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Abstract: Graph dynamics for a node-labeled graph is a set of updating rules describing how
the labels of each node in the graph change in time as a function of the global set of labels. The
underpopulation rule is graph dynamics derived by simplifying the set of rules constituting the
Game of Life. It is known that the number of label configurations met by a graph during the dynamic
process defined by such rule is bounded by a polynomial in the size of the graph if the graph is
undirected. As a consequence, predicting the labels evolution is an easy problem (i.e., a problem
in P) in such a case. In this paper, the generalization of the underpopulation rule to signed and
directed graphs is studied. It is here proved that the number of label configurations met by a graph
during the dynamic process defined by any so generalized underpopulation rule is still bounded by
a polynomial in the size of the graph if the graph is undirected and structurally balanced, while it is
not bounded by any polynomial in the size of the graph if the graph is directed although unsigned
unless P = PSPACE.
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complexity
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1. Introduction

Social networks, traffic networks (ant colonies and distributed message passing algo-
rithms included), biological cell systems and cellular automata are all examples of sets of
relations between pairs of “individuals” in which the “state” of an individual is somehow
influenced by the set of its relations and evolves over time. As a couple of examples, an
individual may join some event occurring in a pub if the amount of people joining the
same event is reasonably large (so as to ensure opportunities to his/her social life) but
not too large (so avoiding staying in an overcrowded pub), or an individual moves to a
novel (expensive and complex) operating system only if a reasonable amount of her/his
colleagues has already moved to it (in order, for instance, to ease the cooperation). In
this paper, the second scenario is considered, in which a critical amount of an individual
acquaintances getting some state is needed for that individual to obtain the same state.

Networks are naturally modeled as graphs, with nodes corresponding to individuals
and edges/arcs to the symmetric/asymmetric relations between pairs of individuals. In fact,
while many relations behave symmetrically (as friendship in some kinds of social networks),
many real-world complex networks are directed (as people following famous stars but not
followed by them, or the biological signal flow in biological networks; see, for instance,
the discussion in [1]). In social network analysis, signed graphs, in which a labeling of the
edges/arcs with values in {−1,+1} is given, are used for distinguishing between relations
ruled by friendship/trusting and relations ruled by antagonism/distrusting (see [2] and
references quoted therein). Individuals’ state evolution in a network is then studied in
terms of graph dynamics.
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Following the definition in [3], an opinion dynamics is a state update rule in which
the state of a node at step t only depends on its state at time t− 1 and on the value of a
function of the states of its neighbors at step t− 1; the update rule is the same for every
graph and for every node, and it does not change over time.

Many opinion dynamics stochastic models have been considered for unsigned graphs,
such as the French–DeGroot model [4,5] and its extensions, the majority rule model [6],
and the social impact model [7]; see also [3,8] for a survey. Some of these models have been
adapted to the case of signed graphs [9–12].

Goles and Olivos [13] proposed single-threshold deterministic opinion dynamics for
weighted graphs in which every node at each step is either in state 0 or in state 1, and at
the next step, it obtains state 1 if and only if the sum of the products between the current
state of each of its k neighbors with the weight of the edge connecting the neighbor to the
individual is at least θ(k) for a given function θ defined on the node set. In [14], a couple of
deterministic opinion dynamics models, the overpopulation and theunderpopulation rules,
that still work with binary node states are defined for unsigned graphs as a simplification of
the Game-of-Life rules [15]; according to the underpopulation rule, nodes’ opinion changes
are controlled by two constant values, c+ and c−. A node gets a positive opinion if either its
opinion is already positive and at least c+ neighbors have a positive opinion, or its opinion
is negative and at least c− neighbors have a positive opinion. The local threshold-based
rules defined in [16] generalize the underpopulation rule both in that they are designed for
arc-signed directed graphs and in that the nodes’ opinion changes are now controlled by
two functions of the node degree, θ+ and θ−, instead of by two constant values.

Related literature. The study of various aspects of graph dynamics has received very wide
attention in the literature, and a detailed discussion of papers and results about this topic
is out of the scope of this paper. Broadly speaking, two scenarios may be identified in
this setting.

In the first scenario, each node is in one of two states (with possible generalizations),
say “old state” and “new state”, and once a node moves from an old state to a new state,
it will remain in the new state forever. Within this scenario, two problems have been
largely studied, in several variations and with respect to several dynamics: the influence
maximization and the target set selection problems. In the influence maximization problem,
the goal is detecting a small set of nodes to put in the new state in order to make a maximum
size subset of nodes move to the new state [17–19]. Somehow symmetrically, in the target
set selection problem, the goal is detecting a minimum size set of nodes to put in the new
state in order to make all the other nodes in the graph move to the new state. Initially, the
setting of only positive influences (that is, the underlying graph is unsigned) was considered
in which whenever an individual knows that a neighbor has obtained the new state, such
an individual will gain some evidence that getting the new state is a good idea. In other
words, any individual always increases its support in favor of the new state whenever one
of its neighbors obtains it. Among the many models introduced in this setting, the voter
model [20], the linear threshold model [21], and the independent cascade model [22,23]
have had a large impact in the study of diffusion processes over networks.

In several network settings, also negative link effects are to be considered. In [24–27], it
is assumed that individuals may develop a positive or negative opinion about getting the
new state and, in the latter case, they may negatively influence their neighbors. In [28–30],
it is taken into account the possibility that some relations between individuals are ruled
by, for instance, antagonism and distrusting while being assumed that node opinions
about getting the new state are always positive: here, receiving positive feedback from an
untrusted/antagonist neighbor results in increasing the support for not obtaining the new
state. For instance, in [30], the target set selection is studied in the model in which a node
obtains the new state at step t if and only if for the first step, one of its neighbors obtains the
new state t− 1, and all its node neighbors that obtain the new state at step t− 1 are joined



AppliedMath 2022, 3 12

to the node by a positive link. In [31,32], the two approaches (positive/negative opinions
and positive/negative relationships) are jointly considered.

In the second scenario, each node is in one of two states (with possible generalizations),
say “−1” and “1”, and it can move from one state to the other an unlimited number of
times. As noticed in several papers on the topic, being allowed to change from one state to
the other well fits to describe people changing opinions (see [8,33] among the others), so
that the graph dynamics in this scenario are often referred to as opinion dynamics.

Within this scenario, problems that have been considered concern the study of the
reachability of a consensus configuration in which all nodes have the same opinion, starting
from a given opinion configuration [33–36] or in a random graph [37]; the reachability
of an equilibrium configuration in a random graph in which no node changes its opinion
any longer [38]; if an opinion obtained by a minority of nodes may become the opinion
of the majority of nodes [39]; and if a Nash equilibrium in a game theoretic setting can
be reached [40]. In [41], the case of multiple (not binary) alternatives is considered with
respect to the influence maximization. A review of topics in consensus and coordination of
multi-agent systems, also considering signed networks, is provided in [42].

The reachability problems studied in the cited papers mainly contain some degree of
randomness, either in the graph [37,38] or in the opinion dynamics (the models in [33–36] as-
sume that not all nodes that could change their opinion actually do it). Furthermore, [33–36]
(somehow) search for an initial opinion configuration from which a consensus configura-
tion is reachable. In [16,43], the setting is different in two aspects. First, no randomness is
considered: in particular, the opinion dynamics forces all nodes in the condition of changing
their opinion to simultaneously doing it. Then, a graph is given in a given initial opinion
configuration, and the question is something like whether a (given) target configuration is
reachable from the initial one or not. It is worthwhile to be observed that the answer to such
a question can be derived by simply letting the dynamics work (one opinion configuration
after the other) till the target configuration is eventually met. This procedure is in fact
effective in the first scenario (when nodes never go back to the old state) since, in this case,
the number of configurations that a graph can meet during its evolution is bounded by
the number n of its nodes. Conversely, as to the second scenario, since each node has the
possibility of changing its opinion more and more times, the procedure could require a
sequence of 2n steps, so putting its complexity outside the tractability threshold.

In [43], it is proved a tight bound Θ(n2) on the number of configurations met by
an unsigned undirected graph evolving according to a deterministic majority dynamics
(in which a node changes its opinion if and only if the majority of its neighbors has the
other opinion) starting from any initial configuration. In [14], a polynomial bound in the
graph size on the number of configurations met by an unsigned undirected graph evolving
according to an underpopulation rule and starting at any initial opinion configuration
is provided. In [16], a similar polynomial bound is first proved for unsigned undirected
graphs evolving according to any local threshold-based dynamics; then, the bound is
proved when the graph is signed and undirected, and it evolves according to an extension
of the deterministic majority dynamics to signed graphs. All this makes the reachability
problems tractable when considered with respect to a local threshold-based dynamics and
the graph is undirected and unsigned, or when considered with respect to the deterministic
majority dynamics and the (signed or unsigned) graph is undirected. In [16], it is also
proved that the reachability problems are PSPACE-complete when the graph is directed,
although unsigned, and evolves with respect to the deterministic majority dynamics.

Paper contribution. This paper is devoted to the study of the generalization of the under-
population rule to signed and directed graphs. Both the underpopulation rule and the
deterministic major dynamics are special occurrences of local threshold-based dynamics:
indeed, as it will become clear in the next section, the underpopulation rule occurs by
choosing θ+ = c+ and θ− = c−, that is, as two constant functions, while the deterministic
majority dynamics occurs by choosing θ+(k) = d k

2e and θ−(k) = b k
2c+ 1. Hence, on the

majority dynamics side, the amount of a node’s neighbors in a given opinion needed to
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make that node change or keep its current opinion linearly increases with the node degree,
while such an amount is independent of the node degree in the underpopulation rule.

Of course, each of the two dynamics well fits in different contexts. The spread of
technologies, such as cellular phones platforms, is suitable to be described by majority
dynamics in that the adoption of a new technology also depends on the incentives people
have to communicate with friends who have already adopted it. On the other hand, an
individual may decide to assume a new drug after observing the good effects of the drug
on a large enough amount of its acquaintances—independent of the percentage of its
acquaintances that have tested the drug.

From a theoretical point of view, it is interesting to study if the just outlined dichotomy
between “constant size requirements” and “linear increase in the node degree requirements”
entails meaningful differences in the size of the set of opinion configurations a graph enters
in while evolving according to the two dynamics. The main result of this paper is proving
that, in fact, in many cases, the sizes of such sets in the two opinion dynamics are strictly
related. Specifically, we have the following:

• Like in the majority dynamics case, unless P = PSPACE, the total number of opinion
configurations an unsigned directed graph enters while evolving according to an
underpopulation rule is not polynomially bounded in the size of the graph, and this is
true even when the maximum indegree of the graph is 6 and c+ = 3 and c− = 4.

• The total number of opinion configurations a structurally balanced undirected graph
enters while evolving according to an underpopulation rule is polynomially bounded
in the size of the graph.

As for the former point, actually, it is here proved that it is PSPACE-complete to decide
if a given node will ever obtain one of the two opinions when a directed unsigned graph
in a given initial opinion configuration evolves according to undepopulation dynamics.
The PSPACE-completeness is proved by the a technique similar to that in Cook’s theorem,
namely, it will be shown that the computation of any deterministic Turing machine T on
any input x can be simulated by the underpopulation evolution of a related graph G(T),
starting from an opinion configuration ω(x) and that G(T) and ω(x) can be computed in
polynomial time in the sizes of T and x.

As for the latter point, we recall that a signed undirected graph is structurally bal-
anced [44] if the set of its nodes can be partitioned into two subsets X and Y such that all
edges joining a node in X to a node in Y are negative, and all the other edges are positive.
The proof of the latter point occurs in two steps, both by the simulation technique.

The first step has somehow independent interest. Specifically, it is here shown how to
simulate the opinion evolution of a structurally balanced graph according to symmetric
dynamics by the opinion evolution of a related unsigned undirected graph according
to related symmetric dynamics, where symmetric dynamics is a local threshold-based
dynamics such that θ+(k) + θ−(k) = k for all k ∈ N. Such a simulation and the result in [16]
on the number of configurations met by an unsigned undirected graph evolving according
to any local threshold based dynamics jointly prove that a polynomial bound exists on the
total number of configurations met by a structurally balanced graph evolving according
to a symmetric dynamics. The simulation technique also deserves to be mentioned in
that it requires the definition of edge-labels dynamics and of the support graph of a graph
in some opinion configuration; after that, it is shown that the opinion evolution of the
original graphs may be, somehow concisely, described by the edge-labels evolution of its
support graph.

The second step shows how to simulate the opinion evolution of a signed graph
according to any underpopulation dynamics by the opinion evolution of a related signed
graph according to related symmetric dynamics and that if the first graph is structurally
balanced, then the second graph is structurally balanced as well.
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It is worth noticing that the structural balance property of a graph was already consid-
ered in several papers [9–11,44], proving to be useful to the convergence of the dynamics to
specific opinion distributions.

The above outlined achievements are formally stated in the next section, together with
some of their consequences.

2. Results

Before formally stating the results obtained in this paper, some formal definitions are
required. Table 1 lists some of the notations introduced in this paper.

Table 1. List of symbols.

Notation Meaning

λ arc/edge sign function
ω (and sometimes π) opinion configuration
d generic opinion dynamics
for t > 0, dt the application of dynamics d for t times

(dt(G, ω) is the opinion configuration met by G after
t steps of its d-evolution starting at ω)

d(θ+ ,θ−) local threshold-based opinion dynamics ruled by
θ+ : N→ N and θ− : N→ N

dθ symmetric dynamics ruled by θ : N→ N
(dθ = d(θ+ ,θ−) with θ+(k) = θ(k) and θ−(k) = k− θ(k))

d(c+ ,c−) underpopulation opinion dynamics ruled by c+, c− ∈ N
(d(c+ ,c−) = d(θ+ ,θ−) with θ+(k) = c+ and θ−(k) = c−))

Ed(G, ω) sequence of distinct opinion configurations met by graph G
while evolving according to dynamics d
(it becomes Ed(θ+ ,θ−)

(G, ω), Ed(θ)
(G, ω), Ed(c+c−)

(G, ω)

in the specific dynamics)
U-RT the problem of deciding if ω′ ∈ Ed(c+ ,c−)s

(G, ω) exists
such that ω′(u) = 1 for all u ∈ U, given: dynamics d(c+ ,c−),
graph G, opinion configuration ω, subset of nodes U.

A directed signed graph G = (V, A, λ) is a directed graph together with an arc-labeling
function λ : A→ {−1, 1}. An undirected signed graph G = (V, E, λ) is similarly defined,
with λ being an edge labeling function, that is, λ : E→ {−1, 1}. Within this paper, for any
node v of a directed (undirected) signed graph G, N(u) denotes the set of in-neighbors
(respectively, neighbors) of u and δu = |N(u)|. Finally, ∆ = max{δu : u ∈ V}.

An opinion configuration of a signed graph G is a node-labeling function ω : V →
{−1, 1}, stating whether a given node is in favor of or against a specific topic. Nodes
influence each other so that their opinions change over time: in particular, positive in-
neighbors of a node u positively influence u, that is, their influence works in favor of u
obtaining their same opinion, while negative in-neighbors of u negatively influence u, that
is, their influence works in favor of u obtaining their opposite opinion. In this respect,
for any in-neighbor v of any node u, we say that v pushes u to 1 at ω if ω(v) = 1 and
λ(v, u) = 1 or ω(v) = −1 and λ(v, u) = −1, and that v pushes u to −1 at ω if ω(v) = −1
and λ(v, u) = 1 or ω(v) = 1 and λ(v, u) = −1. Finally, P+(u) and P−(u) shall denote the
number of in-neighbors of u pushing u, respectively, to 1 and to −1 at ω.

An opinion dynamics is functional d which specifies, for a given signed graph G and
an opinion configuration ω of G, the next opinion configuration d(G, ω) of G. In the
remainder of this paper, for any u ∈ V, d(G, ω)(u) is the opinion of node u obtained after
the influence of its neighbors according to d, that is, the opinion of u after one step of the
opinion evolution process of G starting at ω; similarly, for any t > 0, d(G, ω)t(u) is the
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opinion of u after t steps of the opinion evolution process of G starting at ω and occurring
according to d.

The opinion configuration evolution of a signed graph G in a configuration ω with
respect to opinion dynamics d (or, in short, the d-evolution of G) is the sequence Ed(G, ω) =
〈ω1 = ω, ω2, . . . , ωT〉 of distinct opinion configurations such that T ≤ 2|V| (the number of
configurations of V) and the following:

• For t = 2, . . . , T, ωt = d(G, ωt−1);
• There exists h ≤ T such that ωh = d(G, ωT).

With a slight abuse of notation, the sequence Ed(G, ω) shall be dealt with as a set as well.
A local threshold-based dynamics is a dynamics d(θ+ ,θ−) ruled by a pair of threshold

functions θ+ : N→ N and θ− : N→ N as described in the following: for any node u and
for any opinion configuration ω, d(θ+ ,θ−)(G, ω) = ω′ is defined as

ω′(u) =


1 if ω(u) = 1 and P+(u) ≥ θ+(δu)

or ω(u) = −1 and P+(u) ≥ θ−(δu),
−1 if ω(u) = 1 and P+(u) < θ+(δu)

or ω(u) = −1 and P+(u) < θ−(δu),

or, equivalently, as

ω′(v) =


ω(v) if ω(v) = 1 and P+(v) ≥ θ+(δv) or

ω(v) = −1 and P−(v) ≥ δv − θ−(δv),
−ω(v) otherwise.

(1)

A local threshold-based dynamics is symmetric if θ+(k) + θ−(k) = k for any k ∈ N.
Notice that symmetric dynamics is actually ruled by a single threshold function, in that
θ−(k) = k − θ+(k); hence, in the remaining of this paper, the notation dθ will denote a
symmetric dynamics and will stand for d(θ+ ,θ−) with θ+(k) = θ and θ−(k) = k− θ(k).

The underpopulation opinion dynamics considered in [14] is a noticeable example of
a (family of) local threshold-based opinion dynamics, which corresponds to having, for
any u ∈ V, θ+(u) = c+ and θ−(u) = c− for some pair of constants c+, c− ∈ N. The
underpopulation dynamics ruled by the constants c+ and c− will be denoted as d(c+ ,c−).

In what follows, theorems and corollaries constituting this paper contribution, which
will be mainly proved in the next section, are stated.

Theorem 1. For any structurally balanced signed graph G = (V, E, λ) of maximum degree ∆, for
any opinion configuration ω of G and for any symmetric local threshold-based opinion dynamics dθ ,∣∣Edθ

(G, ω)
∣∣ ≤ 4|E|+ 2|V|+ 4∆(∆ + 1)|V|+ 2.

Theorem 2. For any structurally balanced signed graph G = (V, E, λ), for any opinion configura-
tion ω of G and for any underpopulation opinion dynamics d(c+ ,c−), it holds that

∣∣∣Ed(c+ ,c−)
(G, ω)

∣∣∣ ∈
O(|E|+ |V|∆4). More precisely,∣∣∣Ed(c+ ,c−)

(G, ω)
∣∣∣ < 4|E|+ 2|V|+ 2|V|(2∆ + 3)(2∆ + 4)3 + 2.

Within the framework defined in this paper, the UNDERPOPULATION-REACHTARGET

problem (in short, U-RT) asks for deciding, given underpopulation opinion dynamics
d(c+ ,c−), a signed oriented graph G, a target set of nodes U and an opinion configuration ω
of G, if a configuration ω′ ∈ Ed(c+ ,c−)s

(G, ω) exists such that ω′(u) = 1 for all u ∈ U.

Theorem 3. The problem U-RT is PSPACE-complete, even when restricted to the dynamics d(3,4),
to unsigned (directed) graphs with maximum indegree 6 and to size 1 target sets.
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The following corollary is a remarkable consequence of Theorem 3.

Corollary 1. If P 6= PSPACE, then there does not exist any polynomial P such that, for ev-
ery directed graph G = (V, A) and for every opinion configuration ω : V → {−1, 1} of G,
|Ed(3,4)

(G, ω)| ≤ P(|G|).

Needless to say, the PSPACE-completeness proved in Theorem 3 allows to state in a
more general form the above corollary, as described in what follows.

Let h, k ∈ N and let f : N×N→ N; P f (h,k) shall denote the class of polynomials whose
degree is f (h, k).

Corollary 2. If P 6= PSPACE then, for any f : N×N → N, there does not exist p ∈ P f (c+ ,c−)

such that, for every underpopulation opinion dynamics d(c+ ,c−), for every unsigned directed graph
G = (V, A) and for every opinion configuration ω : V → {−1, 1} of G, |Ed(c+ ,c−)

(G, ω)| ≤
p(|G|).

3. Proofs

3.1. Proof of Theorem 1: Polynomial Bound to
∣∣Edθ

(G, ω)
∣∣ in Structurally Balanced Graphs

It is well-known that a signed graph G = (V, E, λ) is structurally balanced if and only
if no cycle in G contains an odd number of edges labeled −1.

The aim of this section is showing that, for any structurally balanced signed graph
G = (V, E, λ), for any opinion configuration ω of G and for any symmetric local threshold-
based opinion dynamics dθ , the size of Edθ

(G, ω) is polynomially bounded in the size of
G. This goal is met by reducing the dθ-opinion evolution of a structurally balanced signed
graph G = (V, E, λ) starting at some opinion configuration ω to the dθ-opinion evolution
of the undirected unsigned graph G = (V, E) corresponding to G and starting at a properly
defined opinion configuration ω.

The reduction occurs in two steps. First, in Section 3.1.1, the edge-sign dynamics
and the support graph associated with a signed graph in some initial opinion configuration
are defined, and it is shown that the opinion evolution of the original signed graph with
respect to a symmetric local threshold-based dynamics can be simulated by the edge-signs
evolution of its support graph. Then, in Section 3.1.2, we show that the support graph of
a structurally balanced signed graph G = (V, E, λ) in any opinion configuration ω is the
support graph of the undirected unsigned graph G = (V, E) in some opinion configuration
ω. All this will lead to the following lemma, formally proved in Section 3.1.3.

Lemma 1. For any structurally balanced signed graph G = (V, E, λ), for any opinion configu-
ration ω of G and for any symmetric local threshold-based opinion dynamics dθ , there exists an
opinion configuration ω of the undirected unsigned graph G = (V, E) such that

|Edθ
(G, ω)| = |Edθ

(G, ω)|.

In [16], the following theorem was proved.

Theorem 4. For any local threshold-based opinion dynamics d(θ+ ,θ−), for any undirected un-
signed graph G = (V, E) of maximum degree ∆ and for any opinion configuration ω of G,∣∣∣E(dθ+ ,θ−)

(G, ω)
∣∣∣ ≤ 4|E|+ 2|V|+ 4∆(∆ + 1)|V|+ 2.

From Lemma 1 and Theorem 4, the bound on the number of configurations met by a
structurally balanced graph during its evolution according to a symmetric dynamics stated
by Theorem 1 finally follows.
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3.1.1. First Step: Symmetric Dynamics and Support Graphs

Given a signed graph G = (V, E, λ) and an opinion configuration ω of G, we say that
edge (u, v) ∈ E ω-supports ω(v) if λ(u, v)ω(u) = ω(v) (and, hence, λ(u, v)ω(v) = ω(u) so
that (u, v) ω-supports ω(u) as well).

Let G = (V, E, λ) be a signed graph and let ω be an opinion configuration of G. The
support graph associated with G and ω is the edge-signed graph SG,ω = (V, E, σ) such that
σ : E→ {−1, 1} is defined as follows: for every (u, v) ∈ E

σ(u, v) =
{

1 if (u, v) ω-supports ω(v), that is, λ(u, v)ω(u) = ω(v),
−1 otherwise.

In Figure 1, an example of the support graph of a signed graph in a given opinion configu-
ration is shown.

Let dθ be a symmetric local threshold-based opinion dynamics. The following edge
dynamics aθ is defined for SG,ω: by denoting as σ′ = aθ(SG,ω), for any (u, v) ∈ E it is

σ′(u, v) =


σ(u, v) if pσ(u) ≥ θ(u) ∧ pσ(v) ≥ θ(v)

or pσ(u) < θ(u) ∧ pσ(v) < θ(v),
−σ(u, v) otherwise,

where, for u ∈ V, pσ(u) = |{(u, v) ∈ E : σ(u, v) = 1}|.
The next lemma proves that the dθ-evolution of a signed graph G in an opinion

configuration ω reflects in the aθ-edge-evolution of SG,ω.

Lemma 2. For any signed graph G = (V, E, λ) and for any opinion configuration ω of G, it holds
that SG,dθ(G,ω) = (V, E, aθ(SG,ω)).

Proof. We set ω′ = dθ(G, ω) and as σ′ = aθ(SG,ω).
For every u ∈ V, by the definition of σ and of dθ , the following holds:

• if ω(u) = 1 then pσ(u) = P+(u) and, hence, ω′(u) = 1 if and only if pσ(u) = P+(u) ≥
θ(u),

• if ω(u) = −1 then pσ(u) = P−(u) and, hence, ω′(u) = −1 if and only if pσ(u) =
P−(u) ≥ θ(u).

This proves that, for every u ∈ V, ω′(u) = ω(u) if and only if pσ(u) ≥ θ(u).
Let (u, v) ∈ E. If σ(u, v) = 1, that is, λ(u, v)ω(u) = ω(v), the following holds:

• If ω′(u) = ω(u) and ω′(v) = ω(v) then

λ(u, v)ω′(u) = λ(u, v)ω(u) = ω(v) = ω′(v),

so that (u, v) ω′-supports ω′(v). On the other hand, if ω′(u) = ω(u) and ω′(v) = ω(v)
then pσ(u) ≥ θ(u) and pσ(v) ≥ θ(v), so that σ′(u, v) = σ(u, v) = 1.
Similarly, if ω′(u) 6= ω(u) and ω′(v) 6= ω(v), then λ(u, v)ω′(u) 6= λ(u, v)ω(u) =
ω(v) so that λ(u, v)ω′(u) = ω′(v), that is, (u, v) ω′-supports ω′(v). On the other
hand, if ω′(u) 6= ω(u) and ω′(v) 6= ω(v) then pσ(u) < θ(u) and pσ(v) < θ(v), so
that σ′(u, v) = σ(u, v) = 1.

• If ω′(u) = ω(u) and ω′(v) 6= ω(v) then λ(u, v)ω′(u) 6= ω′(v), so that (u, v) does
not ω′-support ω′(v). On the other hand, if ω′(u) = ω(u) and ω′(v) 6= ω(v) then
pσ(u) ≥ t(u) and pσ(v) < t(v), so that σ′(u, v) 6= σ(u, v), that is, σ′(u, v) = −1.

This proves that, for any (u, v) ∈ A, if σ(u, v) = 1 then σ′(u, v) = 1 if and only if (u, v)
ω′-supports ω′(v). Similarly, it can be proved that, for any (u, v) ∈ A, if σ(u, v) = −1 then
σ′(u, v) = 1 if and only if (u, v) ω′-supports ω′(v) in ω′ as well.

This completes the proof of the lemma.
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3.1.2. Second Step: Structurally Balanced Graphs

In this subsection, we exploit the results in Section 3.1.1 to show how to simulate the
dθ-opinion evolution of a structurally balanced signed graph G = (V, E, λ) starting at some
opinion configuration ω by the dθ-opinion evolution of the related undirected unsigned
graph G = (V, E) starting at some opinion configuration ω.

The first achievement of this subsection is that the structural balance property of a
graph, at any opinion configuration, also holds for its support graph, as stated in the
next lemma.

Lemma 3. If G = (V, E, λ) is a structurally balanced graph, then for any opinion configuration
ω : V → {−1,+1} of G, SG,ω = (V, E, σ) is structurally balanced.

Proof. Suppose, by contradiction, that SG,ω is not structurally balanced, that is, there exists
a cycle C in SG,ω containing an odd number of edges (u, v) such that σ(u, v) = −1. This
means that there exists h ∈ N such that

C− = {(u, v) ∈ C : σ(u, v) = −1} = {(u0, v0), (u1, v1), . . . , (u2h, v2h)},

(possibly ui = vi⊕1 (within this proof, ⊕ will denote the sum modulo 2h.) for some
i ∈ {0, . . . , 2h}). For any i = 0, . . . , 2h, denote as Ci the set of edges in C between vi and
ui⊕1.

Without loss of generality, assume that ω(u0) = 1; hence, since σ(u0, v0) = −1, it is
λ(u0, v0)ω(u0) 6= ω(v0), that is, ω(v0) = −λ(u0, v0)ω(u0). Similarly, since σ(e) = 1 for all
edges e ∈ C between v0 and u1, then

ω(u1) = −λ(u0, v0)ω(u0) ∏
(u,v)∈C0

λ(u, v)

and, since σ(u1, v1) = −1, ω(v1) = λ(u0, v0)λ(u1, v1)ω(u0)∏(u,v)∈C0
λ(u, v).

Again, since σ(e) = 1 for all edges e ∈ C between v1 and u2, then

ω(u2) = λ(u0, v0)λ(u1, v1)ω(u0) ∏
(u,v)∈C0∪C1

λ(u, v)

and, since σ(u2, v2) = −1,

ω(v2) = −λ(u0, v0)λ(u1, v1)λ(u2, v2)ω(u0) ∏
(u,v)∈C0∪C1

λ(u, v).

By iterating, we obtain that

ω(v2h) = −ω(u0) ∏
0≤i≤2h

λ(ui, vi) ∏
(u,v)∈∪1≤i≤2h−1Ci

λ(u, v)

and, finally,

ω(u0) = −ω(u0) ∏
0≤i≤2h

λ(ui, vi) ∏
(u,v)∈∪1≤i≤2hCi

λ(u, v) = −ω(u0) ∏
(u,v)∈C

λ(u, v).

Notice now that, since G is structurally balanced, then ∏(u,v)∈C λ(u, v) > 0. Hence,
the last equality obtains the contradiction ω(u0) = −ω(u0).

Given a signed graph G = (V, E, λ) and an opinion configuration ω of G, it may well
happen that SG,ω = SG′ ,ω′ , with G′ = (V, E, λ′), for some arc-labeling function λ′ and
some opinion configuration ω′ of G′.
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Figure 1. An example of the construction of the structurally balanced support graph SG,ω of a
structurally balanced graph G = (V, E, λ) in an opinion configuration ω and, then, of the construction
of an opinion configuration ω of the unsigned graph G = (V, E) such that SG,ω = SG,ω . Negative
edges as well as negative node labels are grey, and positive ones are black.

In particular, thanks to Lemma 3, this has a noticeable consequence when G is struc-
turally balanced, as stated in the next lemma.

Lemma 4. For any structurally balanced signed graph G = (V, E, λ) and for any opinion configu-
ration ω of G there exists an opinion configuration ω of the unsigned graph G = (V, E) such that
SG,ω = SG,ω.

Proof. Let G = (V, E, λ) be a structurally balanced graph, let ω be an opinion configuration
of G and let SG,ω = (V, E, σ) be the support graph associated with G and ω: hence, by
Lemma 3, SG,ω is structurally balanced as well. We choose any x ∈ V, and compute the
following opinion configuration ω of G = (V, E):

• set ω(x) = +1 and V′ = {x};
• set i = 0 and V0 = {x};
• while V′ 6= V, repeat the following steps

– set i = i + 1 and Vi = ∅;
– for each u ∈ Vi−1 and for each v ∈ N(u), set ω(v) = σ(u, v)ω(u), Vi = Vi ∪ {v}

and V′ = V′ ∪ {v}.
We claim that SG,ω = SG,ω. In fact, denote as σ the edge-sign function in SG,ω, and

suppose the claim does not hold, that is, there exists (u, v) ∈ E such that σ(u, v) 6= σ(u, v):
since G is unsigned and, hence, by definition of support graph, ω(v) = σ(u, v)ω(u), this
means that ω(v) 6= σ(u, v)ω(u) (and ω(u) 6= σ(u, v)ω(v)).

Without loss of generality, assume that u ∈ Vi and v ∈ Vj with i ≤ j, and let
〈x = u0, u1, . . . , ui = u〉 and 〈x = v0, v1, . . . vj = v〉 be the two sequences of nodes leading
to the assignments ω(u) and ω(v): that is, according to the just outlined algorithm, for
h > 0, uh, vh ∈ Vh and ω(uh) = σ(uh−1, uh)ω(uh−1) and ω(vh) = σ(vh−1, vh)ω(vh−1).
Notice that, since ω(v) 6= σ(u, v)ω(u), it is u 6= vj−1.

Let ` ≤ i be such that u` = v` and, for every `+ 1 ≤ h ≤ i− 1, uh 6= vh (eventually,
` = 0), and denote as y the node u` = v`. Since u 6= vj−1 and (u, v) ∈ E, the sequence
of nodes

C = 〈u = ui, ui−1, . . . , u` = y = v`, v`+1, . . . , vj = v〉

is actually a cycle.
Suppose first σ(u, v) = 1 so that ω(v) 6= ω(u). The following holds:

- If ω(u) 6= ω(y) then the path 〈u = ui, ui−1, . . . , u` = y〉 contains an odd number of
edges e such that σ(e) = −1. Furthermore, since ω(u) 6= ω(v), then ω(v) = ω(y) and,
hence, the number of edges e in the path 〈y = v`, v`+1, . . . , vj = v〉 such that σ(e) = −1
is even. This would imply that the number of edges e in C such that σ(e) = −1 is odd,
so contradicting that SG,ω is structurally balanced.
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- If ω(u) = ω(y), then the path 〈u = ui, ui−1, . . . , u` = y〉 contains an even number of
edges e such that σ(e) = −1. Furthermore, since ω(u) 6= ω(v), then ω(v) 6= ω(y) and,
hence, the number of edges e in the path 〈y = v`, v`+1, . . . , vj = v〉 such that σ(e) = −1
is odd. Again, this would imply that the number of edges e in C is such that σ(e) = −1
is odd.

The same reasoning can be applied if we suppose that σ(u, v) = −1, and this completes the
proof that SG,ω = SG,ω.

In Figure 1, an example of the construction of ω from a structurally balanced graph G
in an opinion configuration ω according to Lemma 4 is shown.

3.1.3. Summarizing

Let dθ be a symmetric local threshold-based dynamics, let G = (V, E, λ) be a struc-
turally balanced graph and let ω be an opinion configuration of G. By Lemma 3, the support
graph SG,ω associated with G and ω is structurally balanced so that, by Lemma 4, there
exists an opinion configuration ω of the unsigned graph G = (V, E) such that SG,ω = SG,ω .

By Lemma 2, there is a one-to-one correspondence between the opinion configurations
met by G while evolving according to dθ starting at ω and the configurations met by SG,ω
while evolving according to the edge dynamics aθ described in Section 3.1.1. Similarly, there
is a one-to-one correspondence between the opinion configurations met by G while evolving
according to dθ starting at ω and the configurations met by SG,ω while evolving according
to aθ . Hence, there is a one-to-one correspondence between the opinion configurations met
by G while evolving according to dθ starting at ω, and the configurations met by G while
evolving according to dθ starting at ω. This proves Lemma 1.

3.2. Proof of Theorem 2: Polynomial Bound to
∣∣∣Ed(c+ ,c−)

(G, ω)
∣∣∣ in Structurally Balanced Graphs

The aim of this section is to show that, for any structurally balanced signed graph
G = (V, E, λ), for any opinion configuration ω of G and for any underpopulation opinion
dynamics d(c+ ,c−), the size of Ed(c+ ,c−)

(G, ω) is polynomially bounded in the size of G.
The first step to this goal is reducing the d(c+ ,c−)-opinion evolution of a signed graph

G = (V, E, λ) starting at some opinion configuration ω to the dθ̂-opinion evolution of a
related signed graph Ĝ = (V̂, Ê, λ̂) starting at a properly defined opinion configuration ω̂,
where θ̂ is a properly defined threshold function.

Let G = (V, E, λ) be a signed graph, let ω be an opinion configuration of G and let
c+, c− ∈ N be a pair of constant values. The (c+, c−)-degree controller graph Ĝ = (V̂, Ê, λ̂)
associated to 〈G, c+, c−〉 is obtained by adding to G a set of nodes suitably connected to the
nodes in V, as described in what follows, and by setting λ̂(u, v) = λ(u, v) for all (u, v) ∈ E.
In order to avoid confusion, for any v ∈ V, δv and δ̂v shall denote, respectively, the degree
of v in G and in Ĝ; similarly, P+(v) and P̂+(v) shall denote the number of neighbors
of v pushing v to 1, respectively, in G and in Ĝ, and P−(v) and P̂−(v) shall denote the
number of neighbors of v pushing v to −1, respectively, in G and in Ĝ. Finally, ∆ and ∆̂ are,
respectively, the maximum node degree in G and in Ĝ.

For every node v in G, a set of µv = |δv − c− − c+| dummy cliques Kv
1 , . . . , Kv

µv of 2∆ + 3
nodes each is added to G with exactly one node in each clique adjacent to v in Ĝ: more
specifically, for i = 1, . . . , µv, there exists exactly one degree-controller node v̂i in Kv

i such that
(v̂i, v) ∈ Ê. All edges in all dummy cliques are positive and, for i = 1, . . . , µv, λ̂(v̂i, v) = −1
if c+ > δv − c− and λ̂(v̂i, v) = 1 otherwise (see Figure 2). Hence, for any node v ∈ V̂, the
degree of v in Ĝ is

δ̂v =


δv + µv if v ∈ V,
2∆ + 3 if v ∈ V̂ −V and v is a degree-controller node,
2∆ + 2 if v ∈ V̂ −V and v is not a non-degree-controller node.

Notice that, since µv ≤ ∆ + 1, it holds that δ̂v ≤ 2∆ + 1 for every v ∈ V.
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x
x̂1

uû1 z ẑ1
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Figure 2. An example of the construction of the (c+, c−)-degree controller graph Ĝ associated to
the signed graph G when c+ = 1 and c− = 2: in this case, µu = µx = µz = 1, µv = 0 and µy = 2.
The dummy cliques (of 11 nodes each) are depicted as dotted light grey rectangles and only the
degree-controller nodes in them are explicitly drawn. Negative edges are grey, and positive edges
are black.

Then, for every v ∈ V, we set ω̂(v) = ω(v) and, for every node x in every dummy
clique, we set ω̂(x) = 1.

Finally, θ̂ has to be defined. To this aim, a function ϕ : V̂ → N is first introduced as
follows: for any v ∈ V̂,

ϕ(v) =
{

max{c+, δv − c−} if v ∈ V,
0 otherwise.

We now show that, for every pair of nodes u ∈ V̂ and v ∈ V̂, it holds that δ̂u = δ̂v if
and only if ϕ(u) = ϕ(v). If u ∈ V̂ − V then δ̂u > 2∆ + 1 ≥ max{δ̂x : x ∈ V} and hence
δ̂u = δ̂v only if v ∈ V̂ −V so that ϕ(u) = ϕ(v) = 0. If u ∈ V and v ∈ V, then the following
cases are possible:

• If δu − c− > c+ and δv − c− > c+ then: ϕ(u) = δu − c− and ϕ(v) = δv − c−, and
δ̂u = 2δu − c− − c+ and δ̂v = 2δv − c− − c+; hence, ϕ(u) = ϕ(v) if and only if δ̂u = δ̂v.

• If δu − c− ≤ c+ and δv − c− ≤ c+ then ϕ(u) = c+ = ϕ(v), and δ̂u = c+ + c− = δ̂v.
• If δu − c− ≤ c+ and δv − c− > c+ then: ϕ(u) = c+ and ϕ(v) = δv − c− so that

ϕ(u) 6= ϕ(v), and δ̂v = 2δv − c− − c+ > 2(c+ + c−)− c− − c+ = c+ + c− ≥ δ̂u.

As a consequence, the following function θ̂ : N→ N can be defined: for any k ∈ N,

θ̂(k) =
{

ϕ(u) if ∃u ∈ V̂ : δ̂u = k,
∆̂ + 2 otherwise.

The next lemma proves that the d(c+ ,c−)-evolution of G starting at ω can be simulated
by the dθ̂-evolution of Ĝ starting at ω̂.

Lemma 5. For any underpopulation dynamics d(c+ ,c−) and for any signed graph G = (V, E, λ)
in any opinion configuration ω, it holds that, for every v ∈ V and for every t > 0,

d(c+ ,c−)(G, ω)t(v) = dθ̂(Ĝ, ω̂)t(v).

Proof. Firstly, we show that, for every v ∈ V, v does not change its opinion in one step of
the d(c+ ,c−)-evolution of G starting at ω if and only if v does not change its opinion in one
step of the dθ̂-evolution of Ĝ starting at ω̂, that is, ω(v) = d(c+ ,c−)(G, ω)(v) if and only if
ω̂(v) = dθ̂(Ĝ, ω̂)(v).

Let v ∈ V be such that c+ > δv − c− so that θ̂(δ̂v) = c+ and v has c+ + c− − δv
in-neighbors in V̂ −V supporting −1. Hence, P̂+(v) = P+(v) and P̂−(v) = P−(v) + [c+ +
c− − δv] and the following holds:
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• If ω(v) = 1 then

– if d(c+ ,c−)(G, ω)(v) = 1 then P+(v) ≥ c+ and, hence, P̂+(v) ≥ θ̂(δv);
– if d(c+ ,c−)(G, ω)(v) = −1 then P+(v) < c+ and, hence, P̂+(v) < θ̂(δv).

• If ω(v) = −1 then

– if d(c+ ,c−)(G, ω)(v) = 1 then P−(v) < δv − c− and, hence,

P̂−(v) < δv − c− + [c+ + c− − δv] = c+ = θ̂(δv);

– if d(c+ ,c−)(G, ω)(v) = −1 then P−(v) ≥ δv − c− and, hence,

P̂−(v) ≥ δv − c− + [c+ + c− − δv] = c+ = θ̂(δv).

This proves that if c+ > δv − c− then ω(v) = d(θ+ ,θ−)(G, ω)(v) if and only if ω̂(v) =

dθ̂(Ĝ, ω̂)(v).
Symmetrically, if c+ ≤ δv − c− then θ̂(δv) = δv − c− and v has δv − c− − c+ neighbors

in V̂ − V supporting 1. Hence, P̂+(v) = P+(v) + δv − c− − c+ and P̂−(v) = P−(v).
Similar to before, this allows to prove that ω(v) = d(θ+ ,θ−)(G, ω)(v) if and only if ω̂(v) =
dθ̂(Ĝ, ω̂)(v) in this case too.

Secondly, it is immediate to verify that, for every t ≥ 0 and for every u ∈ V̂ − V,
dθ̂(Ĝ, ω̂)t(u) = 1.

Hence, the first step can be iterated and the assertion follows.

Lemma 5 proves that there is a one-to-one correspondence between the opinion
configurations met by G during its d(c+ ,c−)-evolution staring at ω and the opinion config-
urations met by Ĝ during its dθ̂-evolution staring at ω̂. As a consequence, it holds that
|Ed(c+ ,c−)

(G, ω)| = |Edθ̂
(Ĝ, ω̂)|.

Notice now that since adding the dummy cliques to G does not create any cycle
involving negative edges, if G is structurally balanced, then Ĝ is structurally balanced as
well. Hence, since |V̂| ≤ |V|+ |V|(∆ + 1)(2∆ + 3), |Ê| ≤ |E|+ |V|(∆ + 1) (2∆+2)(2∆+3)

2 and
∆̂ = 2∆+ 3, by Theorem 1, the bound on the number of configurations met by a structurally
balanced graph during its evolution according to any underpopulation dynamics stated by
Theorem 2 follows.

3.3. Proofs of Theorem 3: U-RT Is PSPACE-Complete in Directed Graphs

It will now be proved that U-RT is a complete problem for PSPACE even when c+ = 3
and c− = 4. The instance graph is unsigned, and its maximum indegree is 6, and when the
target set U contains a single node.

Given a graph G, a subset U of nodes in G, and an initial opinion configuration ω, a
simple procedure can be exploited to decide if a configuration π ∈ Ed(3,4)

(G, ω) exists such
that π(u) = 1. Indeed, as already observed in the Introduction, such a procedure simply
lets the d(3,4)-evolution of G starting at ω occur, checking each time the graph enters a new
configuration, which is the opinion of each node in U in the new configuration. Trivially,
running the procedure requires a space proportional to the size of G. This proves that U-RT
belongs to PSPACE.

The completeness for PSPACE of U-RT will be shown by providing a polynomial-time
transformation of any computation C of a deterministic recognizer Turing machine working
in polynomial space into the following:

1. An oriented unsigned graph G = (V, A);
2. An opinion configurations ω0 : V → {−1,+1} for G;
3. A subset U of V.

This is such that C is an accepting computation if and only if there exists an opinion
configuration ω′ ∈ Ed(3,4)

(G, ω0) such that ω′(u) = 1 for all u ∈ U.
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Let TM = 〈{0, 1}, Q, P, {q0, qA, qR}〉 be a deterministic semi-infinite single tape recog-
nizer Turing machine working on alphabet {0, 1} with set of states Q and set of quintuples
P, which uses at most N = f (|x|) tape cells with input x, for some polynomial f . Without
loss of generality, it will be assumed that P is total (that is, for every q ∈ Q − {qA, qR}
and for every s ∈ {0, 1, b\} (where b\ is the empty cell symbol) P contains a quintuple
〈q, s, s′, q′, mov〉) and that every quintuple in P, but the ones entering a final state, moves
right or left the tape head. Additionally, it will be assumed that, for every u ∈ {0, 1, b\},
P contains both a quintuple that reads u and does not write u and a quintuple that does
not read u and writes u: if P does not satisfy such a constraint, it is sufficient to add some
dummy quintuples to P. Finally, it is assumed that, after having decided to accept its input,
TM still performs a sequence of tape-cleaning operations before entering the accepting state
qA, so that every accepting computation of TM ends, executing a quintuple that writes b\ in
the leftmost cell and enters qA, and leaves TM in the global state (a global state of TM is the
description of the content of its tape, its internal state and the cell that its head is positioned
on at a given step of a computation) in which the tape is empty and the head is positioned
on the leftmost cell.

In what follows, a numbering of the p = |P| quintuples in P will be assumed with
〈qi

b, si
r, si

w, qi
e, mi〉 denoting the ith quintuple in P, where qi

b, qi
e ∈ Q, si

r, si
w ∈ {0, 1, b\} and

mi ∈ {left, right}. Finally, the ith quintuple will be said to begin at state qi
b, to read symbol

si
r, to end at state qi

e and to write symbol si
w; correspondingly, qi

b and qi
e are, respectively, the

beginning and ending state, and si
r and si

w are, respectively, the read and written symbol of the
ith quintuple.

3.3.1. Connecting Components of G

Graph G is built over the three structural components we are going to describe; an
example of these components is shown in Figure 3.

A stable clique is made of four nodes connected to each other; it has no input node and
one output node (see Figure 3a). The following property trivially holds.

Property 1. If all nodes in a stable clique are initialized to 1, then the opinion of any node does not
change all the d(3,4)-evolution process long.

A stable clique will be said to be positive under an opinion configuration if the opinion
of all its nodes is 1 in such a configuration.

For k ≥ 1 and h ≥ 0, a (k, h)-selector (Figure 3b,e) is the connection of a double sink
tree with 2k leaves and two roots with a pair of directed chains of h + 1 nodes each. In fact,
a (k, h)-selector is a layered graph with k + h layers, layer 0 containing k pairs of nodes
(α1

0,1, α2
0,1), . . . (α1

0,k, α2
0,k). The remaining layers are then recursively defined:

if k > 1, for 1 ≤ i ≤ k− 1, layer i contains the k− i pairs of nodes (α1
i,1, α2

i,1), . . . (α1
i,k−i, α2

i,k−i);
each node in the first pair has an incoming arc from each node in the first 2 pairs of
nodes of layer i− 1 and, for 2 ≤ j ≤ k− i, each node in the jth pair of nodes has an
incoming arc from each node of the (j + 1)th pair of layer i− 1

if h > 0, for k ≤ i ≤ k + h− 1, layer i contains the pair of nodes (α1
i,1, α2

i,1) with each such
node having an incoming arc from each node in layer i− 1.

Finally, for 1 ≤ i ≤ k + h− 1, two stable cliques are linked to any node of any layer i > 0
of the (k, h)-selector. The 2k nodes in layer 0 are the inputs and the pair of nodes in layer
k + h− 1 are the outputs of the (k, h)-selector. Notice that the indegree of any non-input
node is at most 6, and that the distance between any input and any output of a (k, h)-selector
is k + h− 1.

A (k, h)-reverse selector (Figure 3c–e) is defined similarly to a (k, h)-selector, with the
only difference that no stable clique is linked to the first pair of nodes (α1

i,1, α2
i,1) in layers

1 ≤ i ≤ k− 1. Hence, the indegree of any non-input node is 4.
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(a)

(e)

(b) (c)

(d)

Figure 3. (a) A stable clique. (b) A (3, 2)-selector. (c) A (3, 1)-reverse selector. (d) A (2, 0)-reverse
selector. (e) A (1, 2)-selector (or, equivalently, a (1, 2)-reverse selector).

Whenever the number of levels is not relevant, we shall generally speak about selectors
and reverse selectors. Let u and v be any pair of nodes in a (reverse) selector H: v is a
descendant of u if there is a path in H from u to v. The following properties directly follow
from the definition of the d(3,4) dynamics and from Property 1.

Property 2. Let H be a (k, h)-selector and let ω be an opinion configuration of H such that all its
stable cliques are positive under it, then the following holds:

• If there exists a level i of H such that both nodes of a pair in level i of H have a positive opinion
at ω, then for every 1 ≤ t ≤ k + h− 1− i, all descendants of such nodes in level t + i obtain
a positive opinion at step t of the dynamic process.
Formally, if there exist 0 ≤ i ≤ k + h − 1 and 1 ≤ j ≤ max{k − i, 1} such that
ω(α1

i,j) = ω(α2
i,j) = 1 then, for any t = 1, . . . , k + h − 1 − i, d(3,4)(H, ω)t(α1

t+i,`) =

d(3,4)(H, ω)t(α2
t+i,`) = 1 where ` = max{j− t, 1}.

• If there exists a level i of H such that all nodes in level i of H have a negative opinion at ω
then, for every 1 ≤ t ≤ k + h− 1− i, all nodes in level t + i obtain a negative opinion at step
t of the dynamic process.
Formally, if there exists 0 ≤ i ≤ k + h − 1 such that, for every 1 ≤ j ≤ max{k − i, 1},
ω(α1

i,j) = ω(α2
i,j) = −1 then, for any t = 1, . . . , k + h − 1 − i and for any 1 ≤ ` ≤

max{k− t, 1}, d(3,4)(H, ω)t(α1
t+i,`) = d(3,4)(H, ω)t(α2

t+i,`) = −1.

Property 3. Let H be a (k, h)-reverse selector and let ω be an opinion configuration of H such that
all its stable cliques are positive under it, then the following holds:

• If there exists a level i of H such that both nodes of a pair in level i of H have a negative opinion
at ω then, for every 1 ≤ t ≤ k + h− 1− i, all descendants of such nodes in level t + i obtain
a negative opinion at step t of the dynamic process.
Formally, if there exist 0 ≤ i ≤ k + h − 1 and 1 ≤ j ≤ max{k − i, 1} such that
ω(α1

i,j) = ω(α2
i,j) = −1 then, for any t = 1, . . . , k + h − 1− i, d(3,4)(H, ω)t(α1

t+i,`) =

d(3,4)(H, ω)t(α2
t+i,`) = −1 where ` = max{j− t, 1};
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• If there exists a level i of H such that all nodes in level i of H have a positive opinion at ω then,
for every 1 ≤ t ≤ k + h− 1− i, all nodes in level t + i obtain a positive opinion at step t of
the dynamic process.
Formally, if there exists 0 ≤ i ≤ k + h − 1 such that, for every 1 ≤ j ≤ max{k − i, 1},
ω(α1

i,j) = ω(α2
i,j) = 1 then, for any t = 1, . . . , k + h − 1 − i and for any 1 ≤ ` ≤

max{k− t, 1}, d(3,4)(H, ω)t(α1
t+i,`) = d(3,4)(H, ω)t(α2

t+i,`) = 1.

Let H be a (k, h)-selector or a (k, h)-reverse selector; the internal nodes of H are all
nodes in the set {α1

i,j, α2
i,j : 1 ≤ i ≤ k + h− 1∧ 1 ≤ j ≤ k−min{i, k− 1}} (that is, a node in

H is internal if it is not an input node of H and it does not belong to any stable clique in H).
A (k, h)-selector H is positive under an opinion configuration ω if there exists 1 ≤ j ≤

k− 1 such that ω(α1
1,j) = ω(α2

1,j) = 1 and ω(u) = 1 for all internal nodes u in H such that

there is a path in H from α1
0,j (and, hence, from α2

0,j) to u. A (k, h)-selector H is negative
under an opinion configuration ω if ω(u) = −1 for all internal nodes u in H.

Symmetrically, a (k, h)-reverse selector H is positive under an opinion configuration ω
if ω(u) = 1 for all internal nodes u in H. A (k, h)-reverse selector H is negative under an
opinion configuration ω if there exists 1 ≤ j ≤ k− 1 such that ω(α1

1,j) = ω(α2
1,j) = −1 and

ω(u) = −1 for all internal nodes u in H such that there is a path in H from α1
0,j (and, hence,

from α2
0,j) to u.

Again, the following property directly follows from the definition of the d(3,4) dynam-
ics and from Property 1, where d(3,4)(H, ω)0 = ω.

Property 4. Let H be a (k, h)-selector or a (k, h)-reverse selector and let ω be an opinion configu-
ration of H such that all its stable cliques are positive under ω.
If H is positive under ω, then both its outputs have a positive opinion at all steps t = 0, . . . , k+ h− 1
of the dynamic process. Formally,

∀ 0 ≤ t ≤ k + h− 1 [ d(3,4)(H, ω)t(α1
k+h−1,1) = d(3,4)(H, ω)t(α2

k+h−1,1) = 1 ].

If H is negative under ω, then both its outputs have negative opinion at all steps t = 0, . . . ,
k + h− 1 of the dynamic process; formally,

∀ 0 ≤ t ≤ k + h− 1 [ d(3,4)(H, ω)t(α1
k+h−1,1) = d(3,4)(H, ω)t(α2

k+h−1,1) = −1 ].

3.3.2. Graph G

Graph G consists of the N + 1 subgraphs G0, G1, . . . , GN , where G0 is the initialization/
termination subgraph and, for each k ∈ {1, . . . , N}, the subgraph Gk is associated with tape
cell k of TM (recall that the computation TM(x) uses N tape cells). The main nodes in
each subgraph are called acting, and connections between subgraphs occur by them; the
remaining nodes belong to (reverse) selectors and they are just functional to the graph
evolution properties.

The description of G rests on an integer parameter γ whose value will be fixed later on.

Subgraph Gk, with 1 ≤ k ≤ N.
Gk consists of the following set of acting nodes: the cell nodes 01

k , 02
k , 11

k , 12
k , b\1k and b\2k and 0̄1

k ,

0̄2
k , 1̄1

k , 1̄2
k , b̄\1k and b̄\2k , designed to describe the content of tape cell k of TM, and, for 1 ≤ i ≤ p,

the quintuple nodes ψi,1
k , ψi,2

k , ψ̄i,1
k and ψ̄i,2

k , designed to point out which quintuple of TM is to
be executed at any step of the computation TM(x) when the head tape of TM reads cell k.

For u ∈ {0, 1, b\}, u1
k and u2

k are the inputs of the (1, γ− 1)-selector Au
k and ū1

k and ū2
k

are the inputs of the (1, γ− 1)-reverse selector Au
k : for any i such that 〈qi

b, u, si
w, qi

e, mi〉, the
outputs of Au

k are in-neighbors of nodes ψi,1
k and ψi,2

k and the outputs of Au
k are in-neighbors of

nodes ψ̄i,1
k and ψ̄i,2

k (recall that in our assumptions about P, u is read by at least one quintuple).
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For u ∈ {0, 1, b\}, let Pu,w be the set of indexes of the quintuples in P writing but not
reading u, that is, Pu,w = {i : 1 ≤ i ≤ p ∧ 〈qi

b, si
r, u, qi

e, mi〉 ∈ P ∧ si
r 6= u}: notice that by the

assumptions on P, it holds that Pu,w 6= ∅. Then, {ψi,1
k , ψi,2

k : i ∈ Pu,w} is the input set of
the (|Pu,w|, γ− |Pu,w|)-selector Wu

k each output of which is an in-neighbor of both u1
k and

u2
k . Symmetrically, {ψ̄i,1

k , ψ̄i,2
k : i ∈ Pu,w} is the input set of the (|Pu,w|, γ− |Pu,w|)-reverse

selector Wu
k , each output of which is an in-neighbor of both ū1

k and ū2
k .

Finally, for u ∈ {0, 1, b\}, let Pu,r be the set of indexes of the quintuples in P reading but
not writing u, that is, Pu,r = {i : 1 ≤ i ≤ p ∧ 〈qi

b, u, si
w, qi

e, mi〉 ∈ P ∧ si
w 6= u}: notice that by

the assumptions on P, it holds that Pu,r 6= ∅. Then, {ψ̄i,1
k , ψ̄i,2

k : i ∈ Pu,r} is the input set of
the (|Pu,r|, γ− |Pu,r|)-reverse selector Du

k each output of which is an in-neighbor of both u1
k

and u2
k . Symmetrically, {ψi,1

k , ψi,2
k : i ∈ Pu,r} is the input set of the (|Pu,r|, γ− |Pu,r|)-selector

D
u
k each output of which is an in-neighbor of both ū1

k and ū2
k .

Graph Gk is completed by adding a set of stable cliques: a stable clique is added for
every cell node and, for every 1 ≤ i ≤ p, a pair of stable cliques is added for ψ̄i,1

k and a
pair of stable cliques is added for ψ̄i,2

k , with the output node of each stable clique being
in-neighbor of the corresponding cell or quintuple node. Figure 4 depicts the portion
related to cell nodes 01

k and 02
k of an example of a subgraph Gk: in the case in the example

P0,w = {3} and P0,r = {1, 2}.

ψ1,1
k ψ1,2

k ψ2,1
k ψ2,2

k ψ̄1,1
k ψ̄1,2

k ψ̄2,1
k ψ̄2,2

k

A0
k

D̄0
k D0

k
Ā0

k

01
k 02

k 0̄1
k 0̄2

k

W0
k W̄0

k

ψ3,1
k ψ3,2

k ψ̄3,1
k ψ̄3,2

k

Figure 4. Example of the part of subgraph Gk, for some 1 ≤ k ≤ N, related to cell nodes 01
k , 02

k
and 0̄1

k , 0̄2
k when the quintuples in P (listed with their order number) are: (1): 〈q0, 0, 1, q0, left〉,

(2): 〈q1, 0, 1, q0, right〉, (3): 〈q0, 1, 0, q1, left〉, (4): 〈q1, 1, b\, q0, right〉, (5): 〈q0, b\, 1, q1, right〉,
(6): 〈q1, b\, b\, qA, right〉. For the sake of readability, a machine TM was considered, defined with
a very small and meaningless set of quintuples that does not even satisfy all the constraints described
at the beginning of this section (rejecting quintuples are missing, and the accepting conditions are
not fulfilled). As in Figure 3, stable cliques are depicted as dark grey rectangles. The inner nodes
in selectors and reverse selectors are depicted as light grey rectangles containing their names: the
input nodes of the structures are explicitly depicted and named (since they are acting nodes) and the
output nodes are shown within the rectangles.
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Subgraph G0.
G0 consists of the (1, γ − 1)-selector Ψ0, having as outputs, the acting starting nodes ψ1

0,
ψ2

0, of the the (1, γ− 1)-selector Ψ̄0 having as outputs the acting starting nodes ψ̄1
0 and

ψ̄2
0, and of the acting accepting node ψA. The input nodes of Ψ0 have indegree 0 in G,

the in-neighbors of each input node of Ψ̄0 are the output nodes of 4 stable cliques, and
the output nodes of 2 stable cliques are in-neighbors of ψA. In Figure 5, an example of
the subgraph G0 is shown (together with its connections to G1 that will be described in a
few lines).

ψ1,1
1 ψ1,2

1 ψ3,1
1 ψ3,2

1 ψ5,1
1 ψ5,2

1

ψ1,1
2 ψ1,2

2

B
q0
1

ψ1
0 ψ2

0

Ψ0

Ψ̄0

ψ̄1
0 ψ̄2

0

B̄
q0
1

ψ̄1,1
2 ψ̄1,2

2

ψ̄1,1
1 ψ̄1,2

1 ψ̄3,1
1 ψ̄3,2

1 ψ̄5,1
1 ψ̄5,2

1

Φ

ψA

ψ6,1
1 ψ6,2

1

G0

Figure 5. Subgraph G0 and its connections with G1, for the same TM in Figure 4: the quintuples
in P are (1): 〈q0, 0, 1, q0, left〉, (2): 〈q1, 0, 1, q0, right〉, (3): 〈q0, 1, 0, q1, left〉, (4): 〈q1, 1, b\, q0, right〉,
(5): 〈q0, b\, 1, q1, right〉, (6): 〈q1, b\, b\, qA, right〉. Again, stable cliques are depicted as dark grey rect-
angles, and the inner nodes in selectors and reverse selectors are depicted as light grey rectangles
containing their names with only their input and output nodes explicitly depicted (the input nodes
shown outside the rectangles).

Connections among subgraphs. They connect quintuple-nodes in Gk (or ψ1
0, ψ2

0, ψ̄1
0 and

ψ̄2
0 if k = 0) to quintuple-nodes in Gk−1 or Gk+1. For every q ∈ Q − {qA, qR}, we have

the following:

• Rq denotes the set of indexes of the quintuples in P ending at q and moving right,
that is,

Rq = {i : 1 ≤ i ≤ p ∧ 〈qi
b, si

r, si
w, q, right〉 ∈ P};

• Similarly, Lq denotes the set of indexes of the quintuples in P ending at q and moving
left, that is, Lq = {i : 1 ≤ i ≤ p ∧ 〈qi

b, si
r, si

w, q, left〉 ∈ P};
• Fq denotes the set of indexes of the quintuples in P starting at q, that is, Fq = {i : 1 ≤

i ≤ p ∧ 〈q, si
r, si

w, qi
e, left〉 ∈ P}.

For every 1 < k < N: for every q ∈ Q, G contains a (|Lq|+ |Rq|, γ− |Lq| − |Rq|)-selector
B

q
k and a (|Lq|+ |Rq|, γ− |Lq| − |Rq|)-reverse selector Bq

k such that
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- {ψi,1
k+1, ψi,2

k+1 : i ∈ Lq} ∪ {ψi,1
k−1, ψi,2

k−1 : i ∈ Rq} is the input set of Bq
k and each output of

its is an in-neighbor of both ψ
j,1
k and ψ

j,2
k for every j ∈ Fq,

- {ψ̄i,1
k+1, ψ̄i,2

k+1 : i ∈ Lq} ∪ {ψ̄i,1
k−1, ψ̄i,2

k−1 : i ∈ Rq} is the input set of Bq
k and each output of

its is and in-neighbor of both ψ̄
j,1
k and ψ̄

j,2
k for every j ∈ Fq.

Figure 6 shows an example of part of the connections of Gk with gk−1 and Gk+1.

ψ2,1
k−1 ψ2,2

k−1 ψ4,1
k−1 ψ4,2

k−1 ψ1,1
k+1 ψ1,2

k+1

internal nodes of Bq0
k

ψ1,1
k ψ1,2

k

internal
nodes of A0

k

internal
nodes of Ā0

k

ψ̄1,1
k ψ̄1,2

k

internal nodes of B̄q0
k

ψ̄2,1
k−1 ψ̄2,2

k−1 ψ̄4,1
k−1 ψ̄4,2

k−1 ψ̄1,1
k+1 ψ̄1,2

k+1

. . . . . . . . .
other stuff

. . . . . . . . .
other stuff

Gk

Figure 6. For k > 1, the in-neighborhood of nodes ψ1,1
k , ψ1,2

k , ψ̄1,1
k , ψ̄1,2

k , related to quintuple
〈q0, 0, 1, q0, left〉, for the same TM in Figure 4: the quintuples in P are (1): 〈q0, 0, 1, q0, left〉,
(2): 〈q1, 0, 1, q0, right〉, (3): 〈q0, 1, 0, q1, left〉, (4): 〈q1, 1, b\, q0, right〉, (5): 〈q0, b\, 1, q1, right〉,
(6): 〈q1, b\, b\, qA, right〉. As in Figure 3, stable cliques are depicted as dark grey rectangles. The
inner nodes in selectors and reverse selectors are depicted as light grey rectangles containing their
names. The input nodes of Bq0

k and B̄
q0
k are explicitly depicted and named, and the output nodes of all

(reverse) selectors are shown within the rectangles.

For k = 1: G contains the (|Lq0 |+ 1, γ− |Lq0 | − 1)-selector Bq0
1 , the (|Lq0 |+ 1, γ− |Lq0 | − 1)-

reverse selector Bq0
1 , and, for every q ∈ Q− {q0, qA, qR}, the (|Lq|, γ− |Lq|)-selector Bq

1 and
the (|Lq|, γ− |Lq|)-reverse selector Bq

1 such that

- if q 6= q0 then the input and the output sets of Bq
1 and of Bq

1 are identically defined as
for 1 < k < N,

- if q = q0 then {ψi,1
2 , ψi,2

2 : i ∈ Lq0} ∪ {ψ1
0, ψ2

0} is the input set of B
q0
1 and each

output of its is an in-neighbor of both ψ
j,1
1 and ψ

j,2
1 for every j ∈ Fq0 ; similarly,

{ψ̄i,1
2 , ψ̄i,2

2 : i ∈ Lq0} ∪ {ψ̄1
0, ψ̄2

0} is the input set of Bq0
1 and each output of its is and

in-neighbor of both ψ̄
j,1
1 and ψ̄

j,2
1 for every j ∈ Fq0 .

Denote as IA the set of indexes of the quintuples in P ending at qA (namely, j ∈ IA if and
only if qj

e = qA). G finally contains the (|IA|, γ− |IA|)-selector Φ having {ψi,1
1 , ψi,2

1 : i ∈ IA}
as its input set and each output of which has an outgoing arc to ψA.

For k = N: for every q ∈ Q− {qA, qR}, G contains the (|Rq|, γ− |Rq|)-selector Bq
N and the

(|Rq|, γ− |Rq|)-reverse selector Bq
N such that
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- {ψi,1
N−1, ψi,2

N−1 : i ∈ Rq} is the input set of Bq
N and each output of its is an in-neighbor

of both ψ
j,1
N and ψ

j,2
N for every j ∈ Fq,

- {ψ̄i,1
N−1, ψ̄i,2

N−1 : i ∈ Rq} is the input set of Bq
N and each output of its is and in-neighbor

of both ψ̄
j,1
N and ψ̄

j,2
N for every j ∈ Fq.

Refer to Figures 5 and 6 for an example of the construction yielding G.
We explicitly remark that the distance between an input and an output of every selector

and of every reverse selector in G but Ψ0 and Ψ̄0 is γ− 1: this implies that the distance
between any pair of acting nodes connected by a (reverse) selector is γ.

We are now ready to fix the value of γ: in order to have γ− y ≥ 0, for y ∈ {|IA|} ∪
{{|Pu,w|, |Pu,r| : u ∈ {0, 1, b\}} ∪ {|Rq| + |Lq| : q ∈ Q − {q0, qA, qR}} ∪ {|Lq0 | + 1}}, and
γ > 1 we set

γ = 1 + max{|IA|, |Pu,w|, |Pu,r|, |Rq|+ |Lq|, |Lq0 |+ 1 :

u ∈ {0, 1, b\}, q ∈ Q− {q0, qA, qR}}.

3.3.3. Global States and Mirroring Configurations

Recall that a global state of a (one tape) Turing machine is the description of its internal
state, of the position of the tape head, and of the content of the non-blank portion of its
tape. Any non-final global state of TM occurring during the computation TM(x) may well
be described by an opinion configuration ω for G. Let S be a non-final global state met
by TM during the computation TM(x): an opinion configuration ω for G mirrors S (or,
equivalently, ω is the mirror configuration of S) if the following hold:

• For every 1 ≤ k ≤ N and for every u ∈ {0, 1, b\}, if cell k contains u in S then
ω(u1

k) = ω(u2
k) = 1 and Wu

k is positive or Dk
u is positive, and, symmetrically, ω(ū1

k) =
ω(ū2

k) = −1 and W
u
k is negative or Du

k is negative;
• For every 1 ≤ k ≤ N and for every u ∈ {0, 1, b\}, if cell k does not contain u in S

then ω(u1
k) = ω(u2

k) = −1 and Wu
k is negative or Dk

u is negative, and, symmetrically,
ω(ū1

k) = ω(ū2
k) = 1 and W

u
k is positive or Du

k is positive;
• For every 1 ≤ k ≤ N and for every 1 ≤ i ≤ p, if in S the head of TM is positioned on

cell k, the internal state of TM is qi
b, and cell k contains si

r then ω(ψi,1
k ) = ω(ψi,2

k ) = 1

and B
qi

b
k is positive and A

si
r

k is positive, and, symmetrically, ω(ψ̄i,1
k ) = ω(ψ̄i,2

k ) = −1 and

B
qi

b
k is negative and A

si
r

k is negative;
• For every 1 ≤ k ≤ N and for every 1 ≤ i ≤ p, if in S the head of TM is not

positioned on cell k or the internal state of TM is not qi
b or cell k does not contain

si
r then ω(ψi,1

k ) = ω(ψi,2
k ) = −1 and B

qi
b

k is negative (if TM is not in state qi
b) or

A
si

r
k is negative (if the head of TM is not positioned on cell k), and, symmetrically,

ω(ψ̄i,1
k ) = ω(ψ̄i,2

k ) = 1 and B
qi

b
k is positive or Asi

r
k is positive;

• ω(ψ1
0) = ω(ψ2

0) = ω(ψ1
A) = ω(ψ2

A) = −1, ω(ψ̄1
0) = ω(ψ̄2

0) = 1 and every stable
clique is positive under ω.

We now show that, if an opinion configuration ω of G mirrors a non-final global
state S, then the opinion evolution of G starting at ω somehow describes the computation
of TM starting at S. Before proceeding, we establish a property of mirroring opinion
configurations that is functional to our goal and that claims that acting nodes have somehow
stable opinions in a configuration mirroring a global state of TM.

Property 5. If an opinion configuration ω mirrors a global state S of TM then, for any acting node
v and for any 1 ≤ ` ≤ γ− 1, it holds that

d(3,4)(G, ω)`(v) = ω(v).
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Proof. Since ω mirrors S, then by the positiveness/negativeness of the selectors and of the
reverse selectors under ω and by Property 4, for any node v in G, we have the following:

• If v = u1
k or v = u2

k then v has 5 in-neighbors (the pair of outputs of Wu
k , the pair

of outputs of Du
k and the output of a stable clique). As a consequence, we have

the following:

– If ω(v) = 1 then Wu
k is positive or Du

k is positive so that, by Property 4, at least 3
in-neighbors of v push it to 1 at d(3,4)(G, ω)` for any 0 ≤ ` ≤ γ− 2 and, hence,
d(3,4)(G, ω)`+1(v) = 1 for any 0 ≤ ` ≤ γ− 2;

– If ω(v) = −1 then Wu
k is negative or Du

k is negative so that, by Property 4, at most
3 in-neighbors of v push it to 1 at d(3,4)(G, ω)` for any 0 ≤ ` ≤ γ− 2 and, hence,
d(3,4)(G, ω)`+1(v) = −1 for any 0 ≤ ` ≤ γ− 2;

• If v = u1
k or v = u2

k then, again, v has 5 in-neighbors (the pair of outputs of W̄u
k , the

pair of outputs of D̄u
k and the output of a stable clique). As a consequence, we have

the following:

– If ω(v) = 1 then W̄u
k is positive or Du

k is positive so that, by Property 4, at least 3
in-neighbors of v push it to 1 at d(3,4)(G, ω)` for any 0 ≤ ` ≤ γ− 2 and, hence,
d(3,4)(G, ω)`+1(v) = 1 for any 0 ≤ ` ≤ γ− 2;

– If ω(v) = −1 then W
u
k is negative or Du

k is negative so that, by Property 4, at most
3 in-neighbors of v push it to 1 at d(3,4)(G, ω)` for any 0 ≤ ` ≤ γ− 2 and, hence,
d(3,4)(G, ω)`+1(v) = −1 for any 0 ≤ ` ≤ γ− 2;

• If v = ψi,1
k or v = ψi,2

k then v has 4 in-neighbors (the pair of outputs of Asi
r

k and the pair

of outputs of B
qi

b
k ). As a consequence, we have the following:

– If ω(v) = 1 then A
si

r
k is positive and B

qi
b

k is positive so that, by Property 4, all the 4
in-neighbors of v push it to 1 at d(3,4)(G, ω)` for any 0 ≤ ` ≤ γ− 2 and, hence,
d(3,4)(G, ω)`+1(v) = 1 for any 0 ≤ ` ≤ γ− 2;

– If ω(v) = −1 then A
si

r
k is negative or B

qi
b

k is negative so that, by Property 4, at most
2 of the 4 in-neighbors of v push it to 1 at d(3,4)(G, ω)` for any 0 ≤ ` ≤ γ− 2 and,
hence, d(3,4)(G, ω)`+1(v) = −1 for any 0 ≤ ` ≤ γ− 2;

• If v = ψ
i,1
k or v = ψ

i,2
k then v has 6 in-neighbors (the pair of outputs of Asi

r
k , the pair of

outputs of B
qi

b
k and the output nodes of 2 stable cliques). As a consequence, we have

the following:

– If ω(v) = 1 then A
si

r
k is positive or B

qi
b

k is positive so that, by Property 4, at least 4
in-neighbors of v push it to 1 at d(3,4)(G, ω)` for any 0 ≤ ` ≤ γ− 2 and, hence,
d(3,4)(G, ω)`+1(v) = 1 for any 0 ≤ ` ≤ γ− 2;

– If ω(v) = −1 then A
si

r
k is negative and B

qi
b

k is negative so that, by Property 4, at
most 2 of the 6 in-neighbors of v push it to 1 at d(3,4)(G, ω)` for any 0 ≤ ` ≤ γ− 2
and, hence, d(3,4)(G, ω)`+1(v) = −1 for any 0 ≤ ` ≤ γ− 2.

Recall that the computation TM(x) occurs in N = f (|x|) cells so that it always halts;
hence, TM(x) is described by a sequence 〈S0, S1, . . . , Sτ〉 of global states such that S0 is the
initial global state (in which the tape contains x, the head is positioned on cell 1, and the
internal state is q0), Sτ is a final state (no quintuple can be executed from it), and, for any
0 ≤ t ≤ τ − 1, St+1 is derived from St by executing a quintuple in P. The main lemma of
this subsection can now be proved.
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Lemma 6. For any 1 ≤ t ≤ τ − 2, if an opinion configuration ω mirrors St then ω′ =
d(3,4)(G, ω)γ mirrors St+1.

Proof. Let us denote ωγ−1 = d(3,4)(G, ω)γ−1 and ωγ = d(3,4)(G, ω)γ.
Let q ∈ Q, k ∈ {1, . . . , N} and u ∈ {0, 1, b\} be, respectively, the state, the cell read

by the head tape, and the content of cell k described by St. Since St is not a final global
state, there exists 1 ≤ i ≤ p such that 〈q, u, v, qi

e, mi〉 is the ith quintuple in P, and since
TM is deterministic the ith quintuple in P is the only one beginning at state q and reading
u. Hence, since ω mirrors St, ω(ψi,1

k ) = ω(ψi,2
k ) = 1 and ω(ψ̄i,1

k ) = ω(ψ̄i,2
k ) = −1, and

ω(ψ`,1
h ) = ω(ψ`,2

h ) = −1 and ω(ψ̄`,1
k ) = ω(ψ̄`,2

k ) = 1 whenever h 6= k or ` 6= i. Without
loss of generality (the other cases being similar), let us assume k < N and mi = right, and
u 6= v (so that i ∈ Pu,r, i 6∈ Pu,w, i 6∈ Pv,r, i ∈ Pv,w).

Recall that, for any z ∈ {0, 1, b\} and for any h ∈ {1, . . . , N}, nodes z1
h and z2

h have 5
in-neighbors each: the outputs of the selector Wz

h, the outputs of the reverse selector Dz
h, and

the output of a stable clique. Hence, since the stable clique is positive by hypothesis and
since the distance between an input and an output of any (reverse) selector in G is γ− 1,
then, by Properties 1, 2 and 3, the following holds:

• If h = k and z = u (= si
r), since i ∈ Pu,r and i 6∈ Pu,w then ψ̄i,1

k and ψ̄i,2
k are in the input

set of Du
k and ψi,1

k and ψi,2
k are not in the input set of Wu

k and, hence, the opinion of both
the outputs of Du

k and the outputs of Wu
k at ωγ−1 is −1 so that ωγ(u1

k) = ωγ(u2
k) = −1;

• If h = k and z 6∈ {u, v} or if h 6= k, then ψi,1
k and ψi,2

k are not in the input set of
the selector Wz

h and ψ̄i,1
k and ψ̄i,2

k are not in the input set of the reverse selector Dz
h

and, hence, the opinion of the outputs of Wz
h is −1 and the opinion of the outputs

of Dz
h is 1 at ωγ−1; hence, since exactly 3 in-neighbors push z1

h and u2
h to 1 at ωγ−1,

this implies that ωγ(z1
h) = ωγ(z2

h) = ωγ−1(z1
h) = ωγ−1(z2

h) and, by Property 5,
ωγ(z1

h) = ωγ(z2
h) = ω(z1

h) = ω(z2
h).

Symmetrically, for any u ∈ {0, 1, b\} and for any h ∈ {1, . . . , N}, nodes ū1
h and ū2

h have
5 in-neighbors each: the outputs of the selector W̄u

h with input set {ψ̄`,1
h , ψ̄`,2

h : ` ∈ Pu,w}, the
outputs of the reverse-selector D̄ with input set {ψ`,1

h , ψ`,2
h : ` ∈ Pu,r}, and the output of a

stable clique. Hence, by the same reasoning applied above, the following can be proved:

• If h = k and z = u (= si
r) then ωγ(ū1

k) = ωγ(ū2
k) = 1;

• If h = k and z = v (= si
w) then ωγ(v̄1

k) = ωγ(v̄2
k) = −1;

• If h = k and z 6∈ {u, v} or if h 6= k then ωγ(z̄1
h) = ωγ(z̄2

h) = ω(z̄1
h) = ω(z̄2

h).

Since the content of only cell k is different in St and in St+1, this proves that ωγ actually
mirrors the tape content in St+1, that is, for every u ∈ {0, 1, b\} and for every 1 ≤ h ≤ N,
if cell h of TM contains u in St+1 then ωγ(u1

h) = ωγ(u2
h) = 1 and ωγ(ū1

h) = ωγ(ū2
h) = −1,

otherwise ωγ(u1
h) = ωγ(u2

h) = −1 and ωγ(ū1
h) = ωγ(ū2

h) = 1.
Since St+1 is not a final configuration, then there exists one (and only one) quintuple

to be executed in St+1 and such a quintuple begins at state qi
e; let the jth quintuple 〈qj

b =

qi
e, sj

r = a, sj
w, qj

e, mj〉 be the quintuple to be executed in St+1, with a ∈ {0, 1, b\}.

Nodes ψ
j,1
k+1 and ψ

j,2
k+1 have 4 in-neighbors each: the outputs of the selector B

qj
b

k+1 and

the outputs of the selector Aa
k+1. Since qj

b = qi
e then ψi,1

k and ψi,2
k are a pair of inputs of B

qj
b

k+1

and since ω(ψi,1
k ) = ω(ψi,2

k ) = 1 then, by Property 2, the outputs of B
qj

b
k+1 have positive

opinions at ωγ−1. Furthermore, since cell k + 1 contains a in St+1, since the content of
cell k + 1 does not change when TM moves from St to St+1, and since ω mirrors St then
ω(a1

k+1) = ω(a2
k+1) = 1; hence, still by Property 2, the outputs of Aa

k+1 have positive

opinions at ωγ−1. As a consequence, all four in-neighbors of ψ
j,1
k+1 and ψ

j,2
k+1 push them to 1

at ωγ−1 so that ωγ(ψ
j,1
k+1) = ωγ(ψ

j,2
k+1) = 1.
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On the other hand, nodes ψ̄
j,1
k+1 and ψ̄

j,2
k+1 have 6 in-neighbors each: the outputs of the

reverse selector B̄
qj

b
k+1, the outputs of the reverse selector Āa

k+1 and the outputs of two stable

cliques. Since ψ̄i,1
k and ψ̄i,2

k are a pair of inputs of B̄
qj

b
k+1 and since ω(ψ̄i,1

k ) = ω(ψ̄i,2
k ) = −1

then, by Property 3, the outputs of B̄
qj

b
k+1 have negative opinions at ωγ−1. Furthermore,

similar to before, it can be shown that ω(a1
k+1) = ω(a2

k+1) = −1: since a1
k+1 and a2

k+1 are
the two inputs of Aa

k+1 then, by Properties 3, both outputs of Aa
k+1 have negative opinions

at ωγ−1. As a consequence, ψ
j,1
k+1 and ψ

j,2
k+1 are pushed to 1 at ωγ−1 by the outputs of two

stable cliques only so that ωγ(ψ
j,1
k+1) = ωγ(ψ

j,2
k+1) = −1.

By recalling that TM is deterministic, a similar reasoning allows to prove that, for any
` 6= j or h 6= k + 1, at most 2 in-neighbors of ψ`,1

h and ψ`,2
h push them to 1 at ωγ−1 so that

ωγ(ψ
`,1
h ) = ωγ(ψ

`,2
h ) = −1, and at least 4 in-neighbors of ψ

`,1
h and ψ

`,2
h push them to 1 at

ωγ−1 so that ωγ(ψ
`,1
h ) = ωγ(ψ

`,2
h ) = 1.

It remains to show the positiveness/negativeness of selectors and reverse selectors
under ωγ. We observe that, by Properties 2, 3 and 5 it follows that any selector in G is
positive under ωγ if and only if at least one pair of its inputs has opinion 1 at ω and any
reverse selector in G is positive under ωγ if and only if all its inputs have opinion 1 at ω.

We just proved that ωγ(ψ
j,1
k+1) = ωγ(ψ

j,2
k+1) = 1: since ω(ψi,1

k ) = ω(ψi,2
k ) = 1 and

ω(a1
k+1) = ω(a2

k+1) = 1 with a = sj
r, by the above observation, it follows that both

B
qj

b
k+1 and Aa

k+1 are positive under ωγ. Symmetrically, ωγ(ψ
j,1
k+1) = ωγ(ψ

j,2
k+1) = −1 and,

since ω(ψ
i,1
k ) = ω(ψ

i,2
k ) = −1 and ω(a1

k+1) = ω(a2
k+1) = −1, B

qj
b

k+1 and A
a
k+1 are negative

under ωγ.
Recall that 〈q, u, v, qi

e, mi〉 is the ith quintuple in P, and the ith quintuple is the one
being to be executed at St (with u 6= v). Let 1 ≤ h ≤ N and 1 ≤ ` ≤ p be such that h 6= k + 1

or ` 6= j: similar to before, it can be proved that B
q`b
h is negative, or As`r

h is negative at ωγ and,

symmetrically, B
q`b
h is positive or As`r

h is positive at ωγ.
Let z ∈ {0, 1, b\} and 1 ≤ h ≤ N:

• if h = k and z = v then, on one side, it is ωγ(z1
h) = ωγ(z2

h) = 1 and, on the other side,
the pair of inputs ψi,1

h and ψi,2
h of Wz

h have opinion 1 at ω so that Wz
h is positive under

ωγ; symmetrically, ωγ(z1
h) = ωγ(z2

h) = 1 and a pair of inputs of Wz
h have opinion −1

at ω so that Wz
h is negative under ωγ;

• Similar to before, it can be proved that if h = k and z = u then Dz
h is negative and D

z
h is

positive under ωγ, and that if h 6= k or z 6∈ {u, v}, then Wz
h is negative, Dz

h is positive,
W

z
h is positive and D

z
h is negative under ωγ.

Since ω mirrors St and by Property 1, it holds that all stable cliques are positive under
ωγ, ωγ(ψ1

0) = ωγ(ψ2
0) = −1, ωγ(ψ

1
0) = ωγ(ψ

2
0) = 1, and, since qi

e 6= qA, ωγ(ψ1
A) =

ωγ(ψ2
A) = −1.

Finally, since St+1 is not an accepting global state, then all inputs of the (|IA|, γ− |IA|)-
selector whose outputs are in-neighbors of ψ1

A and ψ2
A have negative opinion al ω: hence,

ωγ(ψ1
A) = ωγ(ψ2

A) = −1.

As to the evolution of an opinion configuration ω mirroring Sτ−1, the next lemma holds.

Lemma 7. If the opinion configuration ω mirrors Sτ−1 then ωγ = d(3,4)(G, ω)γ is such that
ωγ(ψA) = 1 if and only if Sτ is the accepting global state.

Proof. Since Sτ−1 is not a final global state, there exists 1 ≤ i ≤ p such that the ith quintuple
in P, namely 〈qi

b, si
r, si

w, qi
e, mi〉, has to be executed in Sτ−1. Let k be the tape cell being read

by TM in Sτ−1.
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Since ω mirrors Sτ−1 then ω(ψi,1
k ) = ω(ψi,2

k ) = 1 and ω(ψ
j,1
h ) = ω(ψ

j,2
h ) = −1 for

every pair (h, j) such that h 6= k or j 6= i.
Node ψA has 4 in-neighbors: the outputs of two stable cliques and the outputs of Φ.

Since ω mirrors Sτ−1, then ω(ψA) = −1 and, as a consequence of Property 2, ωγ(ψA) = 1
if and only if at least one input of the selector Φ has opinion 1 at ω.

Thus, ωγ(ψA) = 1 if and only if k = 1 and qi
e = qA.

3.3.4. Finishing the Reduction

We now define the initial opinion configuration ω0.
For every 1 ≤ k ≤ N, for every u ∈ {0, 1, b\} and for every q ∈ Q, we do the following:

• We set ω0(v) = 1 for all nodes v in Du
k , in W̄u

k and B̄
q
k;

• We set ω0(v) = −1 for all nodes v in D̄u
k , in Wu

k and B
q
k.

Notice that, the above setting implies that, for every 1 ≤ k ≤ N and for every 1 ≤ j ≤ p,
ω0(ψ

j,1
k ) = ω0(ψ

j,2
k ) = −1 and ω0(ψ̄

j,1
k ) = ω0(ψ̄

j,2
k ) = 1.

Let x = x1x2 . . . xn be the input string; for k = 1, . . . , N and u ∈ {0, 1, b\}:
• If 1 ≤ k ≤ n and u = xk or if n + 1 ≤ k ≤ N and u = b\ then we set ω0(v) = 1 for all

nodes v in Au
k and we set ω0(v) = −1 for all nodes v in Āu

k ;
• If 1 ≤ k ≤ n and u 6= xk or if n + 1 ≤ k ≤ N and u 6= b\ then we set ω0(v) = −1 for all

nodes v in Au
k and we set ω0(v) = 1 for all nodes v in Āu

k .

Notice that, by the assumptions about TM described at the beginning of this section,
the above setting implies that, for every 1 ≤ k ≤ N and for every u ∈ {0, 1, b\}, if cell k
contains u in the initial global state S0 of TM(x) then ω0(u1

k) = ω0(u2
k) = 1 and ω0(ū1

k) =
ω0(ū2

k = −1, otherwise ω0(u1
k) = ω0(u2

k) = −1 and ω0(ū1
k) = ω0(ū)2

k = 1.
Finally, we set ω0(ψ

1
A) = ω0(ψ

2
A) = −1, for every node v in Ψ0 we set ω0(v) = 1, and

for every node v in Ψ̄0 we set ω0(v) = −1.
Notice that, since ω0(ψ

i,1
k ) = ω0(ψ

i,2
k ) = −1 for every 1 ≤ k ≤ N and 1 ≤ i ≤ p, ω0

does not mirror any global state of TM. However, it evolves in an opinion configuration
mirroring the initial global state S0 of TM(x). This is shown in the next lemma.

Lemma 8. The opinion configuration d(3,4)(G, ω0)
γ mirrors S0.

Proof. As in the proof of Lemma 6, we denote as ωγ−1 = d(3,4)(G, ω)γ−1 and as ωγ =
d(3,4)(G, ω)γ.

Since ω0(ψ
i,1
k ) = ω0(ψ

i,2
k ) = −1 and ω0(ψ̄

i,1
k ) = ω0(ψ̄

i,2
k ) = 1 for every 1 ≤ k ≤ N and

1 ≤ i ≤ p, by similar arguments to those in the proof of Lemma 6, the following hold:

• ωγ(u1
k) = ωγ(u2

k) = ω0(u1
k) = ω0(u2

k) and ωγ(ū1
k) = ωγ(ū2

k) = ω0(ū1
k) = ω0(ū2

k) for
every 1 ≤ k ≤ N and u ∈ {0, 1, b\};

• Du
k is positive and Wu

k is negative at ωγ, and D̄u
k is negative and W̄u

k is negative at ωγ, for
every 1 ≤ k ≤ N and u ∈ {0, 1, b\};

• ωγ(ψ
i,1
k ) = ωγ(ψ

i,1
k ) = ω0(ψ

i,1
k ) = ω0(ψ

i,2
k ) = −1 and ωγ(ψ̄

i,1
k ) = ωγ(ψ̄

i,1
k ) =

ω0(ψ̄
i,1
k ) = ω0(ψ̄

i,2
k ) = 1 for every pair (k, i) such that 1 ≤ k ≤ N and 1 ≤ i ≤ p

and qi
b 6= q0 or si

r 6= x1;
• B

q
k is negative and B̄

q
k is positive for every pair (k, q) such that 1 ≤ k ≤ N and q 6= q0.

Let the jth quintuple 〈qj
b, sj

r, sj
w, mj〉 be the one to be executed by TM in S0: hence,

qj
b = q0 and sj

r = x1. As a consequence, since ω0(ψ
1
0) = ω0(ψ

2
0) = 1, since the outputs of

B
q0
1 are in-neighbors of ψ

j,1
1 and ψ

j,2
1 and since the inputs of Asj

r
1 have opinion 1 at ω0 then, by

Property 2, nodes ψ
j,1
1 and ψ

j,2
1 are pushed to 1 by all their 4 in-neighbors. Symmetrically,

since ω0(ψ̄
1
0) = ω0(ψ̄

2
0) = −1, since the outputs of B̄q0

1 are in-neighbors of ψ̄
j,1
1 and ψ̄

j,2
1

and and since the inputs of Āsj
r

1 have opinion −1 at ω0 then, by Property 3, nodes ψ̄
j,1
1 and
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ψ̄
j,2
1 are pushed to −1 by 4 in-neighbors out of 6 at ωγ−1. All this implies that ωγ(ψ

j,1
1 ) =

ωγ(ψ
j,2
1 ) = 1 and ωγ(ψ̄

j,1
1 ) = ωγ(ψ̄

j,2
1 ) = −1.

Since the input nodes of Ψ0 have positive opinion at ω0 and the input nodes of Ψ̄0 have
negative opinion at ω0, then, by Properties 2 and 3, d(3,4)(G, ω0)

`(ψ1
0) = d(3,4)(G, ω0)

`(ψ2
0) =

1 and d(3,4)(G, ω0)
`(ψ̄1

0) = d(3,4)(G, ω0)
`(ψ̄2

0) = −1 for all ` = 1, . . . , γ− 1. Correspond-

ingly, by Properties 5, 2 and 3, it follows that Bj
1 is positive and B̄

j
1 is negative under

ωγ.
Furthermore, again similar to the proof of Lemma 6, it can be proved that for u ∈

{0, 1, b\} and k = 1, . . . , N, Au
k is positive at ωγ if and only if ωγ(u1

k) = ωγ(u2
k) = 1;

correspondingly, Āu
k is negative at ωγ if and only if ωγ(ū1

k) = ωγ(ū2
k) = −1: hence, Asj

r
1 is

positive and Ā
sj

r
1 is negative at ωγ.

Since the input nodes i1 and i2 of Ψ0 have indegree 0 in G then d(3,4)(G, ω0)
t(i1) =

d(3,4)(G, ω0)
t(i2) = −1 for every t > 0: hence, by Property 2, Ψ0 is negative at ωγ.

Symmetrically, since the output nodes of 4 stable cliques are in-neighbors of the input
nodes ī1 and ī2 of Ψ̄0 then d(3,4)(G, ω0)

t(ī1) = d(3,4)(G, ω0)
t(ī2) = 1 for every t > 0: hence,

by Property 3, Ψ̄0 is negative at ωγ.
Finally, similar to the proof of Lemma 6, it can be shown that all stable cliques are

positive at ωγ and that ωγ(ψ1
A) = ωγ(ψ2

A) = −1.

From Lemmas 8, 6 and 7, it directly follows that ψA gets a positive opinion starting
from the configuration ω0 if and only if TM(x) is an accepting computation. Since G, ω0
and VA are computable in polynomial time in |x|, by defining the target set as U = {ψA},
this completes the proof of Theorem 3.

3.4. Proof of Corollary 1: Unlikeliness of a Polynomial Bound to |Ed(3,4)
(G, ω)| in Directed Graphs

Let us denote as d(c+ ,c−)-REACHTARGET the restriction of U-RT in which only the
d(c+ ,c−) opinion dynamics is considered, and let 〈G = (V, E, λ), ω, U〉 be an instance of
d(c+ ,c−)-REACHTARGET (that is, 〈d(3,4), G = (V, E, λ), ω, U〉 is an instance of U-RT).

Recall that, for any opinion dynamics d, deciding if ω′ ∈ Ed(G, ω) exists such that
ω′(u) = 1 for every u ∈ U may occur by just computing, one after the other, all the opinion
configurations in Ed(G, ω) and testing if any of them makes positive the opinions of all
nodes in U. Then, d(c+ ,c−)-REACHTARGET should belong to P if Ed(c+ ,c−)

has polynomial
size |G|.

4. Discussion

Theoretical issues are considered in this paper. The main achievements of the paper
are the proof that, like in the case of undirected unsigned graphs, a polynomial bound in
the graph size on the number of opinion configurations met during the underpopulation
opinions evolution process exists for (undirected) structurally balanced graphs, and the
proof that such a polynomial bound is unlikely to exist for directed (although unsigned)
graphs. The former results extend the set of instances for which deciding if the reachability
of some opinion configurations from one other is a problem in P.

As mentioned in the introduction, two features were introduced for proving the
existence of the polynomial bound, namely, the support graph of a graph in some opinion
configuration, and a procedure allowing the simulation of the opinion evolution of a signed
graph according to underpopulation dynamics by the opinion evolution of a related signed
graph according to related symmetric dynamics. Since the support graph evolves according
to its edge labels only (instead of according to a combination of edge and node labels), it
allows to concisely describe the opinion configurations and, hence, the evolution of a signed
graph. This argument suggests that it might prove to be a useful tool for new achievements
on this topic. Additionally, the possibility of generalizing the procedure yielding Lemma 5
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in order to obtain simulations between other pairs of local threshold-based dynamics seems
worthwhile to be investigated.

At first glance, the underpopulation rule looks like a minor change to the set of rules
governing the Game of Life. In this respect, it has to be remarked that the Game of Life
is a Turing-complete system (that is, it can simulate the behavior of any Turing-based
computation models) also when played on an (infinite) undirected grid. On the other
hand, the underpopulation rule is a much weaker model when considered in undirected
unsigned graphs or even (as proved in this paper) on structurally balanced graphs: this is
the downside of having the reachability problems in P in such cases.
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