients
(the matrices entries) of the initial basis patterns should be transformed and serve as new
coefficients of some independent linear quantities not united under the square root, as in
the expressions for the roots of the characteristic equation.

The following is according to Dirac’s approach in his relativistic energy equation [43].
Consider an equation ±

√
b2 + d2 − c2 = αb + βd + γc, where the left side is the roots

of the characteristic equation. The question is whether and what α, β, γ quantities may
satisfy it. It follows that, if αβ = −βα, αγ = −γα, βγ = −γβ, then for the non-commuting
quantities the simpler expression for the right side of the equation after both sides are
being squared is α2b2 + β2d2 + γ2c2. Moreover, if α2 = +1, β2 = +1, γ2 = −1, then
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the required conditions for the coefficients are obtained. It means that “eigenvalues” for
diagonal elements can be presented not only as scalars, but also as linear combinations of
some quantities with scalar coefficients b, c, d.

In fact, α, β, γ quantities are 4 × 4 Hermit (unitary) matrices:

α = i

 0
(

1 0
0 1

)
(

1 0
0 1

)
0

; β = i


(

1 0
0 1

)
0

0
(
−1 0
0 −1

)
; γ = i

 0
(

1 0
0 1

)
(
−1 0
0 −1

)
0


These matrices show that 1D operators with scalar entries for each of two differentiated

subsystems are equivalent to the second-order operators (2 × 2 matrices) whose entries
are same scalars as for previously considered, not differentiated, functional patterns or
base elements. It is easy to see that obtained 4 × 4 matrices also have 2 × 2 block-matrix
structures isomorphic to {Si} basis elements. Therefore, the hierarchy of a regulatory
structure of a BS is provided by PNR invariant patterns applied to a structural module,
which, in this case, includes two hierarchical levels. Together or separately, the levels
characterize a BS as a universal structural and functional module (see Appendix A).

There are some examples of the uniformity of regulatory elements comprising a
hierarchical functional structure of gastrointestinal (GI) and cardiovascular (CV) systems.
These elements are PNR invariant regulatory patterns coordinating motility and circulatory
functions of these systems. Physiologically, these patterns can be reduced and viewed as
two-element graphs where elements are anatomic segments or organs.

The GI tract consists of organs and segments providing digestion, absorption and
propagation of the content down the tract until it is evacuated from the body. Organs
(for instance, large and small bowels) and their anatomically and functionally separated
segments have accumulation and evacuation components as parts of their function, which
are regulated by PNR circuits. Within the intestinal segments, smooth muscle contractions
and relaxations occur in an alternating fashion with corresponding changes in the muscle
tone. This mechanism includes NFB loops related to the basic flow pattern regulating the
filling–emptying function [32,34].

Movements of the content from one segment to another are mainly regulated by the
RL mechanism. Reciprocal interactions of neighbor segments are provided by contractions
of proximal smooth muscles and relaxation of the distal muscles occurring simultaneously.
On the macro level, it can be observed as peristaltic waves. The motility function of the
GI tract is also regulated by reciprocal interactions (through the neuronal web) between
distantly located, differentiated organs. Gastro-colic reflex is a classic example of a hier-
archical functional structure of GI tract provided by reciprocal interactions (RL) between
the distant organs, the stomach and the large intestine [44]. It follows from the existing
data, in that the division of the GI tract on segments with specialized function (differen-
tiation) is accompanied by invariant functional patterns, namely, reciprocal mechanisms,
coordinating function inside and between hierarchical levels of differentiated elements. It
points to reciprocal splitting as a leading mechanism of differentiation during individual
development.

The same PNR mechanisms regulate blood circulation provided by a cardio-vascular
system (CVS).The heart as a blood pumping machine phylogenetically was divided onto
two reciprocally functioning parts- atria and ventricles, both having accumulating and
emptying functional components. However, the left atrium collects oxygenated blood,
whereas the right atrium is venous, thus preparing the right ventricle for making efficient
contractions to pump the blood through the large area occupied by the alveolar–capillary
system for CO2–O2 exchange. Similar advantages of functional and anatomical splitting for
the large circle give collaboration with the left heart chambers. Collection of the blood in
the left and right atria during diastole and pumping it into the ventricles make contractile
forces of the ventricles more efficient due to Starling’s law: the more the heart musculature
is stretched, the stronger the contractile forces are. The mechanism of Starling’s law is
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analogous to the regulations of the filling–emptying cycles of intestinal segments and
operated mainly by NFB.

There are also neuronal and hormonal regulatory pathways linking the heart and
arterial vessels through the NFB and PFB loops and providing the organs with adequate
blood supply. For example, during physical activity, striated muscles demand more oxygen
that, in turn, through the NFB loops, increases the rates of heart bits and increases arterial
blood pressure caused by squeezed vessels. Another example is a centralization of blood
circulation accompanied by contractions of peripheral arteries and increased heart rate in
cases of severe blood loss. Emotional conditions increase the heart rate which, through
the PFB loops, may increase it further; thus, a vicious circle can be formed. This defence
mechanism may cause palpitations.

Functional differentiation of the systems occurs simultaneously with the integration
of functional components.

The existence of reciprocally related anatomic branches of CVS and the GI tract is a
result of morphological and functional differentiation. For example, the formation of a
specialised chamber with enforced musculature, a blood pumping machine, undergoes fur-
ther phylogenetic splitting into the atrium and the ventricle. The existence of anatomically
distinguishable reciprocally related specialized parts of the GI tract (oesophagus, stomach,
intestine) confirms phylo-ontogenetic splitting as a means of developing functionally more
efficient and stable integrated structures during evolution. The division of the whole
system into two reciprocal parts is provided by the formation of NFB and PFB regulatory
mechanisms. For example, atriums and ventricles reciprocally related to one another also
have NFB links with the nervous and endocrine systems controlling preload. Ventricular
function also depends on afterload and is also regulated through the NFB loops within the
arteries of the large circle.

The filling–emptying cycle of an intestinal segment includes NFB loops as an addition
to the RL regulatory mechanism. The action of PFB patterns may be seen in increasing
the strength of the smooth muscle contractions in response to the increase in the muscle
tone [32]. The PFB mechanism also regulates rectal emptying, when the first evacuated
portion of stool initiates the next, more strenuous, contractions of the rectum. At the
same time, rectal contractions occur simultaneously with the relaxations of the smooth
and voluntary sphincters of the anal canal. These two subsystems also have reciprocal
relationships (RL).

These examples indicate the universality of physiologic functions of PNR patterns
(PFB, NFB and RL) and distinguish them as the core regulatory structures presented in
integrated anatomical systems at differentiated (hierarchical) levels.

6. Coquaternion as a Model of Inner Functional Structure of a Biologic System

In reality, a BS is not an isolated functional unit: PNR, considered as a basis for the 3D
space of regulatory elements, describes the inner functional structure of the autonomous
biologic systems in ideal conditions not affected by external (environmental) forces.

A special linear Lie group SL(2, R) and Lie algebra sl(2, R) are adequate algebraic
structures to give an analytical description of behavior of BS in idealized conditions. sl(2, R)
provides infinitesimal characteristics of functional elements of BS and can be considered
as approximation and a convenient toolfor investigating the complex structure of biologic
objects.

Lie algebra sl(2, R) is an additive group, and scalar quantities may appear as a re-
sult of multiplication of the group elements. Coquaternion contains real and imaginary
parts and is closed as an algebraic structure under the multiplication of elements of a Lie
algebra sl(2, R)= span{S0, S1, S2}, whose basis is also an imaginary coquaternion basis
(Table 1) [45–49].
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Table 1. Coquaternion q = a1 + bi + cj + dk multiplication.

x 1 i j k

1 1 i j k

i i −1 k −j

j j −k 1 −1

k k j i 1
ij = k, ji = −k, ki = j, ik = −j, kj = i, jk = −i, ii = −1, jj = 1, kk = 1, ijk = 1. Coquaternions are four-element structures
over R equipped with {1, i, j, k} basis. They form four-dimensional vector space over R. Multiplication of basis
elements shows coquaternions as closed algebraic structures.

Coquaternion cH, is a set of elements q = a1 + bi + cj + dk, where a, b, c, d are real
numbers R. Elements of a coquaternion form a four-dimensional real space. Basis elements
of a real part of coquaternion are represented by an identity matrix 1. The imaginary
part {i, j, k} of four basis elements {1, i, j, k} is presented by the matrices S0, S2, S1,
respectively.

Quadratic function 〈, 〉 on covector q′ = {a , b, c, d} gives an isotropic quadratic form
〈q′, q′〉 = a2 + b2 − c2 − d2. It provides the space in which coquaternions act with indefinite
metric and a signature (+ +−−). Due to two negative signs of the elements of the form,
the metric of the corresponding space is indefinite of index 2. The value of the form can
be either positive 〈q′, q′〉 > 0, negative 〈q′, q′〉 < 0 or zero 〈q′, q′〉 = 0, which is formally
analogous to spacelike, timelike and lightlike vectors, respectively, with regard to the indefinite
metric R4

1(−+++) of Minkowski’s spacetime and terminology used in physics [37,38].
The scalar product on this space with the signature (4,1) determines the Lorentz manifold
and one of three causal characters to which the physical vectors belong.

Due to the indefinite metric of BS, three families of hypersurfaces will pack pseudo-
Euclidean space R4

2—one sheet of hyperboloids for positive values of quadratic function,
two sheets of hyperboloids for negative values and doublecones for vectors withzero
lengths.

There is no natural correspondence with the time coordinate in Minkowski’s spacetime
and any of the coordinates in pseudo-Euclidean space R4

2 of biologic objects. In should
be mentioned that terms “timelike”, “spacelike” and “lightlike” were initially used for the
vectors applied to the physical systems, and as the names for vectors characterizing BS, they
have no biologic sense. The space-time of the physical models and the space of biologic
systems are the objects of different nature. Substantial feature of the metric of biological
objects is its indefinite character and, more importantly, the signature (2, 2), having two
positive and two negative components.

6.1. Indefinite Metric, Geometry of a Functional Core and Entropy of a Biologic System

It is important to mention that the metric signature (2, 2) of the coquaternions corre-
sponds to the internal functional structure of biologic objects obtained in a natural manner
through the intrinsic properties of S0, S1, S2 matrices expressed by a determinant function
detSi : sl(2, R)→ R . It may be recalled that S0 denotes NFB, S1 RL and S2 PFB.

Coquaternion representation of biologic objects [16] endows a BS with the property of
a closed functional structure due to the correspondence with the algebraically closed set of
coquaternions.

This provides a BS with the additional base element—a unit vector E. Its properties
are determined by the non-traceless identity matrix that functionally differentiates it from
the imaginary part of the coquaternion. It is a divergence-positive (not a divergence-free)
element. Now, each element of the expanded basis of a BS {E, S0, S2, S1} represents
an element of a coquaternion basis {1, i, j, k}, and is associated with a set of one-forms
h(w, x, y, z) as coordinates of the basis elements of the vector S = wE + x S0 + y S2 + z S1.
(Figure 9). Thus, basis functional patterns contribute to the absolute value and sign of the
associated BS quadratic form on covectors: h(w, x, y, z) = 〈h, h〉 = +w2 + x2 –y2–z2. It
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shows that coquaternion representation induces indefinite metric in (autonomous) biologic
objects.

Figure 9. Integration of basis patterns (PNR) in a whole functional structure of a biologic system.

Due to the nature of the indefinite metric signature (2, 2) in BS, it cannot be interpreted
in terms of space–time curves and velocities used for descriptions of the physical objects.
The entropy of the system will be considered for reading the metric structure in terms
of contribution of the components of the quadratic form to the energy status of biologic
objects. Entropy will also be used to emphasize two directional metabolic processes of
BS as self-regulatory reproducible units. For instance, it will endow apoptosis and cell
divisions components of CRC with the additional structural and functional properties.

In the context of metric function, the term entropy [50–52] will be used as a quantitative
measure of functional and morphological structural characteristics leading either to the
system formation (negative entropy) or destruction (positive entropy). The values of four
components of the quadratic function will show energy contributions of each of the basis
patterns in the form of positive or negative entropy. The sign of the elements will also
indicate direction of metabolic processes towards the accumulation or consumption of the
energy.

For example, catabolism as a programmable destruction of a biologic tissue increases
entropy, whereas anabolism, the creation of the structural components of the system,
decreases the total entropy of the system. Functional disturbances (disorders) affecting
the system’s outcome, physical destruction of morphological elements of the system, etc.,
will also increase entropy. Entropy can also be a measure of pathologic, non-systemic links
that predispose the formation of chimerical and defective elements. Therefore, any process
leading to destruction of the normal structure will increase the positive entropy of the
system. Thus, disease, metabolic disturbances, changing the balance between anabolism
and catabolism towards the latter, and any functional activity of cells or tissues, leading
to the dissipation of energy used for biochemical reactions, will also increase (positive)
entropy.

The entropy of a BS may have a negative sign (negentropy) that characterizes the
system’s formation and development. Even at the stages of functional decline, the system
is still capable of renovating morphological elements and partially maintaining their func-
tions. Negative entropy, for example, is related to the growing and developing organisms
whose functional systems are improving their adaptive properties. All proliferation ac-
tivities of cells directed to the reproduction of normal (!) morphological structures after
apoptosis contribute to negentropy. Balance between positive and negative entropy will be
determined by the contributions of the two opposite groups of physiologic processes to
its total value. For example, the consumption of food requires energy for digestion, and
it increases entropy. However, the energy used for digestion is overweight by potential
energy of consumed elements used for the maintenance of normal functions and anatomical
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structures (contribution to the negative entropy). A two-directional cell renewal process
depends on how the system regulates its metabolic function combining two opposite
processes—catabolism (destruction) and anabolism (formation). Thus, the sum of positive
and negative components (total value) will tell us about the system’s status and how the
balance between system destruction and formation is maintained.

〈h, h〉 = +w2 + x2 –y2–z2 is obtained from the functional structure of a BS quadratic
form, and has two positive and two negative components, which are the signs of the
determinant values of the matrices of the base elements, E, S0, S2, S1. The values of
four summands and their signs indicate the amount of energy that each component can
contribute, if considered as an isolated subsystem.

E represents a scalar part of a coquaternion. It adds a positive value +w2 to the
quadratic form. A non-zero trace and positive value of detE implies a permanent increase in
positive entropy related to its actions. Considered as a part of the inner functional structure
of the system, a functional contribution of E is determined by a non-reversible, dissipated
energy amount coming from the permanent energy input needed for feedback metabolic
loops of the base patterns. Therefore, its actions under the system’s conditions reflect
the forces of the internal environment created by the structural elements. Its functional
contribution is also determined by the impacts of the physical environment, which destroys
a biological tissue directly in a natural way. A BS adapts to the external environment (forces)
by intrinsic mechanisms that initially stream metabolism in a way when the system builds
its components (anabolism dominates catabolism) until it reaches mature stages, and after
that from the mature stages up to the regression it only maintains its own structure through
the use of self-renewal loops. A functional meaning and contribution of this component
is based on the balance between permanently acting destructive forces of the external
environment and non-reversible “heat” due to the system’s functionality maintaining
mechanisms.

S0 (NFB) has positive value +x2, and, formally, it contributes to the positive entropy.
NFB is considered as a main regulatory element optimizing the functions of other members
of the “imaginary” family, as well as elements of a carrier space involved in NFB relation-
ships. Looped regulatory structure acts on two-dimensional invariant spaces. NFB only
consumes energy and does not create new morphological elements. From this context it is
assumed that NFB increases positive entropy.

S2 (PFB) corresponds to the negative element –z2 of quadratic function. It accelerates
functional processes and consumes much energy, but, in contrast to NFB, has creative
features. PFB generates extreme conditions helping the system to transform its conditions
to the higher energy and functional levels. It could possibly feed NFB with the additional
energy [26].

S1 is a basis element representing RL. It is presented in the quadratic function as
an element with negative value –y2. The main functional feature of RL is the recipro-
cal regulation of subsystems. Overall, it splits a carrier and functional spaces into two
autonomous subspaces, so that one-dimensional subspaces can be regulated by its own op-
erator. Each subspace considered as an independent branch for further development makes
structural and functional differentiation a substantial factor of evolution. RL is a major
system-forming functional pattern determining morphologic and functional development
of cells and tissues. Similar to PFB, RL facilitates transformations of potential energy and
conserves it in the newly formed functional and morphological structures. The amount of
potential energy conserved in specialized biomolecules, anatomical structures and links
overweighs the amount of the energy required for performing a RL function itself.

The functionality of BS depends on the potential energy obtained from biological
substrates for structural elements of a BS and its functions. The difference between available
sources of energy and natural processes resulted in a decay of biological tissues reflecting
Gibb’s law

G = N − TS

G—available energy accumulated by the system;
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N—total energy from the available sources processed by the system; this amount is required
to perform system’s actions and the maintenance of structural and functional elements of
BS;
S—entropy of the system reflecting not reusable portion of energy dissipated from chemical
reaction;
T—temperature.

As it was mentioned before, the values of main biologic variables fluctuate around
physiologic constants. Equalizing the flows of energy should also follow the principles of
regulations of BS according to which anabolic and catabolic states will fluctuate around
equilibrium. Thus, fluctuations reflect the system’s actions towards neutralizing excessive
anabolic and catabolic flows.

Assuming that the value of quadratic function is associated with the amount of avail-
able potential energy of the system (having positive and negative entropy characteristic),
and this amount is determined by the energy being contributed by the components, a
hypothetical equation is formulated:

+ w2 + x2 − y2 − z2 = −υG (1)

G—available energy accumulated by the system; υ—coefficient; w, x, y, z are one-forms
associated with coquaternion representation of BS considered in Section 6.1.

The minus sign of the right-hand part reflects the suggestion that potential energy
accumulated in the system (the sum of negative and positive components on the left) is
equal to the consumed energy (–N) used to build and provide functionality of the system
plus dissipated energy (+TS). Thus, the system is considered to be conservative.

The 1-forms {w, x, y, z} of the vector S = wE+ xS0 + yS2 + zS1 are coordinates of the
functional base elements of the system. Each condition of the system can be characterized
by a convector h = (w, x, y, z), w, x, y, z ∈ R as a function of coordinates in a dual to
Th(expS) cotangent space T∗h (expS). Points in the hypersurface w2 + x2 − y2 − z2 = R =
const are equipotential for the system. Corresponding to the covector energy of the system
may take positive, negative or zero values due to the isotropic quadratic form.

It is known that each phase trajectory of Si elements (see Figure 6) is the same energy
level curve of the described physical system. The same character of phase portraits of the
base biologic patterns as in physical systems may provide biologic systems with behavioral
features similar to physical objects, depending on the energy flow pattern associated with
Si.

Let 1-forms {w, x, y, z} determine a parameterized smooth curve ϕ : t→ ϕ(t); t ∈ R;
ϕ(t) = (w(t), x(t), y(t), z(t)) in R4

2. Traveling along the curve will change the values
of the potential energy of the system G, except when the curve lies in the surface of the
equipotential points G = c (constant).

If h + dh is infinitesimal displacement from h and ∆h = (∆w, ∆x, ∆y, ∆z) is small
enough, ∆h ∼= dh, then Ah = h + ∆h is a new systems condition obtained by the displace-
ment of h, resulting in a new vector Ah in T∗h (expS).

In Euclidean space Rn, the potential energy U of the system x (mathematical pen-
dulum) can be defined by a matrix of the symmetrical operator A′ and positive definite
identity matrix of quadratic form 〈, 〉, such that U = 1

2 〈A′x, x〉, x ∈ Rn [39].
In pseudo-Euclidean space R4

2, which is considered a carrier space for BS, potential en-
ergy, according to (1), can also be defined by quadratic form associated with some operator
A, GA = k〈Ah, h〉; k-coefficient; in this case a matrix of quadratic form is a diagonal matrix
g = diag(1, 1,−1,−1) of the metric signature (+ +−−). h = (w, x, y, z)—covector of
the system’s condition.

For simplicity, A = diag(a1, a2, a3, a4), ai > 0, so that in orthonormal basis h =
we1 + xe2 + ye3 + ze4, GA = k

(
a1w2 + a2x2 − a3y2 − a4z2) and coefficients ai will change

the shape of a geometrical image of GA along the principal axes, leaving the metric signature
unchanged.
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GA represents the potential energy of the system related to the action of operator A and
the system will respond to this action depending on the ability to maintain an equilibrium
state.

It seems to be a genetically programmed feature of a BS also to maintain its own
functional characteristics which formally related to the (metric) structure, and which is
only possible through the balancing of energy capacities and capabilities of the components
to perform the actions. The ability of a BS to generate the inner forces directed towards
neutralizing the factors which caused functional changes (deviations) can be expressed in a
dynamical equation:

..
h = −grad〈Ah, h〉 (2)

It falls into the system of four second-order ODE (k = 2)

..
w = −a1w (2a)

..
x = −a2x (2b)
..
y = +a3y (2c)
..
z = +a4z (2d)

The phase curves of the first two Equations (2a) and (2b) are periodic motions having
elliptic trajectories on the phase plane, and the second two (2c), (2d) represent hyperbolic
rotations.

6.2. Geometric Structure and Images of a Biologic System: Balance between Negative and Positive
Entropy; Prevalence of Catabolic Processes (Positive Entropy) in Cancer

On an orthonormal basis {1, i, j, k} = {E, S0, S2, S1}, consider a coframe of normalized
1-forms (denoted by the same letters) as a coordinate system oriented along the principal
axes of the quadratic form w = w(t), x = x(t), y = y(t), z = z(t). The potential energy
of the system will depend on the values of coefficients ai of the elements of the quadric
GA
k = 〈h′, h′〉 =

(
a1w2 + a2x2 − a3y2 − a4z2). Each component will contribute separately.

Therefore, coefficients applied to the elements of quadratic form will change the values of
orthogonal coordinates and shapes of corresponding images of quadrics. Topology of the
manifolds representing geometric images will not change due to the “undisturbed” metric
signature (2, 2). This is quite an idealized model which will help to gain insights into the
basic mechanisms of the regulation of normal systems.

Normalized expression of potential energy 〈h, h〉= s(w, x, y, z) =
(
w2 + x2 − y2 − z2);

s is a R4
2 surface (four-dimensional hyperbolic paraboloid) which will be projected in R3.

First, consider s = 0. It corresponds to the surface, which splits the R4
2 space on sub-

spaces corresponding to positive and negative values of the quadratic form. Physiologically,
it can be interpreted as conditions when neither catabolism (s > 0) nor anabolism (s < 0)
are the leading metabolic process. Let x̃ = x

w , ỹ = y
w , z̃ = z

w ; w(t) is also considered, slowly
increasing within a short time interval, so that w(t) ∼= const., and we could ignore the effect
of its change on other variables. The result of projectivization is a hyperboloid of one sheet
(Figure 10).

− x̃2 + ỹ2 + z̃2 = 1 + l(t). (3)

Formally, the right side of this equation should contain the dissipation of the energy
(TS), from (1) which is added as the l(t) > 0 parameter to the right side of (3). Its
action increases the positive values of the quadric; thus, the required positive values for
anabolic components as the threshold condition for the equilibrium s = 0 are increased. For
simplicity, further in the text, l(t) can be omitted or considered depending on the context.
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Figure 10. Quadratic form as an expression for potential energy associated with a biologic system.
Three-dimensional surfaces are projections on R3.

In (3), R4
2 was projected in 3D manifold along the w axis. It displaces the equilibrium

towards positive values, so that the lowest level of negative entropy component to obtain
equilibrium becomes +1. Equilibrium conditions for the four-element system (s = 0) after
projectivization will correspond to hyperboloid of one-sheet.

Vertical and horizontal sections of hyperboloid (z̃ = const., ỹ = const., respectively)
will further restrict the image showing two branches of hyperbolas. The vertical sections
(x = const) are ellipses (could be circles) related to the x̃ coordinate level. Above and below
two asymptotes (or outside a double cone), there are areas where anabolism is dominating
(Figure 11).

Figure 11. Positive and negative values of quadratic form and related quadrics.

Due to the assumption
..
h = −grad〈Ah, h〉 (2) equivalent to the system of four dif-

ferential Equations (2a)–(2d), it is easy to see that x̃(t) will perform periodic motions
(fluctuations) (2b), whereas ỹ(t) and z̃(t) will monotonously grow (2c, 2d). On the other
hand, the expression for the energy (3) shows that x̃(t) and ỹ(t) and z̃(t) are reciprocally
related due to opposite contributions to the values of the quadratic form. Reciprocal re-
lations between x̃(t) and ỹ(t) and x̃(t) and z̃(t) would restrict the degrees of freedom of
corresponding variables in (2b–2d).Therefore, two considerations will determine the sys-
tem’s behavior, -dynamical equations (2a–2d) and equilibrium conditions between positive
and negative entropy components (s = 0).

Sections of the hyperboloid corresponding to z̃(t) = const. and ỹ(t) = const. are hyper-
bolas which are geodesics of a hyperboloid of one sheet (3) +ỹ2− x̃2 = 1− z̃2;

(
1− z̃2) > 0
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and +z̃2 − x̃2 = 1− ỹ2;
(
1− ỹ2) > 0, or geodesics of a two-sheet hyperboloid,

(
1− z̃2) <

0,
(
1− ỹ2) < 0 (Figure 12). Due to s = 0, the surface it determines in R4

2 is a double cone,
and obtained hyperbolas are geodesics of this surface.

Figure 12. Sketch of fluctuations of the energy levels (entropy of the system) associated with quadratic
function <h,h> = w2 + x2 − y2 − z2. Dominance of the system-formation processes (negative entropy)
shows fluctuations of the graph above and below asymptotes (blue), while dominance of the system-
destruction processes (positive entropy) corresponds to the closed curves between asymptotes (red).

On the
(

X̃, Ỹ
)

plane, when the z̃ = 0 energy trajectories (3) are hyperbolas +ỹ2− x̃2 =

+1. The curves ỹ = ±
√

1 + x̃2 are points of equal energy levels of the system restricted
to the two variables. x̃(t) is a bounded periodic function. The maximum level of ỹ(t)
is achieved when x̃(t) reaches its highest value. This is not a steady equilibrium point
for ỹ. The upper branch is a constant speed parametrization curve through the point
p(t) = (x̃(t), ỹ(t)) = sinhtx̃ + cosh tỹ [37].

Due to periodic trajectories of x̃(t),ỹ(t) will demonstrate oscillations bounded by per-
missible energy levels (Figure 12). The lowest ỹ(t) value is limited by the initial conditions
on the energy level, which in our case is +1. If l(t) parameter in (3) is not slowly increasing
in time and cannot be ignored, it will cause a fast displacement of the ỹ(t) trajectory toward
the asymptotes.

Similar characteristics of curves and their behavior could be demonstrated as well on

the
(

˜
X, Z̃

)
plane (ỹ = 0).

The constant speed parametrization curve on the plane
(

Ỹ, Z̃
)

, (x̃ = 0) through the

point p′(t) = (z̃(t), ỹ(t)) = cos tz̃ + sin tỹ is a closed trajectory (circle). This geodesic
being in the subspace of a positive definite metric, shows that the energy contributions are
bounded, and its total value is the sum of the components related to z̃(t) and ỹ(t) variables
having a similar metabolic nature.

Second, s < 0. Changing the zero value of the quadric s towards negative ones does not
make a qualitative difference in the character of the obtained curves. It will only transform
the lowest and highest values of the ỹ(t) variable above the zero point.

Next, consider s > 0; following the same technique, the result of projectivization is

− x̃2 + ỹ2 + z̃2 = r− 1 (4)

Due to arbitrary r > 0, there are three possibilities when r− 1 > 0, r− 1 < 0, r− 1 = 0.
The first one repeats the scenario discussed previously.

Let (r− 1) = −1. This is a hyperboloid of two sheets (Figures 11 and 12). Energy

curves on
(

˜
X, Ỹ

)
plane (z̃ = 0) are hyperbolas +ỹ2 − x̃2 = −1. Similar to a previous case,

the relations between catabolic x̃(t) and anabolic ỹ(t) components are shown in time. Now,
all hyperbolas are “inside” the branches of asymptotes; therefore, the process corresponds
to the conditions when catabolism overweighs anabolism or, in other words, the destruction
of the system dominates its formation. Depending on the ways in which the components are
presented, functional relations are shown as closed curves (ovals or circles) or fluctuations
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(periodic function) of the catabolic component around the x̃ axis (Figures 12 and 13). In
fact, a comparison with the previous scenario gives similar images. Only now, the process
is centered in the area bounded by asymptotes along the x̃ axis.

Figure 13. Behavior of the energy (entropy) components associated with negative and positive values
of quadratic function <h,h> = w2 + x2 − y2 − z2.

Similar to a previous case, the
(

X̃, Z̃
)

plane (ỹ = 0) gives similar trajectories and
behavior.

The third possibility, r− 1 = 0, leads to the expression

− x̃2 + ỹ2 + z̃2 = 0 (5)

This is an expression for a double cone, which separates positive and negative val-

ues of the quadric. On the plane
(

˜
X, Ỹ

)
, (z̃ = 0), there are four asymptotes and a zero

point satisfying +ỹ2 − x̃2 = 0; ỹ = ±
√

x̃2. Similarly for
(

˜
X, Z̃

)
, (ỹ = 0),+z̃2 − x̃2 = 0;

z̃ = ±
√

x̃2.
As it was mentioned before, regulations of metabolism should follow the same princi-

ples according to which balancing anabolic and catabolic processes will result in fluctuations
in metabolic states around equilibrium, reflecting the system’s actions towards neutralizing
excessive anabolic and catabolic flows.

Expression for the energy of the system (1) does not contain conditions when metabolism
changes its directions from anabolism to catabolism and vice versa. Equation (2) also does
not show it explicitly. It is logical to assume that the energy conditions of the systems
undergo fluctuations such as practically all physiologic parameters of BS do. Modeling
conditions applied to the system should, in this case, change the right side of (1) so that
total available energy will, first, monotonously decrease, passing by the equilibrium until
the lower acceptable level is reached. After that, the process reverses and returns to the
initial point. Technically, the branches will first hold closer to the asymptotes, and after
passing zero point and a double cone, the surface splits into two hyperboloids of two sheets
which will initially move apart from one another; after reaching the threshold level, the
process will move in the opposite direction (Figure 14).
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Figure 14. Transformation of hyperboloid of one sheet to hyperboloid of two sheets and vice versa.

Provided scenarios demonstrating relationships between system formation and de-
struction processes can be applied to the CRC whose functional structure consist of system
destruction (apoptosis) and system formation (cell division) components.

7. Results

In [16], the transformation of the RL pattern (S1) into the “environmental” matrix
(E), similar to the real part of coquaternion, was related to the functional changes in BS
associated with malignant transformations of normal cells. This transformation causes
change in the metric structure of a normal BS: (+ +−−)→ (+ ++−) . It was not clear,
though, how the coquaternion structure as a functional module of BS is inherited and
distributed between daughter elements after splitting the characters of BS during develop-
ment, and which other functional elements provide hierarchical links between cambial and
differentiated levels after splitting.

In the scope of this work, a question arose, namely, how two main metabolism com-
ponents, anabolism and catabolism, are related to the base patterns providing structural
wholeness of BS. This question is directly related to one well-known metabolic feature of
cancer, which involves switching the balance of normal biochemical pathways towards the
activation of anabolic processes of malignant tissues, and bypassing anabolic energy and
increasing the catabolic rates of normal structural elements of the system. To answer these
questions, the dynamics providing the balance of the main energy components contributing
to the viability of a BS were described.

The reciprocal link (RL) is a main functional pattern linking split characters during de-
velopment. Considering the cambial (progenitor) element as a functional system (module)
with a coquaternion structure, it was shown that daughter elements inherit the coquater-
nion structure and are linked to the progenitors by 4 × 4 complex matrices isomorphic to
the base elements of a functional module. (For simplicity the real part of the coquaternion
structure was omitted.) The two-element “horizontal” structure of a functional module (a
BS) being isomorphic to the two-element “vertical” structure of a BS clearly demonstrates
the invariant character of functional links on horizontal and hierarchical (vertical) levels.

Obtained hierarchical links clarify the role of NFB linking cambial and differenti-
ated levels as a functional pattern initiating and activating the proliferation of immature
(malignant) cells following the deterioration of the RL structure.

The metric structure of a functional module provided by isotropic quadratic form
was associated with the energy contributions of its components. By analogy with physical
processes, quadratic functions of elements were considered as having entropy features
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related to the system formation and destruction processes. Thus, the value of the quadratic
form was related to the domination of anabolic or catabolic processes. The physiological
property of the system when returning deviated conditions to their equilibrium states was
used in the formulation of modeling conditions regulating the system’s behavior. Anabolic
and catabolic trajectories were shown as oscillations of the main contributing variables.

In case of domination of the system-formation processes related trajectory was mimick-
ing geodesics of one-sheet hyperboloid until restricting actions from its metabolic counter-
part resulted in the slow reversing the changes in initially increasing values of the variable.
Thus, in time this process was shown as fluctuations bounded by the initial conditions.
When the system-destruction processes are dominating, trajectories are geodesics of a
two-sheet hyperboloid oscillating along the axis corresponding to the system-formation
variable. Similar to a system–formation case, opposite actions of a metabolic counterpart
will slowly reverse the process to the opposite.

The interpretation of the trajectories demonstrated in Figure 12 is as follows: when
anabolic states and negentropy processes are dominating the trajectory of the system‘s
behavior are above the asymptotes of the equilibrium conditions. It requires some efforts
from the RL and mostly PFB elements moving conditions of the system towards higher
energy (negentropy) levels. Despite the environmental forces and naturally growing
positive entropy related to the decay of biologic tissues and moving the system (inclining
the trajectory) inside the area bounded by asymptotes and towards the domination of
destructive processes, regulatory mechanisms of the normal system will be able to move
the conditions and trajectory of the system through asymptotes towards anabolic states.

Although it was not shown explicitly, physiologic requirements dictate the necessity
of interchanging of the anabolic and catabolic states in time, which could be demonstrated
as fluctuations along the equilibrium surface of a double cone.

After the transformation of the reciprocal base element, the RL metric structure
(+ ++−) still possesses indefinite properties because of the remaining negative element
related to the PFB. In all considered scenarios, changes in the metric signature toward
increasing the number of positive components eventually will cause the inability of the
system to compensate for destructive processes and increase negentropy to the level needed
to maintain the normal system’s structure. On the other hand, the remaining systemic
properties seem to be able to provide malignant tissue with enough energy required for
growth. The mechanisms compensating for the flaws of the reciprocal interactions include
NFB between cambial and differentiated levels. The obtained results show that the two-
level hierarchical structure is supported by functional patterns isomorphic to the base
patterns regulating the internal structure of the system. Therefore, the functional hierarchy
resulting from the maturation of cambial cells is also formed and regulated by coquaternion
elements. Thus, coquaternion can represent a functional module as a structural basis of the
organization of BS as a hierarchical structure.

Dynamical changes in the conditions of the system related to the transformations
of the elements determining metric structure reveal fluctuations in the conditions of the
system considered as a normal physiologic reaction on intrinsic and extrinsic factors by
adjusting anabolic and catabolic flows of energy required for maintaining the viability of
the system.

The main structural characteristic of the steadiness of the system is a metric signature
(2, 2). Until the metric is preserved, the system, for instance, a biological cell, is able to
perform its function determined by the sequence of strict morphologic and biochemical
changes forming the CRC.

Changes in the metric structure of a functional module caused by transformations of
the base functional elements, namely, RL and PFB, into the environmental element (E′) will
raise the threshold for the minimum negentropy level required to maintain equilibrium
and the viability of the system.

For example, consider the changes in the metric structure caused by the transfor-
mation of the RL base element S1→E′. A functional structure of the deteriorated sys-
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tem will correspond to the new vector S′ = wE + xS0 + yS2 + k E′ and quadratic form
s′(w, x, y, k) =

(
w2 + x2 − y2 + k2). An alteration of the S1 base element linked to the z

variable responsible for the increase in negentropy will cause changes in the sign of the

coefficient in (2d) so that it becomes
..

w′ = −a4w′ (2d*), and together with (2b),
..
x = −a2x

and (2c)
..
y = +a3y it will determine a one-sheet hyperboloid as a surface corresponding to

the equilibrium conditions of the newly formed quadric whose metric became (+ ++−).
It is easy to see that the obtained system will demonstrate an increase in the threshold of the
required negentropy on the +w′2 value to equilibrate system formation and the destruction
processes. Similar metric changes can be caused by PFB transformation to either NFB or E
elements.

In these scenarios, a change in the metric signature would cause changes in metabolism,
and despite the attempts to compensate the structural transformations, eventually catabolism
will overweigh the anabolic reactions; being preserved, “intact”, subsystems responsible
for their own functions and links with other subsystems will work to compensate for the
lack of response from the recipients.

It follows from the obtained results that RL–NFB interactions play a key role in
functional and morphologic adaptations following metabolic changes. Transformations of
RL in a way that it loses its split function led to a disbalance between anabolic and catabolic
processes towards the latter. Clinically, it is manifested as tissue destruction caused by
compensatory proliferative activity of cells of the cambial level resulted in synthesizing
of malfunctioning (anaplastic) cells. Eventually, it causes active bypassing of the energy
required for normal tissues.

The deterioration of base elements of a functional BS is related to scenarios when any
of the Si base elements are replaced, omitted or excluded from the system and, formally,
cH structure. It means that the basis physiologic mechanisms and matrices related to them
became singular. A is singular, if det(A) = 0. It reduces a 4D space of cH to 3D with
uncertain (algebraic) structure. From the possible changes it follows that the correspond-
ing linear spaces: span{E, S0, S2}, span{E, S0, S1} and span{E, S1, S2}, lose functional
wholeness or systemic mechanisms of regulations. Compositions of the remaining base
elements resulting in a singular element will be modified or eliminated from metabolic
pathways creating atypical morphologic structures and non-systemic regulatory mecha-
nisms. Morphologically and functionally related “conjugates” (splitors) of deteriorated
“systems” will also be affected due to the pathologic regulatory structure represented by
singular operators (matrices).

On the other hand, being involved in a network with other functional systems, a
deteriorated system not being able to send adequate signals about its current conditions,
will instead receive the activating stimuli (positive input) due to the negative feedback
signaling the lack of its output. Negative feedback from the elements at the malfunctioning
level is a major regulatory pattern between cambial and differentiated levels. Despite a very
simplified scenario, the result of NFB regulation will be a stimulation of malfunctioning
cambial elements which did not reach the differentiated level of “reciprocal splitors”, but
instead were involved in remaining self-reproductive renewal mechanisms linked to DNA.

8. Discussion

This work is based on algebraic and geometric approaches to the structural changes in
base patterns of a BS which affect functional interactions between subsystems in general
and can be linked to the deterioration of normal architecture and functions of the system.
Due to the general structural and functional changes related to them, pathologic deviations
can be associated with the unique biologic phenomenon of malignant transformations.

A BS is a hierarchical functional structure. Each hierarchical level is presented by a
functional core as an inherited component and adjoining functions (not inherited) as a part
of adaptation of the system to the environment. In the longer time scale, adjoining functions
(functional superstructure) are responsible for the process of formation of characters, which
will be encoded in chromosomes as a core, basis functional patterns determining the
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characteristic features of species. In ontogenesis, the core functions determine the genotypic
properties of individuals and the system’s longevity through the cell renewal cycle (CRC).
CRC restores a functional efficacy of the differentiated layer of a BS. The accuracy of a
CRC mechanism, which includes apoptosis and cell proliferation, will determine functional
stability and normal morphological features of the system.

A functional structure of the core is presented by negative feedback (NFB), positive
feedback (PFB) and reciprocal links (RL) as base functional patterns, which, being presented
in a matrix form, have a mathematical structure of the imaginary part of a coquaternion
q = a1 + bi + cj + dk, where the basis elements (i, j, k) are represented by NFB, PFB and
RL, respectively.

The strategy of biologic development, which includes phylogenesis and ontogenesis
(individual development), predisposes the splitting of characters as a leading mechanism
for obtaining more details of the existing functional features. The splitting has its functional
representation in the RL mechanism. NFB, PFB and RL provide a BS with the same, stable
structure of a functional core in each hierarchical level of biologic organization. The base
elements considered are infinitesimal characteristics (patterns) obtained as approximations
of feedback regulatory circuits, including reciprocal interactions between systems. They
provide the considered functional models with a convenient tool to form 3D and 4D spaces
of functional elements of BS endowed by integrative properties. Functional integration of
the split anatomical structures representing separable organs of CV and GI systems is an
example.

Formally, a functional structure of the base regulatory elements corresponds to a Lie
algebra sl(2, R) = span{S0, S1, S2} of a Special Linear Group, where the basis elements of
the algebra are represented by the core functional patterns. As an algebraic structure sl(2, R)
is subalgebra of General Linear Group algebra gl(2, R) containing all 2 × 2 real matrices.
A gl(2, R) provides a BS with temporary functional links (functional superstructure), that
add flexibility to the core patterns and resistance to the fluctuations in the environment.

The permanent impact of the environment finds its representation in addition to the
sl(2, R) basis, the element of a coquaternion, being an identity matrix. It makes physiologic
sense, because from now on, a functional system will be considered to be not completely
isolated, but a two-element structure with an inner environment element (E). Moreover, a
set of coquaternions is an algebraically closed structure under multiplication of its elements,
and, because of that, formal operations between regulatory elements of the system are not
restricted by matrices addition as the only group operation for Lie algebra.

Entropy is a qualitative characteristic of the system’s functionality and viability. Each
of the four components of a (split quaternion) coquaternion is supposed to contribute
to the total entropy. It is assumed that a matrix-determinant function can provide a
new meaning and have a sense in defining entropy through the system’s formation and
destruction parameters as elements of a bilinear form representing the system’s functional
structure. Each coquaternion q = a1 + bi + cj + dk and its representation S = wE + xS0 +
yS2 + zS1 are related to a geometrical hypersurface described by a quadratic function:
〈h, h〉 = +w2 + x2− y2− z2. The first two positive signs reflect contributions to the entropy
of the system made by the environment (E) and negative feedback (NFB = S0). While any
impact of the environment naturally increases the positive entropy of the system, positive
contribution of NFB can be considered because of the energy consuming a non-creative,
coordinating function inherent to this pattern. Contributions to the negative entropy of
the system by PFB (S2) and RL (S1) are related to their direct system-formation functional
properties.

Due to the indefinite metric, which seems to be a natural structural characteristic of a
BS, current conditions of the system will belong to one of three families of hypersurfaces,
depending on the sign of the form: 〈h, h〉 > 0; h is a point in a two-sheet hyperboloid in R4

2;
〈h, h〉 < 0; h belongs to a one-sheet hyperboloid; 〈h, h〉 = 0; h is a point in a doublecone
embedded in R4

2.



AppliedMath 2023, 3 84

The trajectory of the system’s behavior should normally penetrate quadrics’ families
and oscillate around the surface of the double cone. Indeed, normally functioning BS do
not have tendencies to remain in either anabolic (negative entropy) or catabolic (positive
entropy) states. Thus, the system’s behavior will demonstrate oscillations around the
equilibrium, which is the surface of a double cone, and where the system’s destructive and
creative forces are equilibrated.

Only in the case of transformation (deterioration) of the base elements, which may oc-
cur on any functional level, the system’s behavior will acquire some irreversible pathologic
features.

Among other possible transformations, structural changes in the S1 (RL) pattern, con-
sidered within the frames of an individual development, would deteriorate the mechanism
of differentiation of stem cells during CRC. One of the possible scenarios is S1 → E′ . In
this case, the functional element (S1) responsible for the system-formation features and
negative entropy is transformed to the non-systemic regulatory pattern mimicking destruc-
tive environmental forces. If other functional elements remain unchanged, the system will
have preserved its indefinite metric, except for the metric signature, which becomes (3, 1).
Formally, these changes in the geometry of the normal space, (2, 2)→(3, 1), can be associated
with malignant transformations. Indeed, cancer cells possess not only the autonomy of
a normal system due to preserved indefinite metric features, but also acquire high rates
of proliferative function, resulting in the formations of conglomerates of cells destroying
the surrounding tissue. When splitting (RL) is eliminated from the system’s functions by
substituting it for the environment pattern, missing feedback from differentiated layer will
activate the NFB response, resulting in the proliferation of immature cambial elements.
Corresponding changes in the realization of the cell renewal mechanisms usually begin
in a single cambial layer and will then continue up along the differentiated layers. The
balance between apoptosis and cell proliferation will be displaced towards the proliferation
of malfunctioning cells. Thus, due to corresponding changes in the metric signature, the
system’s behavior will have a tendency to remain in a pseudo hyperbolic space (inside
a double cone). Because a coquaternion structure represents the core features in each
hierarchical level of a BS, the deeper the layer where the stem cells’ structure becomes
deteriorated, the more differentiated levels will be omitted for normal transformations, and
therefore the more aggressive form the malignancy will have.

To understand the place of malignant transformations in normal functional structure
of a BS, first, chromosome loci responsible for base patterns organized in a hierarchy should
be found; second, deteriorated pattern(s) corresponding to malignancy should then be
linked to the related loci of a genome.

9. Conclusions

The system structure of complex biologic objects predisposes a hierarchy where each
level (module) is supposed to have uniform organization. Coquaternion as an algebraically
closed structure represents the base functional patterns of biologic systems, namely, PFB,
NFB and RL on the levels of biological cells, tissues and organs. Geometrically, coquaternion
is represented by 4D hyperbolic paraboloid due to its metric signature (2, 2). The stability
of a BS is based on the reproducibility of base elements in onto-phylogenesis and CRC.
Considering the self-organizing properties of a BS (a functional module) the value of
the metabolic components associated with the isotropic quadratic form is supposed to
have an oscillating character. This behavior confirms the general principle of dynamical
organization of normal BS, demonstrating the fluctuations in biologic variables around
physiologic constants. In cases of irreversible deterioration of the basis functional patterns
and corresponding changes in the normal metric structure, the system will lose the ability to
maintain the wholeness of the corresponding functional module. Pathologic behavior will
demonstrate its inability to collaborate and adjust functional properties to the surrounding
tissues. The most general feature of non-systemic structures with the functional advantages
to survive is invasive growth and bypassing the energy for anabolic reactions from the
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surrounding systems. In general, malignant transformations of the normal functional
structure of a BS are the result of unconvertible changes in its base functional patterns.
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Appendix A

It can be proposed that a functional basis of each hierarchical level (a functional core)
is a three-dimensional space of the elements of Lie algebra sl(2, K), which is a subalgebra
of a Lie general linear group algebra gl(2, K). The latter is a set of infinitesimal elements
of a tangent space of a functional superstructure (GL(2, K) “applied” to the morphological
elements at a hierarchical level. (K—any field or ring of elements.) An analogous technique
used on the elements of the already-formed space will lead to the same formal structure of
the basis elements and a superstructure, but related to the next level. Thus, separable func-
tional and morphological elements may form pairs whose elements belong to the previous
level. Encoded in chromosomes, stable functional flows between two morphological or
biochemical structures determine the metric in the space of two elements which create the
newly formed system. This metric is one of two forms, S0 or S1. These matrices are metric,
not matrices of transformations.

Pairs (systems) may be considered as the new irreducible variables of the new func-
tional level. Formally, it means that some points of two orthogonal to one another planes
have become linked by mapping: g : CxC→ cH , or equivalently by the mapping when
each of two R-components of C-variable is substituted by a C-component pair and two
of them are united in c cH structure. On the matrix language, a hierarchical scale will
correspond to a sequence of R, C, cH, cO, etc., entries of M(2, K) elements, where K is
elements of any field or ring of the sequence. (cH and cO are sets of coquaternions and
split-octonions, respectively.)

Thus, next to the fields of one-dimensional, real numbers R, then two-dimensional
objects, complex numbers C, presented by points on the plane R × R, is a set of coquater-
nions, which are elements of four-dimensional space over R. It gives us a way to describe
relatively independent and functionally closed four-dimensional regulatory patterns of a
BS, which will represent the next level in the complex functional structure of a BS.

At the same time, generalization of the two-element structures of a BS on n-element
systems gives n-dimensional spaces of variables, groups and algebras.

In terms of mathematical group structures, each hierarchical level will correspond to
Lie algebra gl(n, K) of a Lie General Linear Group containing elements of the core and the
superstructure. Analogously, a Lie algebra sl(n, K) as a gl(n, K) subgroup and subalgebra,
will consist of basis functional patterns (S0(n), S1(n), S2(n), n-even) forming a core of
a functional level of BS. The core, as in the two-element systems, makes functions and
morphology of each hierarchical level reproducible. It is questionable, though, to have
applications of these structures in biologic objects if n > 2.

Because S1 and S2 are topologically equivalent, there are only two sets of topologi-
cally distinguishable pairs from the basis {S0, S1, S2}, (S0,S1) and (S0,S2). Following the
previously described strategic rule for the systemogenesis, the similar to cH algebraic
structure can be presented by a Clifford algebra with the basis {1, e1, e2, e1e2}, where
e1 = S0, e2 = S1, e1e2 = S2. Thus, the third element of the imaginary part of a coquaternion
is obtained by multiplying two basis elements of the Clifford algebra [34,43]. This operation
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(multiplication) could also imply the existence of a functional mechanism(s) of mutual
transformations S1 ↔ S2 by S0.
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