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Abstract: Queue systems are essential in the modelling of transport systems. Increasing requirements
from the beneficiaries of logistic services have led to a broadening of offerings. Consequently, models
need to consider transport entities with priorities being assigned in relation to the costs corresponding
to different classes of customers and/or processes. Waiting lines and queue disciplines substantially
affect queue system performance. This paper aims to identify a solution for decreasing the waiting
time, the total time in the system, and, overall, the cost linked to queueing delays. The influence
of queue discipline on the waiting time and the total time in the system is analysed for several
cases: (i) service for priority classes at the same rate of service with and without interruptions,
and (ii) service for several priority classes with different service rates. The presented analysis is
appropriate for increasing the performance of services dedicated to freight for two priority classes.
It demonstrates how priority service can increase system performance by reducing the time in the
system for customers with high costs. In addition, in the considered settings, the total time in the
system is reduced for all customers, which leads to resource savings for system infrastructures.

Keywords: queue disciplines; priority class; waiting time; service time; Poisson arrivals;
system performance

1. Introduction

Transport systems belong to a large technical system class characterised by complex
and problematic facets of performance evaluation. Substantiations of the operating tech-
nologies are necessary to ensure the fulfilment of the beneficiaries’ needs with minimum
consumption of resources and, as much as possible, to reduce adverse external effects.

The selection of the operating technology of the components of a transport system that
leads to efficient use of existing resources under the conditions of multiple requirements
and restrictions of the socio-economic environment is conditioned by the implementation of
mathematical models for assessing the possible variants concerning different criteria [1,2].

In developing mathematical models related to the different hierarchical levels of
the problems within transport systems, modelling the component objects’ functioning is
decisive [3–5]. The constituent objects can be represented by macrostructures (i.e., transport
nodes including equipment and facilities particular to each mode of transport and those
used in common) or microstructures (in specialised terminals, e.g., railway stations, port
berths, airports, and logistic centres) [1,6]. In these cases, the modelling aims to reveal all
the operations performed by each component of an examined subsystem that follows a
specific way of processing a request.

The modelling of the processing of traffic entities on the equipment and installations
in the transport terminals is designed on the modelling of the elementary traffic system or
elementary queuing system (EQS) [1,5]. Consisting of waiting places and service stations,
EQS aims to serve the flow of customers by transforming the input flow into the output
flow. Cox and Smith, Ackoff and Sasieni, Lee, and Hall [7–10] substantiated the systematic
study of queueing processes and developed the fundamentals of the queueing theory.
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Different applications of the queueing theory have been developed for transport and
traffic systems in order to provide valuable estimations of system performance [4,6,11].
Complex models address performance issues in transport terminals both for operational
optimisation [12,13] and tactical approaches [14]. Due to the complexity of the processes in
transport terminals, queue models are applied only for some subsystems (e.g., for humps
in marshalling yards [15]). Queuing network models are used to evaluate performances at
the transport terminal level (with a detailed formalisation of the terminals) [16,17] and the
transport network level (with terminals represented in a simplified manner) [18]. Bychkov
et al. [17] developed queueing network models to assess operational performance in railway
stations, characterised by non-linear hierarchical configurations. Huisman et al. [18] defined
Markovian processes on a queueing network model to evaluate the long-term performance
at a railway network level. In queue models associated with transport system components,
queuing delay (respective overall time in the system) causes high additional operating costs,
supplementary energy and resource consumptions, and adverse environmental effects
of these consumptions. Therefore, analysing queue discipline to reduce queuing delay
can significantly promote more efficient transport systems, with positive consequences in
achieving sustainable development goals [19].

In studying EQS operation, a schedule is necessary to define an ordered set of temporal
conditions or conditioning in the service process [10,20]. The continuously increasing
requirements from the beneficiaries of logistics services have led to a diversification of
services [21]. Consequently, there is an increased need to develop models in which traffic
entities have different priorities assigned in relation to the costs associated with various
classes of users and/or services. As a result, models, including schedules with and without
interruptions, are essential.

Interruption refers to suspending the processing of a low-priority entity to start the
processing of a high-priority entity [20]. Service schedules are applied with the aim of
increasing the operator’s and beneficiaries’ efficiency (by reducing the waiting times for
service and the total times in the systems, and by increasing the use of service stations) [22].

Due to the diversity of real-world conditions, different approaches are applied to
identify appropriate priority disciplines for improved quality of service, e.g., for a system
with customers divided into two priority classes, a certain level of service quality is estab-
lished based on a minimum service time [23]. The queue system performance is measured
based on blocking probability for non-priority customers and system utilisation. Klimenok
et al. [24] consider a single queue with a finite capacity and two types of customers with
changing priority after a random time in the service process. After a particular time in
the waiting buffer, the switched-off non-priority customer gains a degree of priority. This
analysis is suitable for queue issues involved in warehouses for perishable goods.

A dynamic schedule for a queue system with a single server and a finite waiting
capacity for several classes of customers has also been modelled. Based on the multi-
dimensional Markov chain, the relationships between the system performance and the
waiting buffer capacity are analysed [25,26]. More complex analysis is applied to assess the
performance of systems with different types of customers (e.g., baulking or re-entering in
the queue) and operating vacation (while service is slower) [27,28].

The particularities of transport systems, the considerable heterogeneity of traffic and
transport entities (modelled as customers in queue systems), and the dynamic requests of
beneficiaries cause difficulties in assigning priorities and defining priority classes. Within
this framework, this paper aims to analyse the effect of service discipline in queueing
systems where different priorities are established.

The analysis examines freight transport issues in which schedules with and without
interruptions can be operated. In the modelling, the customers are represented by transport
entities or load units, for which interruptions are determined by the costs associated with
the total processing times and how the delivery deadlines are achieved. Therefore, the
interruptions do not involve ethical issues, such as in the case of services involving people.
Two priority classes of customers are studied, which could be considered a restriction.
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Nevertheless, applying several categories of priorities in real-world transport operations
determines difficulties and potential dysfunctionalities. Consequently, dividing the cus-
tomers into two types is sufficient and feasible for correctly estimating utilisation value
under the assumed conditions.

The first part of this paper examines how the waiting time varies in a system where a
category of users has absolute priority, and the service with and without interruptions is
applied, assuming that the service rates are the same. However, in real-world transport
system operations, service rates differ due to the variation in the transport entity sizes,
the heterogeneity of the transport loads, the operating requirements, the different routes
involved in the transport terminals, etc. Therefore, the second part of this paper anal-
yses how the waiting time varies in a system where users have different priorities and
service rates.

2. Influence of Service Disciplines
2.1. Formulation of the Problem

Implementing the transit functions and processing of traffic entities in transport
terminals has led to infrastructures and facilities in which activities and technologies
specific to transport modes interact. The modelling of the functions performed by such
infrastructures implies defining the links among EQSs whose coordination is necessary for
achieving the transport demands. The input into an EQS is represented by G, a generator
of customers (or jobs), and the exit by E, the flow of served customers (or completed jobs).
The waiting component, W, is represented by facilities with a finite capacity that allow
the storage of the customers taken from the generator until the server S can start their
processing (Figure 1).
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The Kendal–Lee classification [8,10] summarises the diversity of elementary queue
systems. It can be noticed that the system in Figure 1 is not included in this classification.
The considered approach assumes a queue discipline different from the FIFO (First In-First
Out), LIFO (Last In-First Out), or SIRO (Service in Random Order) discipline. In many
circumstances, customers have different priorities and the FIFO discipline is not the best
processing approach from the viewpoint of users and/or operators [10,29,30]. In order
to evaluate how specific disciplines are suitable for queueing systems, it is necessary to
consider and compare their performances. Usually, performances are assessed in rela-
tion to the time in the system and its associated cost. The presented analysis uses the
following measures:
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• Time in the queue, w.
• Time in the system t (between the arrival time and departure time).

The following sections examine how these measures vary in the subsystem of a
complex service system if a proportion of input customers have absolute priority, compared
to the case when all customers have the same priority. For different levels of priority, a
service station may operate in the following ways:

• Without interruptions: the priorities of customers in the queue are examined; the FIFO
discipline is applied to customers in the highest priority class.

• With interruptions: the arrival of a customer with priority causes the service inter-
ruption of a non-priority (or lower priority) customer, which returns to the queue.
If several levels of priorities are applied, the customer in service must have the
highest priority.

2.2. Priority Service with Same Service Rates
2.2.1. Single Server, Service without Interruptions

Consider that customers are allocated into two classes: class 1 includes customers
with priority, and class 2 includes customers without priority. A service without interrup-
tions supposes continuous examination of the customers in the queue, applying the FIFO
discipline to customers in class 1 and then applying the FIFO discipline to customers in
class 2 as long as no customer from class 1 is in the queue (Figure 1). This is denoted by the
following measures:

• λk—arrival rate of customers in class k, for k ∈ {1, 2}.
• µk—service rate of customers in class k.
• ρk—utilisation for customers in class k (ratio between arrival rate and service rate).
• ρ—system utilisation.

Assuming that arrivals correspond to a Poisson distribution and service corresponds
to an exponential distribution, then the average number of customers with priority (class 1)
in the queue is

l1 =
ρ1

2

1− ρ1
, (1)

and the average time in queue per class 1 customer is

w1 =
l1

λ1
=

1
µ1
· ρ1

1− ρ1
. (2)

The average time in the system (after the end of the service process) per customer with
priority is

t1 =
1

µ1
+ w1 =

l1

λ1
=

1
µ1
· 1

1− ρ1
. (3)

The average number of customers without priority (class 2) in the system is

l2 =
ρ2

1− ρ

(
1 +

µ2

µ1
· ρ1

1− ρ1

)
. (4)

The average time in the system (after the end of the service process) per customer
without priority is

t2 =
1

µ2
· 1

1− ρ

(
1 +

µ2

µ1
· ρ1

1− ρ1

)
. (5)

It implies that the average waiting time to serve a customer without priority is

w2 = t2 −
1

µ2
, (6)



AppliedMath 2023, 3 41

meaning

w2 =
1

µ2
·

µ2
µ1
· ρ1

1−ρ1
+ ρ

1− ρ
. (7)

The above equations apply only to the steady state of the queueing system. Such a
condition exists only if the system utilisation, ρ = ρ1 + ρ2, satisfies the restriction ρ < 1.

If priorities are not applied in the queueing system, then the average waiting time for
service per customer is

w =
1
µ
· ρ

1− ρ
, (8)

and the average time in the system per customer is

t = w +
1
µ
=

1
µ(1− ρ)

, (9)

or
t =

1
µ− λ

. (10)

For the same arrival rates, µ1 = µ2 = µ , Equations (2), (7), and (8) for the average
waiting time values become

w1 =
1
µ
· ρ1

1− ρ1
, (11)

w2 =
1
µ
·

ρ1
1−ρ1

+ ρ

1− ρ
. (12)

The average waiting time in case of the arrival rate of customers with priority, λ1, is

w1,2 =
λ1w1 + λ2w2

λ1 + λ2
, (13)

which becomes

w1,2 =

ρ1
2

1−ρ1
+
(

ρ1
1−ρ1

+ ρ
)(

ρ−ρ1
1−ρ

)
ρ · µ =

1
µ
· ρ

1− ρ
, (14)

meaning that the average waiting time per customer is the same as in the case of serving in
order of arrivals. This conclusion is anticipated, as it is known that the average waiting
time is independent of the service discipline (it is influenced only by the system utilisation
and the service time).

By increasing the system utilisation, the average waiting time increases considerably.
In the conditions of priority service, the waiting time for customers without priority reaches
substantial values if utilisation for customers with priority is high.

In conclusion, the order of serving the customers does not influence the average
waiting time per customer to enter the next subsystem. Obviously, assuming different
costs of idle time per customer, the queue system would be economical only if priority is
assigned to customers with high costs associated with idle time (reducing the waiting time
before the start of service for these categories of customers).

Evidently, the service discipline is no longer indifferent if µ1 6= µ2 and w1,2 6= w. This
case is analysed in Section 2.3.

2.2.2. Single Sever, Service with Interruptions and Additional Idle Time

Using previous notations, consider that class 1 includes customers with absolute
priority. An interruption occurs when a customer with absolute priority arrives during the
service of a non-priority customer. The customer that is incompletely served moves to the
head of the line of customers without priority, waiting for service to resume (considering
the interruption causes no loss in service time).
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Besides the direct links between the G, W, S, and E components of an EQS (Figure 1),
additional feedback loops intervene between S and A in a system with interruptions
(Figure 2).

AppliedMath 2022, 2, FOR PEER REVIEW 6 
 

 

In conclusion, the order of serving the customers does not influence the average wait-

ing time per customer to enter the next subsystem. Obviously, assuming different costs of 

idle time per customer, the queue system would be economical only if priority is assigned 

to customers with high costs associated with idle time (reducing the waiting time before 

the start of service for these categories of customers). 

Evidently, the service discipline is no longer indifferent if 1 2   and 1,2w w . 

This case is analysed in Section 2.3. 

2.2.2. Single Sever, Service with Interruptions and Additional Idle Time 

Using previous notations, consider that class 1 includes customers with absolute pri-

ority. An interruption occurs when a customer with absolute priority arrives during the 

service of a non-priority customer. The customer that is incompletely served moves to the 

head of the line of customers without priority, waiting for service to resume (considering 

the interruption causes no loss in service time). 

Besides the direct links between the G, W, S, and E components of an EQS (Figure 1), 

additional feedback loops intervene between S and A in a system with interruptions (Fig-

ure 2). 

Assuming Poisson arrivals and service according to an exponential distribution, the 

average time in queue per class 1 customer is [7,10] 

( )
1 1

1

1 1

1

2 1 1
w

 

  
= = 

− −
, (15) 

and the average time in queue per class 2 customer is 

( )( )

1 2

2 2

1 2
2

1 2

1

2 1 1
w

 

 

  

+

= −
− −

. (16) 

The presented equations support the evaluation of a system’s performance with a 

single server. In the case of complex systems with several servers, simulation models are 

recommended for performance evaluation. 

  
(a) (b) 

  
(c) (d) 

AppliedMath 2022, 2, FOR PEER REVIEW 7 
 

 

 

Figure 2. Relationships between the components in a system with interruptions: (a,b) Configura-

tions for systems with interruptions and additional idle time; (c,d) Configurations for systems with 

interruptions and “storage” for departure according to the dispatching schedule. 

2.3. Priority Service with Different Service Rates 

In the previous section, the analysis supposes the same service rate. In practice, ser-

vice rates are different due to the variation in the operating conditions (transport entity 

sizes, heterogeneity of the transport loads, various routes, etc.). 

Depending on the service time, the customers in a queueing system are classified into 

k classes. Let us also assume that the customers in these classes determine the independent 

elementary flows with arrival rates 'i   (i = 1, …, k) and that the time unit is set so that 

the sum of arrival rates is equal to 1, i.e., 

1

' 1
k

i

i


=

= . (17) 

Assume that the service rates of different classes are independent and the distribu-

tion of the service rate of class i customers is denoted by 𝐵𝑖(𝑥). The distribution of the 

service rate results in 

1

( ) ' ( )
k

i i

i

B x B x
=

= . (18) 

bi and ci are the first and second moments of the distribution 𝐵𝑖(𝑥), respectively, 

meaning 

  
0

( )i ib xB x


=   and 
2

0
( )i ic x B x



=  . (19) 

b and c are the corresponding moments of the distribution function 𝐵𝑖(𝑥). Their re-

sults are as follows: 

 
1

'
k

i i

i

b b
=

=  and  
1

'
k

i i

i

c c
=

= . (20) 

Considering the equality 
1

' 1
k

i

i


=

= , the system utilisation,  , is equal to b, the av-

erage service time. 

For a steady state of the queueing system ( 1  ), it can be demonstrated [7,9] that 

the average time in queue per customer in class i (customers with relative priority com-

pared to customers in classes i + 1, i + 2, …, k) is 

1

1 1

2 1 ' 1 '

i
i i

j j j j

j j

c
w

b b 
−

= =

=
  
− −  

  
 

. 
(21) 

The average time in queue per customer is 
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Assuming Poisson arrivals and service according to an exponential distribution, the
average time in queue per class 1 customer is [7,10]

w1 =
λ1

2(1− ρ1)
=

1
µ1
· ρ1

1− ρ1
, (15)

and the average time in queue per class 2 customer is

w2 =

λ1
µ1

2 +
λ2
µ2

2

2(1− ρ)(1− ρ1)
− 1

µ2
. (16)

The presented equations support the evaluation of a system’s performance with a
single server. In the case of complex systems with several servers, simulation models are
recommended for performance evaluation.
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2.3. Priority Service with Different Service Rates

In the previous section, the analysis supposes the same service rate. In practice, service
rates are different due to the variation in the operating conditions (transport entity sizes,
heterogeneity of the transport loads, various routes, etc.).

Depending on the service time, the customers in a queueing system are classified into
k classes. Let us also assume that the customers in these classes determine the independent
elementary flows with arrival rates λi

′ (i = 1, . . . , k) and that the time unit is set so that the
sum of arrival rates is equal to 1, i.e.,

k

∑
i=1

λi
′ = 1. (17)

Assume that the service rates of different classes are independent and the distribution
of the service rate of class i customers is denoted by Bi(x). The distribution of the service
rate results in

B(x) =
k

∑
i=1

λi
′Bi(x). (18)

bi and ci are the first and second moments of the distribution Bi(x), respectively,
meaning

bi =
∫ ∞

0
xBi(x)and ci =

∫ ∞

0
x2Bi(x). (19)

b and c are the corresponding moments of the distribution function Bi(x). Their results
are as follows:

b =
k

∑
i=1

λi
′bi and c =

k

∑
i=1

λi
′ci. (20)

Considering the equality
k
∑

i=1
λi
′ = 1, the system utilisation, ρ, is equal to b, the average

service time.
For a steady state of the queueing system (ρ < 1), it can be demonstrated [7,9] that the

average time in queue per customer in class i (customers with relative priority compared to
customers in classes i + 1, i + 2, . . . , k) is

wi =
c

2

(
1−

i−1
∑

j=1
λj
′bj

)(
1−

i
∑

j=1
λj
′bj

) . (21)

The average time in queue per customer is

w =
k

∑
i=1

wiλi
′, (22)

meaning

w =
c
2

k

∑
i=1

λi
′(

1−
i−1
∑

j=1
λj
′bj

)(
1−

i
∑

j=1
λj
′bj

) . (23)

Equations (21) and (23) represent the basis for assessing the influence of different
priority sequences on the average queue time. It has been shown in [7,10] that minimal
losses in the waiting process are obtained when the service priorities are ordered in the
increasing ratio between the service time and the cost of an idle hour-customer (i.e., the
highest priority for customers with a minimum value of the mentioned ratio). Consequently,
the optimal prioritisation rule depends neither on the higher-order moments of the serving
times nor on the arrival rates λi

′ (i = 1, . . . , k). When the cost of an hour entity is the same
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for all customer classes, the optimal order of priorities is determined only according to the
average service time of each type.

If the FIFO discipline is applied, the average time in queue per customer, using the
previous notations, is

w0 =
cρ

2(1− ρ)b
. (24)

Assume that the service rate corresponds to an exponential distribution, i.e.,
b(t) = µe−µt, and all customers with a service time shorter than the value ϕ · ρ are in-
cluded in class 1, and all others in class 2. It can be demonstrated [7] that, for such a priority
service, the average time in queue per customer is

w =
c(1− ρ + ρe−ϕ)

2(1− ρ)(1− ρ + ϕρe−ϕ)
. (25)

If the waiting cost of all customers is the same, the value ϕ must be selected to minimise
the function w. Deriving

dw
dϕ

= 0, (26)

its result is
1
ρ
= 1 +

e−ϕ

ϕ− 1
. (27)

Based on Equation (27), the chart in Figure 3 facilitates the interpretation of the
relationships between the values of ϕ and ρ for which the average time in queue is low.
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For example, Figure 3 shows that, for ρ = 0.4, it is necessary to divide customers into
two classes. Class 1 contains customers for which the service time does not exceed the
value of 0.48. The rest of the customers are included in class 2.

To analyse the decrease in the average time in queue per customer in the case of
priority service for customers divided into two classes, denote ∆ as the relative decrease in
the service time:

∆ =
w0 − w

w0
. (28)

Considering Equations (24) and (25), its result is

∆ = 1− b
ρ

1− ρ + ρe−ϕ

1− ρ + ρe−ϕ + ϕρe−ϕ . (29)
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Because the time scale is set such that the sum
k
∑

i=1
λi
′ is equal to 1, the average service

time is equal to system utilisation, ρ. Equation (29) becomes

∆ = 1− 1

1 + ϕρe−ϕ

1−ρ+ρe−ϕ

= 1− 1
1 + u

, (30)

where u can be easily identified.
Equation (27) defines the relationships between the values of ρ and ϕ for which

the priority service for the two classes leads to minimum values for the time in queue.
Substituting the value ρ from Equation (27), the result for u is

u =

ϕ−1
ϕ−1+e−ϕ ϕe−ϕ

1− ϕ−1
ϕ−1+e−ϕ (1− e−ϕ)

=
ϕe−ϕ

ϕ−1+e−ϕ

ϕ−1 − 1 + e−ϕ
, (31)

where
u = ϕ− 1. (32)

Using Equation (30), it results in

∆ = 1− 1
ϕ

. (33)

Based on the dependence between the values of ϕ and ρ, given by Equations (27) and
(33), Figure 4 depicts the decrease in time in queue per customer in a system with priority
service compared to a system with the FIFO discipline.
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Figure 4. Decrease in time in queue per customer in a system with priority service compared to a
system with the FIFO discipline.

Figure 4 shows that assigning priority according to service time (dividing customers
into two classes) reduces the time in the queue. As seen in Figure 4, the reduction is more
substantial for high system utilisation (e.g., for ρ = 0.8, the decrease reaches 42%). It must
be emphasised that the absolute decrease in queue delays is much more significant than
the relative reductions shown in Figure 4, since the values of tr0 considerably increase for
high system utilisation, ρ.

3. Discussion

Mathematical models developed for priority services provide guidelines for reducing
the waiting time in queues and the transit time through systems in practice. The results
are valuable in the operation of traffic and transport systems. Frequently, such priority
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service cannot be accepted when people are involved in processes (passengers, customers,
car drivers, etc.). People involved in service processes accept only the FIFO discipline. e.g.,
a single queue is strictly marked for access to several airport boarding desks; in these cases,
priorities apply only for specific categories of passengers with reduced mobility, small
children, business class, etc.

The presented analysis is appropriate for increasing the performance of services
dedicated to freight. Different transport system components can be modelled using the
particular EQS considered in this study: a single server, arrivals corresponding to a Poisson
distribution, service time exponentially distributed (i.e., M/M/1), and two classes of priori-
ties, e.g., the operation of vessels in dedicated berths represents a service with priorities
and interruption. If a vessel with priority arrives during the operation of a non-priority
vessel, an interruption occurs. The incompletely served vessel is undocked, waiting for
service to resume.

The presented analysis is also useful for complex systems. Such a system with priority
queue disciplines is illustrated in Figure 5.
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Figure 5. Connected EQSs corresponding to the receiving component of a complex railway station
(G1, . . . , Gk—convergent links in the railway station; L1, . . . , Lk—traffic signals for access to S0, the
zone of switches; W1, W2—tracks of receiving yard, respective shunting yard; S1—preparing the
arrived freight trains for shunting; S2—shunting equipment; νa, νs, νe—coefficients of variation for
arrivals, service, dispatching for an EQS).

The structure corresponds to the simplified input part of a railway marshalling station
(Figure 5). The customers are passenger trains and freight trains of different ranks. Server S0
represents the zone of switches to access the tracks of the receiving yard. Priority discipline
is applied for server S0: passenger trains have absolute priority compared to freight trains.
In addition, priority disciplines are applied for servers S1 and S2, where customers are
represented by coupled groups of wagons waiting in W1 for the shunting process. The
customers in priority class 1 are established based on Equation (27).

In modelling such complex systems, it is essential to note that EQS structuring (e.g.,
EQSs with servers S0, S1, and respective S2) considers that one system’s outputs constitute
inputs for the following system. Suppose that the first system corresponds to the queue sys-



AppliedMath 2023, 3 47

tem considered in the presented analysis, i.e., M/M/1 with νa = νs = 1, but the assumption
could not apply to the following systems, then the coefficient of variation characterising
the outputs of the first system is

νe,1 = νa,1 − (νa,1 − νs,1)ρs,1
2νa,1 . (34)

Consequently, the presented analysis for EQS with two priority classes is helpful for
such consecutive systems. However, the results should be used with caution.

4. Conclusions

Different queue disciplines are applied to serve heterogeneous traffic and transport
entities in real-world systems. The queuing theory can provide, within certain limits, esti-
mates of the performance of other queue disciplines than those included in the Kendall–Lee
classification (respectively, in the case of customers with different priorities). The presented
analysis is valuable in evaluating the effects of queue disciplines on the performance of
systems in which a non-priority job is not or is interrupted when a priority job arrives.

The presented analysis for two priority classes has practical value. Priority service
can increase system performance by reducing time in the system for customers with high
costs. In addition, in the considered settings, the total time in the system is reduced for all
customers, which leads to resource savings for system infrastructures. For large service
demands, the effects are more significant.

Even if it is expected to obtain better performance, applying several categories of
priorities in transport system operation leads to ambiguities regarding classifying customers
in a priority category.

This study is developed for an EQS (with a single server) corresponding to Markov
processes, i.e., exponential distribution for inter-arrivals and service time. In the case
of generalised systems with priority discipline, it is necessary to evaluate the Laplace–
Stieltjes transform of the time in the system, which can be numerically applied only for
particular distributions.

The presented models correspond to the steady state of the system. For some real-
world components (e.g., elements of transport terminals), transitive and imperfect states
must be considered besides steady states. Often, the only solution in these cases is simula-
tion model development.

Complex systems include successive elementary systems with one or more servers.
The sequential study of subsequent elementary systems is complex, and the results are
indicative. Simulation model development is also the recommended method in these cases.
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