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Abstract: The cutwidth minimization problem consists of finding an arrangement of the vertices
of a graph G on a line Pn with n = |V(G)| vertices in such a way that the maximum number of
overlapping edges (i.e., the congestion) is minimized. A graph G with a cutwidth of k is k-cutwidth
critical if every proper subgraph of G has a cutwidth less than k and G is homeomorphically minimal.
In this paper, we first verified some structural properties of k-cutwidth critical unicyclic graphs
with k > 1. We then mainly investigated the critical unicyclic graph set T with a cutwidth of
four that contains fifty elements, and obtained a forbidden subgraph characterization of 3-cutwidth
unicyclic graphs.
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1. Introduction

All graphs in this paper are finite, simple, and connected, with undefined notation
following [1]. The cutwidth minimization problem consists of finding an arrangement of
the vertices of a graph G on a path Pn with n = |V(G)| vertices in such a way that the
maximum number of overlapping edges (i.e., the congestion) is minimized. As one of
the most well-known optimization problems, it is also known as the minimum cut linear
arrangement (or linear layout, optimal embedding, optimal labeling, etc.) problem [2].
Cutwidth has been extensively examined [2]. Computing cutwidth for general graphs
is an NP-complete problem except for trees [3–6], and it remains NP-complete even if
the input graph G is restricted to planar graphs with a maximum degree of three [7].
Hence, a number of studies have focused on polynomial-time approximation algorithms
for general graphs and polynomial-time algorithms for some special graphs to solve their
cutwidth [2,8]. Relatively little work has been conducted on detecting special graph
classes whose cutwidths can be computed polynomially [2] and critical graph classes with
cutwidths of k ≥ 1. Let T k(∗) be the set of critical graphs with the graph parameter ∗ = k.
From [9], |T 1(c(G))| = 1, |T 2(c(G))| = 2, |T 3(c(G))| = 5 (see Figure 1). For critical
graphs with cutwidth k ≥ 4, |T k(c(G))| has been unknown except that |T 4(c(T))| = 18, as
reported by [10], where T is a tree (see Figure 2). Similar studies have been conducted for
the treewidth, pathwidth, and branchwidth of a graph G (abbreviated by tw(G), pw(G),
and bw(G), respectively). A graph G is said to be k-treewidth (pathwidth, branchwidth)
critical if tw(G) (pw(G), bw(G)) = k but tw(G′) (pw(G′), bw(G′)) < k for any minor
G′ of G. From [11–13], |T 3(tw(G))| = |T 3(bw(G))| = 1, |T 4(tw(G))| = |T 4(bw(G))| = 4,
|T 3(pw(G))| = 110. As shown in [14], the critical graphs for parameters with a similar
nature are worthy of further study, and the number of these critical graphs for a given
value of the parameter would be finite and have yet to be characterized. The cutwidth
problem for graphs and a class of optimal embedding (or layout) problems have significant
applications in VLSI layouts [15,16], network reliability [17], automatic graph drawing [18],
information retrieval [19], urban drainage network design [20], and other domains. In
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Abstract: Linking errors in item response models quantify the dependence on the chosen items in
means, standard deviations, or other distribution parameters. The jackknife approach is frequently
employed in the computation of the linking error. However, this jackknife linking error could be
computationally tedious if many items were involved. In this article, we provide an analytical approx-
imation of the jackknife linking error. The newly proposed approach turns out to be computationally
much less demanding. Moreover, the new linking error approach performed satisfactorily for datasets
with at least 20 items.
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1. Introduction

Item response theory (IRT) models [1–3] are an important class of multivariate statis-
tics methodologies for analyzing dichotomous random variables used to model testing
data from educational or psychological applications. This class aims to summarize a high-
dimensional contingency table by a few latent factor variables of interest. Of particular
relevance is the application of item response models in educational large-scale assess-
ment [4], such as the studies programme for international student assessment (PISA; [5]) or
progress in international reading literacy study (PIRLS; [6]).

In this article, only unidimensional IRT models are considered. Let X = (X1, . . . , XI)
be the vector of I dichotomous random variables Xi ∈ {0, 1} (also referred to as items).
A unidimensional item response model [1,7] is a statistical model for the probability
distribution P(X = x) for x = (x1, . . . , xI) ∈ {0, 1}I , where

P(X = x; δ, γ) =
∫ ∞

−∞

I

∏
i=1

[
Pi(θ; γi)

xi (1− Pi(θ; γi))
1−xi

]
φ(θ; µ, σ)dθ , (1)

where φ is the density of the normal distribution with mean µ and standard deviation σ.
The vector δ = (µ, σ) contains the distribution parameters. The vector γ = (γ1, . . . , γI)
contains all estimated item parameters of item response functions Pi(θ; γi) = P(Xi = 1|θ).

The one-parameter logistic (1PL) model (also referred to as the Rasch model; [8]) uses
the item response function Pi(θ) = Ψ(θ − bi), where Ψ denotes the logistic distribution
function, and bi is the item difficulty of item i. In this case, the vector of item parameters γi
only consists of one entry; that is, γi = (bi). The two-parameter logistic (2PL) model [9]
includes the item discrimination ai in addition (i.e., γi = (ai, bi)), and the item response
function is given by Pi(θ) = Ψ(ai(θ − bi)).
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Please note that distribution parameters δ and item parameters γ cannot be simul-
taneously identified. If the parameters (µ, σ, {(ai, bi)|i ∈ {1, . . . , I}}) parametrize the 2PL
model, an equivalent parametrization would be (µ = 0, σ = 1, {(aiσ, σ−1(bi − µ))|i ∈
{1, . . . , I}}). In applications like PISA in which a country mean µ and country a standard
deviation σ , item parameters γi are often fixed at values γ∗i that are used for all countries.
In this case, µ and σ can be identified. If sample data x1, . . . , xN for N persons are available,
unknown model parameters in (1) can be estimated by (marginal) maximum likelihood
(ML) using an expectation-maximization algorithm [10,11].

In practice, data-generating item parameters γi differ from assumed fixed item parameters
γ∗i . This property is also referred to as differential item functioning (DIF; [12]). DIF effects ei
are defined as deviations ei = γi − γ∗i . The occurrence of DIF causes additional variability in
the estimated (country) mean µ and standard deviation σ [13,14]. Consequently, the estimated
distribution parameters depend on the choice of selected items, even in infinite sample sizes of
persons. This variability is quantified in the linking error [15–20]. There exist simple formulas
for linking errors based on variance components for the 1PL model [16,18]. For more complex
models, resampling techniques [21,22] such as jackknife [16,18] or (balanced) half sampling [19]
of items can be employed. In the computation of the jackknife linking error, the model is
repeatedly estimated by excluding a single item i at each item resulting in slightly differing
estimates µ̂(−i) and σ̂(−i) compared to the estimates µ̂ and σ̂ in the full sample of items. The
jackknife linking error for the estimated mean µ̂ is defined as

LE(µ̂) =

√√√√ I − 1
I

I

∑
i=1

(µ̂(−i) − µ̂)2 . (2)

The disadvantage of the linking error formula (2) is that I + 1 model estimations
of the IRT model based on the log-likelihood function l are required. In this article, a
computational shortcut for determining increments µ̂(−i) − µ̂ in (2) based on a Taylor
expansion of the log-likelihood function is presented. Only second-order derivatives and
one additional estimation of the IRT model are required in our proposed approach. Hence,
the computational effort is significantly reduced.

The rest of the article is structured as follows. The newly proposed analytical approxi-
mation to the jackknife linking error is presented in Section 2. A simulation study compares
the performance of our new approach with the jackknife linking error in Section 3. Finally,
the article closes with a discussion in Section 4.

2. Analytical Approximation of the Jackknife Linking Error

This section provides details for our analytical approximation to the jackknife linking
error. A Taylor expansion of the log-likelihood function l is employed to approximate
increments in the jackknife linking error formula.

Let δ = (µ, σ) be the vector that includes the mean µ and the standard deviation σ. Let
γ = (γ1, . . . , γI) be the vector that includes all item parameters γi (i = 1, . . . , I). Further-
more, let δ0 and γ0 be the true distribution parameter and item parameters, respectively. In
the computation of γ̂, the item parameters in the scaling model to γ = γ∗ are fixed. The
difference e = γ0 − γ∗ indicates misspecification. If the scaling model involves data of a
country and γ∗ are international item parameters, the vector e includes DIF effects.

The approximation of the jackknife linking error relies on a Taylor expansion of the
first derivative of the log-likelihood function l with respect to δ (i.e., the score equations)
around true data-generating parameters (δ0, γ0). In the application of IRT models, the
log-likelihood function is typically twice continuously differentiable to guarantee the
applicability of the Taylor approximation. Define lδ = (∂l)/(∂δ), lδδ = (∂2l)/(∂δ2),



AppliedMath 2023, 3 51

and lδγi = (∂2l)/(∂δ∂γi). With a sufficiently long test, estimated item parameters γ̂i are
independent across items [23]. Hence, lδ can be approximated around (δ0, γ0) as

lδ(δ, γ) ≈ lδ(δ0, γ0) + lδδ(δ0, γ0)(δ− δ0) +
I

∑
i=1

lδδ(δ0, γi0)(γi − γi0) . (3)

The distribution parameter estimates δ̂ = (µ̂, σ̂) are obtained by setting (3) to zero and
using fixed but misspecified item parameters γi = γ∗i . Hence, we obtain from (3)

0 = lδ(δ0, γ0) + lδδ(δ0, γ0)(δ̂− δ0) +
I

∑
i=1

lδγi (δ0, γi0)(γ
∗
i − γi0) . (4)

We now determine the distribution parameter estimate δ̂(−i) in which item i is omitted
from the log-likelihood function. Empirical evidence shows that the distribution parameters
can be equivalently estimated if the item parameters of item i were freely estimated. This
means that one can set γi = γi,0 for a sufficiently large number of items I. Then, (4) can be
rewritten as

0 = lδ(δ0, γ0) + lδδ(δ0, γ0)(δ̂(−i) − δ0) +
I

∑
j=1
j 6=i

lδγj(δ0, γj0)(γ
∗
j − γj0) . (5)

By subtracting (4) from (5), we obtain

δ̂(−i) − δ̂ = −[lδδ(δ0, γ0)]
−1lδγi (δ0, γi0)(γ

∗
i − γi0) . (6)

Now, Equation (6) is now specialized for the 2PL model. In this case, γi = (ai, bi)
consists of two parameters. We assume that fixed item discriminations were correct and
fixed item intercepts b∗i do not equal true data-generating item intercepts bi0. We obtain
from (6)

δ̂(−i) − δ̂ ≈ −[lδδ(δ0, γ0)]
−1lδbi

(δ0, γi0)(b∗i − bi0) . (7)

In the following subsections, it is discussed how the finding can be used in the practical
implementation (Section 2.1) of the jackknife linking error and how to efficiently compute
the necessary derivatives of the log-likelihood function (Section 2.2). The estimation of
linking errors is also prone to sampling errors. To circumvent a biased estimation of
the linking error, we propose a bias-corrected version of the analytical approximation of
the jackknife linking error in Section 2.3. Finally, a variant of the jackknife linking error
computation in subsets of items is discussed in Section 2.4.

2.1. Use of the Approximation in Scaling

We now discuss how to apply the analytical approximation formula (6) for the devia-
tions δ̂(−i) − δ̂ in the jackknife linking error formula. First, we compute the distribution
parameters δ̂ by fixing item parameters to γ∗. Second, we estimate item parameters γ̂
by fixing the distribution parameters to δ̂. The motivation is that differences of δ̂ − δ0
and γ̂− γ0 are close to zero for a sufficiently large number of items I. Hence, we replace
unknown parameters in (6) with their empirical counterparts, and we arrive at

δ̂(−i) − δ̂ = −
[
lδδ(δ̂, γ̂)

]−1
lδγi (δ̂, γ̂i)(γ

∗
i − γ̂i) . (8)

For the special case of the 2PL model with misspecified item intercepts b∗i , we obtain
from (7)

δ̂(−i) − δ̂ = −Hi(b∗i − b̂i0) (9)
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for estimated item parameters b̂ = (b̂1, . . . , b̂I) and Hi =
[
lδδ(δ̂, b̂)

]−1
lδbi

(δ̂, b̂). The
analytical approximation LEAN of the jackknife linking error is given as

LEAN(u) =

√√√√ I − 1
I

I

∑
i=1

h2
iu(b

∗
i − b̂i0)2 , u = µ or u = σ , (10)

where Hi = (hiµ, hiσ)
>. For the linking error of µ̂, the first entry hiµ is chosen. For the

linking error of σ̂, the second entry hiσ is chosen.

2.2. Implementation Details for Computing Derivatives of the Log-Likelihood Function

We now discuss how to efficiently compute the necessary derivatives of the log-
likelihood function required in the analytical approximation of the jackknife linking error.
We evaluate the integral in (1) by a rectangular integration on a finite grid θ1, . . . , θT of θ
points. Hence, the continuous normal distribution is approximated by a discretized normal
distribution [24]. We set wt = wt(µ, σ) = Cφ(θt; µ, σ) using an appropriate scaling constant
C that ensures ∑T

t=1 wt = 1.
Let lp = log Lp denote the contribution in the log-likelihood function of person p

based on item response data xp = (xp1, . . . , xpI). It holds that

Lp =
T

∑
t=1

wt

I

∏
i=1

fpti =
T

∑
t=1

wt fpt , where (11)

fpti = Pi(θt, γi)
xpi [1− Pi(θt, γi)]

1−xpi (12)

and fpt = ∏I
i=1 fpti. We now compute the partial derivative of lp for a scalar parameter u

∂lp

∂u
=

∂Lp

∂u
Lp

. (13)

The second-order derivative with respect to another parameter v is given as

∂2lp

∂u∂v
=

∂2Lp

∂u∂v
Lp −

∂Lp

∂u
∂Lp

∂v
L2

p
. (14)

We can compute for u = µ or u = σ

∂Lp

∂u
=

T

∑
t=1

∂wt

∂u
fpt . (15)

The second-order derivative for v = µ or v = σ can be obtained as

∂2Lp

∂u∂v
=

T

∑
t=1

∂2wt

∂u∂v
fpt . (16)

In the analytical approximation of the jackknife linking error, we need to compute
(∂2Lp)/(∂u∂bi) for an item parameter bi. We obtain

∂2Lp

∂u∂bi
=

T

∑
t=1

∂wt

∂u
fpt

1
fpit

∂ fpit

∂bi
=

T

∑
t=1

∂wt

∂u
fpt

∂ log fpit

∂bi
. (17)
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Equations (15)–(17) indicate that the necessary computations for the first- and second-
order derivatives are computationally inexpensive. Hence, the analytical approximation of
the linking error is computationally cheap if DIF effects were available.

2.3. Bias Correction due to Sampling Error

The estimation of linking errors is also prone to sampling errors because estimated
item parameters are involved in the computation. To avoid a biased estimation of the
linking error, we now propose a bias-corrected version of the analytical approximation of
the jackknife linking error.

Assume that the variance of b∗i − b̂i0 in (10) is vi, and the estimates are approximately
independent across items [23]. The bias-corrected analytical linking error can be obtained
by subtracting variability that is due to sampling error quantified in vi. We obtain

LEAN,bc(u) = sqrt+

(
I − 1

I

I

∑
i=1

h2
iu

[
(b∗i − b̂i0)

2 − vi

])
, u = µ or u = σ , (18)

where sqrt+(x) =
√

max(x, 0).
A similar bias-correction method was used in the 1PL method in trend estimation [18].

Alternatively, a bias-correction term can also be estimated using resampling techniques
regarding persons (e.g., bootstrap or half sampling; [19,22]).

2.4. Jackknife Linking Error Based on Testlets

The jackknife linking error is frequently evaluated at groups of items (so-called testlets;
refs. [25,26]) instead of single items. The reason for this is that subsets of items in a test
are often presented jointly with a common (text) stimulus. Hence, DIF effects pertain to
all items in a testlet and often have the same sign. Therefore, the testlet structure must be
taken into account when computing linking errors [17,18,27].

Assume that there are H testlets. That is, the set of item integers i = 1, . . . , I is
partitioned into distinct sets I1, . . . , IH . The linking error based on testlets for µ̂ is defined as

LE(µ̂) =

√√√√H − 1
H

H

∑
h=1

(µ̂(−Ih)
− µ̂)2 , (19)

where µ̂(−Ih)
is the estimate in which all items from testlet h were removed. In the analytical

approximation, we can approximate the relevant jackknife difference in (19) by

µ̂(−Ih)
− µ̂ = ∑

i∈Ih

hiµ(b∗i − bi0) . (20)

A corresponding bias-corrected variant of the linking error (see (18)) can be similarly
obtained.

3. Simulation Study
3.1. Method

In this simulation study, we investigate the performance of our analytical approxima-
tion of the jackknife linking error. We illustrate the performance based on the 2PL model.
Equal discriminations ai ≡ 1 were assumed.

In the simulation study, we varied two factors: the number of items and the DIF
standard deviation τDIF. We chose I = 10, 20, 30, and 40 items to cover a range of test
lengths that are obtained in empirical practice. The goal is to assess the mean µ and the
standard deviation σ in a group (e.g., a country in a large-scale assessment study such as
PISA). We defined µ = −0.2 and σ = 0.9 in the simulation. Assumed item difficulties b∗i
were chosen equispaced in the interval [−2, 2] with increments 4/(I − 1). For example, for
I = 10 items, assumed item difficulties were −2.00, −1.56, −1.11, −0.67, −0.22, 0.22, 0.67,
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1.11, 1.56, and 2.00. In each replication, data-generating item difficulties bi0 were simulated
according

bi0 = b∗i + ei , ei ∼ N(0, τDIF) (21)

Hence, the estimated distribution parameters µ̂ and σ̂ will vary across replications
even with infinite sample sizes of persons because the true data-generating item parameters
vary. The standard deviation of DIF effects was either τDIF = 0.25 or 0.50.

Item response data were simulated according to a quasi-Monte Carlo simulation method ([28],
see also [29] for a similar approach). Our motivation was to assess the performance of the linking
error by reducing the uncertainty due to sampling error. Simulated item responses X should be
as close as possible to the true distribution P(X; µ, σ, b0) (see [29]). To facilitate this, we chose θ
values from the same discrete grid θ1 = −3.5, . . . , θ21 = 3.5 of equidistant θ points that were
also used in fitting the 2PL model. We fixed a pseudo-sample size of 10,000 persons. Then, we
computed the number of persons at each θt, which is given by Nwt(µ, σ) (some rounding is
necessary). For each θ = θt and for each item i, we can compute Pi(θt; ai, bi0) according to the
item response function. Hence, there are Nwt(µ, σ)Pi(θt; ai, bi0) persons with θ = θt with Xi = 1
and Nwt(µ, σ)(1− Pi(θt; ai, bi0)) with Xi = 0. The zeroes and ones for item i = 1, . . . , I are
randomly allocated to the corresponding persons θ = θt. Although the empirical frequencies for
multivariate item response patterns X = x do not match the population probabilities, conditional
marginal probabilities of the item response functions are (almost) correctly simulated. Hence,
one can conclude that this quasi-Monte Carlo approach reduces the impact of sampling errors
to a minimum and only reflects variability due to linking errors; that is, using incorrect item
parameters b∗i that differ from the data-generating item parameters bi.

In each of the 4× 2 = 8 cells of the simulation, 2000 replications were conducted.
We fitted the 2PL model with item discriminations fixed to 1 and fixed item difficulties
b∗i and obtained the estimated mean µ̂ and the estimated standard deviation σ̂. Then,
we determined item difficulties b̂i by fixing the mean and standard deviation to µ̂ and σ̂,
respectively. Using these quantities, we calculated the analytical approximation (AN) of
the jackknife linking error given in (10). We compared the analytical linking error with
the jackknife linking error (JK). To evaluate the quality of the estimated linking errors, we
computed the mean, the standard deviation, the standard error ratio (SEratio; defined as the
quotient of the average linking error and the empirical standard deviation of the estimate µ̂
or σ̂), and coverage rates at the 95% confidence level.

The R software [30] was used for simulation and analysis. The R package TAM [31]
was used for estimating the 2PL model.

3.2. Results

Table 1 contains the results of the two linking error methods as a function of the
standard deviation of DIF effects τDIF and the number of items I.

It can be seen that the mean can be almost unbiasedly estimated in the presence of
DIF effects. As expected, the standard deviation of the estimated mean µ̂ decreases with
a larger number of items. Because all item discriminations were equal to one, the linking
error of µ̂ can be analytically predicted as τDIF/

√
I (referred to as EXP in Table 1; [16,18]).

It can be seen that empirical standard deviations of µ̂ were close to these expected values.
Moreover, the mean of the jackknife linking error JK was very similar to the empirical
standard deviation of µ̂, while the linking error AN based on the analytical approximation
was slightly too small. This was particularly the case for a low number of items I = 10.
However, with a larger number of items, the analytical approximation performed well.
This behavior is also reflected in the standard error ratio SEratio, which attained desired
values close to 1 for the jackknife linking error and was smaller than 1 for the linking
error based on the analytical approximation. However, for at least 20 items, the analytical
approximation might be considered to have satisfactory performance. Overall, it can also
be seen that the estimated linking error AN was a bit smaller on average than the jackknife
linking error. However, the average absolute deviation (AAD in Table 1) demonstrated
that the analytical approximation was very close to the jackknife linking error in each
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replication, particularly for a large number of items such as I = 40. It can also be seen
that coverage rates were satisfactory for the jackknife linking error, while the analytical
approximation showed issues in the condition of a few items (i.e., I = 10). Finally, we
observed that the empirical standard deviation of estimated linking errors was slightly
smaller for the analytical approximation compared to the jackknife approach.

Table 1. Simulation study: Results as a function of the standard deviation of DIF effects (τDIF) and
number of items (I).

Mean SEratio SD COV95

τDIF I Bias SD EXP JK AN JK AN AAD JK AN JK AN

Linking error of estimated mean µ̂
0.25 10 0.000 0.079 0.079 0.079 0.070 0.990 0.875 0.0091 0.0202 0.0177 91.6 88.6
0.25 20 0.003 0.056 0.056 0.056 0.053 1.000 0.945 0.0031 0.0096 0.0091 93.2 91.7
0.25 30 0.000 0.045 0.046 0.046 0.044 1.007 0.970 0.0017 0.0065 0.0062 94.3 93.3
0.25 40 0.003 0.039 0.040 0.040 0.039 1.013 0.986 0.0011 0.0047 0.0045 96.3 95.7
0.5 10 0.003 0.161 0.158 0.153 0.135 0.949 0.837 0.0181 0.0397 0.0354 91.6 87.9
0.5 20 0.002 0.111 0.112 0.111 0.104 1.000 0.942 0.0065 0.0185 0.0177 93.5 91.8
0.5 30 0.004 0.090 0.091 0.091 0.087 1.011 0.972 0.0036 0.0130 0.0127 94.5 93.5
0.5 40 0.008 0.080 0.079 0.078 0.076 0.978 0.948 0.0025 0.0097 0.0095 93.2 92.3

Linking error of estimated standard deviation σ̂
0.25 10 −0.007 0.039 — 0.041 0.033 1.051 0.866 0.0073 0.0111 0.0091 95.2 92.3
0.25 20 −0.008 0.023 — 0.023 0.021 1.009 0.914 0.0022 0.0042 0.0038 94.7 93.0
0.25 30 −0.008 0.019 — 0.017 0.016 0.901 0.848 0.0011 0.0026 0.0024 92.4 91.7
0.25 40 −0.008 0.016 — 0.014 0.014 0.898 0.856 0.0007 0.0019 0.0017 90.9 90.8
0.5 10 −0.030 0.078 — 0.077 0.062 0.985 0.796 0.0155 0.0206 0.0166 94.9 90.8
0.5 20 −0.029 0.053 — 0.043 0.040 0.827 0.752 0.0047 0.0079 0.0068 89.3 87.5
0.5 30 −0.027 0.042 — 0.033 0.031 0.774 0.727 0.0026 0.0048 0.0044 85.9 84.7
0.5 40 −0.027 0.037 — 0.027 0.026 0.723 0.690 0.0019 0.0034 0.0033 85.0 83.0

Note. EXP = expected value of linking error for µ̂; JK = jackknife linking error; AN = linking error estimated
by analytical approximation LEAN from Equation (10); SEratio = standard error ratio; AAD = average absolute
difference between JK and AN linking error estimates; SD = standard deviation of estimated linking error;
COV95 = coverage rate for confidence level 95%.

The estimated standard deviation σ̂ showed a small bias in the condition of a larger
standard deviation of DIF effects (i.e., τDIF = 0.5). Hence, one can expect that coverage rates
will perform satisfactorily because the expected value deviated from the true value σ = 0.9.
Interestingly, the mean of both linking errors was smaller than the empirical standard
deviation of σ̂. This finding was also reflected in the standard error ratios, which were
substantially smaller than 1. Hence, one might conclude that both linking errors (jackknife
JK and the analytical approximation AN) were unsatisfactory to reflect the variability
in estimated standard deviations in our application. We suspect these results might be
explained by the fact that the standard deviation was obtained using fixed but incorrect
item parameters. Moreover, such a finding would likely not be observed in a linking
approach such as log-mean-mean linking [32].

Across all conditions, the analytical approximation provided linking errors that were
slightly too small. In the computation of the jackknife linking error in Equation (10), the
multiplication factor (I − 1)/I is used. In other applications, the multiplication factor 1
is used [22]. We recomputed linking errors based on the analytical approximation with
the multiplication factor of 1, and it turned out that the results grew closer to the jackknife
linking error. However, the standard error ratio was still smaller than 1. Nevertheless, there
could be a benefit to using the modified formula in empirical applications.

On the Bias in the Estimated Standard Deviation σ̂

At first sight, the negative bias in the estimated standard deviation σ̂ is surprising,
although such a finding was also found in other studies that use fixed but incorrect item
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parameters in estimation [32]. We now present a heuristic derivation of the bias that
appears close to the empirically obtained bias. Please note that the estimation of the item
response model using a logistic item response function can be approximated by the probit
link function [33]. In this case, weighted least squares estimation based on tetrachoric
correlations [34] can be used to estimate the standard deviation σ. The approach relies on
modeling underlying continuous variables X∗i for dichotomous items Xi. The variable Xi
takes the value if X∗i exceeds the item parameter bi. The tetrachoric correlation ρij for items
i and j is given by

ρij =
Cov(X∗i , X∗j )√

Var(X∗i )Var(X∗j )
. (22)

Now assume equal item discriminations ai and a correctly specified model. In this case,
(22) simplifies to

ρij =
σ2

σ2 + L , (23)

where L = π2/3 ≈ 3.29 is the variance of the logistic distribution. If incorrect item
parameters b∗i were used, the covariance Cov(X∗i , X∗j ) in (22) is not affected on average.
However, the variance Var(X∗i ) of the underlying latent variable X∗i increases, and the
expected value can be determined by the DIF variance τ2

DIF. The estimated tetrachoric
correlation can then be computed as

ρ∗ij =
σ2

σ2 + τ2
DIF + L

. (24)

In the computation of σ̂, one, therefore, essentially solves

ρ∗ij =
σ2

σ2 + τ2
DIF + L

=
σ̂2

σ̂2 + L . (25)

The estimated standard deviation σ̂ can be determined as (see [35] for a similar
approach)

σ̂ =

√√√√L ρ∗ij
1− ρ∗ij

= σ

√
L

L+ τ2
DIF

. (26)

Hence, the estimated standard deviation is negatively biased in the presence of DIF
effects. The predicted bias in the estimated standard deviation based on (26) is −0.008 for
τDIF = 0.25 and −0.032 for τDIF = 0.50, which is similar to the empirically obtained bias for
σ̂ in Table 1.

4. Discussion

In this article, an analytical approximation of the jackknife linking error by means of a
Taylor expansion of the log-likelihood function has been proposed. It turned out that the
analytical approximation performed well for estimated means for at least 20 items. The
approximation has the advantage because it only requires one additional estimation of
an item response model and second-order derivatives of the log-likelihood function. In
contrast, the jackknife linking error requires I additional estimations of the item response
model for I items which is computationally much more demanding. One might argue that
the analytical approximation provides at least a computationally cheap proxy of the linking
error. However, the jackknife linking error would be preferred due to a more reliable
statistical inference because our simulation findings indicated that it provided slightly
better coverage rates.

In the simulation study, we did not consider sampling errors because a quasi-Monte
Carlo simulation method was utilized that minimized the impact of sampling errors.
Future studies could simultaneously assess sampling errors and linking errors based on the
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analytical approximation. In particular, the performance of our proposed bias-correction
method could be evaluated.

In the analytical derivation and the simulation study, we restricted ourselves to the
computation of a single group which can be interpreted as country means and standard
deviations in a cross-sectional assessment or the computation of trend between two time
points. In future research, our proposed simplified computation formula for the linking
error might be applied for trend estimates in the country means in educational assessment
studies such as PISA [18].

It should be noted that our proposed approach of the analytical approximation of the
jackknife linking error bears similarity with the infinitesimal jackknife technique [36–38].
The difference is that the jackknife linking error removes columns (i.e., items) from the
dataset, while infinitesimal jackknife addresses contributions of rows (i.e., persons) in
a dataset.

In the linking literature [39,40], linking errors are also sometimes referred to as
sampling errors (of persons) of obtained linking constants that can be means or standard
deviations [41–43]. It is important to note that sampling errors due to the sampling
of persons and linking errors due to item choice must be distinguished [19,20]. The
computation of linking errors can be justified for random items and fixed items [19]. For
random items, the used items are thought to be a (representative) draw from a larger
population of items [44,45]. For fixed items, DIF effects can be stochastically modeled
by some distribution [19]. The latter case might also be conceived as quantifying model
error [46]. We would like to point out that we see great potential in using linking errors by
incorporating the extent of model misspecification in the reported parameter uncertainty.
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