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Abstract: In this research work, a new three-parameter lifetime distribution is introduced and studied.
It is called the Harris extended Bilal distribution due to its construction from a mixture of the famous
Bilal and Harris distributions, resulting from a branching process. The basic properties, such as the
moment generating function, moments, quantile function, and Rényi entropy, are discussed. We
show that the hazard rate function has ideal features for modeling increasing, upside-down bathtub,
and roller-coaster data sets. In a second part, the Harris extended Bilal model is investigated from a
statistical viewpoint. The maximum likelihood estimation is used to estimate the parameters, and a
simulation study is carried out. The flexibility of the proposed model in a hydrological data analysis
scenario is demonstrated using two practical data sets and compared with important competing
models. After that, we establish an acceptance sampling plan that takes advantage of all of the
features of the Harris extended Bilal model. The operating characteristic values, the minimum sample
size that corresponds to the maximum possible defects, and the minimum ratios of lifetime associated
with the producer’s risk are discussed.

Keywords: Harris extended distributions; bilal distribution; hazard rate function; quantile function;
maximum likelihood estimation; acceptance sampling plans

1. Introduction

Modern data are diverse and complex, so new statistical models based on appealing
distributions have long been popular in the statistical literature. Among the most notable
references, the authors in [1] introduced a new one-parameter distribution known as the
Bilal distribution, which yields more flexibility in the modeling of real data sets than the
exponential and Lindley distributions. Although the Bilal distribution has received less
attention, there has been great interest in its extensions, generalizations, and related applica-
tions. A short retrospective on this topic is offered below. A two-parameter generalization
was introduced in [2] as a solution to the unimodal hazard rate function (hrf) of the Bilal
distribution. The authors in [3] suggested that the scale parameter involved should be
estimated using U-statistics. The log-Bilal distribution and associated regression, which
provide better modeling of extremely skewed dependent variables with associated covari-
ates, were introduced in [4]. In addition, the author in [5] proposed a new distribution
based on the Poisson–Bilal distribution to model count data regression. The corresponding
INAR(1) process for over-dispersed count data sets was also provided. The authors in [6]
introduced the Farlie–Gumbel–Morgenstern bivariate Bilal distribution and its inferential
aspects using concomitant order statistics. Some properties and an estimation under ranked
set sampling were established for the generalized Bilal distribution in [7]. These studies
have demonstrated the versatility of the Bilal distribution. There is, however, room for
improvement in reaching the goal of perfect statistical modeling.

As a matter of fact, the extended distributions proposed by adding additional param-
eters generally provide an improved flexibility. To that end, the Harris extended family

AppliedMath 2023, 3, 221–242. https://doi.org/10.3390/appliedmath3010013 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath3010013
https://doi.org/10.3390/appliedmath3010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://orcid.org/0000-0002-5999-1588
https://doi.org/10.3390/appliedmath3010013
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath3010013?type=check_update&version=1


AppliedMath 2023, 3 222

of distributions was introduced in [8] by modifying the baseline distribution with two
parameters. A physical interpretation at the heart of this family is as follows: if a device is
made up of N serial components with a fixed failure rate, where N is a random variable,
then the Harris extended family is defined by the distribution of the device’s time until
failure. Thus, it results from a branching process. More information on this construction
can be found in [9]. The Harris extended family can also be viewed as a generalization
of the Marshall–Olkin distribution developed in [10], with an additional new parameter
providing more control over the distribution’s shape. It provides an adequate model in
various research fields, such as hydrology, insurance, biology, and life testing.

The new lifetime distributions have a large amount of room for quality control because
of the non-standard lifetime data scenarios. In this context, acceptance sampling plans
(ASPs) play a major role. Due to certain restrictions, examining the whole production
unit is impossible. Thus, the ASP acts as a decision rule for the acceptance of a lot from a
sample of products. It arose from the consideration of both consumer and producer risks,
representing a middle ground between complete inspection and no inspection.

The goal of this paper is to introduce the Harris extended Bilal (HEB) distribution,
a three-parameter generalization of the Bilal distribution based on the idea in [8]. We
emphasize its practical usefulness. In addition, we intend to compare the proposed dis-
tribution with the Harris extended Lindley (HEL) distribution proposed in [11] and the
Harris extended exponential (HEE) distribution introduced in [12]. This is demonstrated
through hydrological data analysis. We also propose the ASP, a reliability test plan for
accepting or rejecting lots, where the lifetime of the product follows the HEB distribution
and discusses its properties.

The remaining part of the paper is organized in the following order: Section 2 describes
the nature of the probability density function (pdf) and hrf of the HEB distribution. In
Section 3, we describe its associated statistical properties, such as the moment generating
function (mgf), moments, quantile function, and (Rényi) entropy. The estimation of the
parameters and the Fisher information matrix are discussed in Section 4. The large sample
behavior of the HEB distribution, with the help of certain simulated data sets, is detailed
in Section 5. In Section 6, two real data sets are analyzed using the proposed distribution.
Section 7 investigates the ASP with a lifetime following the HEB distribution. Finally, the
study is concluded in Section 8.

2. The Harris Extended Bilal Distribution

In this section, we describe the HEB distribution and elucidate some of its statistical
properties.

As suggested in [8], assume that X1, X2, . . . is a sequence of independent and identically
distributed (iid) random variables with the pdf f1(x) and the survival function (sf) F1(x).
Consider a positive integer random variable N, independent of X1, X2, . . ., following the
Harris distribution with parameters θ > 0 and δ > 0.
Let X = min(X1, X2, . . . , XN). Then, the resulting distribution of X is known as the Harris
extended family of distributions with sf of the form

GHE(x) =
θ

1
δ F1(x)[

1− θ F1(x)δ
] 1

δ

, x ∈ R, (1)

where θ = 1− θ. Thus, θ and δ are the shape parameters, providing additional flexibility to
the baseline sf F1(x). The corresponding pdf is indicated as follows:

gHE(x) =
θ

1
δ f1(x)[

1− θ F1(x)δ
]1+ 1

δ

, x ∈ R.
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It can be considered as a generalization of the Marshall–Olkin family of distributions
in [10], obtained by taking δ = 1 in (1).

On the other hand, the author in [1] introduced the Bilal distribution as a new one-
parameter lifetime distribution with the following pdf:

f (x; λ) =
6
λ

(
e−

2x
λ − e−

3x
λ

)
, x > 0,

and the following sf:
F(x; λ) = 3e−

2x
λ − 2e−

3x
λ , x > 0,

where λ > 0 is the scale parameter. It is understood that f (x; λ) = 0 and F(x; λ) = 1 for
x ≤ 0. Based on the mathematical material above, the proposition below gives the exact
definition of the HEB distribution.

Proposition 1. A continuous random variable X is said to follow the HEB distribution if its pdf
and sf are given by

g(x; λ, θ, δ) =
6 θ

1
δ

(
e−

2x
λ − e−

3x
λ

)
λ

[
1− θ

(
3e−

2x
λ − 2e−

3x
λ

]δ
)1+ 1

δ

, x > 0 (2)

and

G(x; λ, θ, δ) =
θ

1
δ

(
3e−

2x
λ − 2e−

3x
λ

)
[

1− θ
(

3e−
2x
λ − 2e−

3x
λ

)δ
] 1

δ

, x > 0, (3)

respectively, where λ > 0 is the scale parameter, θ > 0 and δ > 0 are the shape parameters, and
θ = 1− θ. It is understood that g(x; λ, θ, δ) = 0 and G(x; λ, θ, δ) = 1 for x ≤ 0.

Proof. The result is trivial since it can be obtained by substituting F1(x) for F(x; λ) in (1).

To specify the parameters, the HEB distribution will eventually be denoted as
HEB(λ, θ, δ). Two special cases of the HEB distribution emerged:

1. The Marshall–Olkin Bilal (MOB) distribution when δ = 1 (literature to be discussed).
2. The Bilal distribution when θ = 1.

The following theorem elucidates the convenient infinite series expansion of the pdf of the
HEB distribution.

Theorem 1. The pdf of the HEB distribution can be expressed in terms of simple exponential
functions as

g(x; λ, θ, δ) =
∞

∑
i,j=0

zi,j e−[j+2(1+δi)] x
λ

(
1− e−

x
λ

)
, x > 0,

where

zi,j = wi3δi−j
(

δi
j

)
(−1)j2j, (4)

and

wi =



(
−(δ−1 + 1)

i

)
(−1)iθ

i 6
λ

θ
1
δ i f 0 < θ < 1

6
λθ

(−1)i

[
∞

∑
l=i

(
1
θ
− 1
)l (l

i

) (
−(δ−1 + 1)

l

)]
i f θ > 1

.
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We recall that (−r
i ) =

(−r)(−r−1)...(−r−i+1)
Γ(i+1) and (r

i) =
Γ(r+1)

Γ(i+1) Γ(r−i+1) for i > 0 and r > 0,
where Γ(x) denotes the standard gamma function. (It is worth noting that θ = 1 is omitted
voluntarily because it corresponds to the well-known Bilal distribution.)

In order not to weigh down the presentation, this proof (as well as all some future
proofs) is given in Appendix A.

The main interest of Theorem 1 is in terms of functional approximation: for large
enough M, we can efficiently approximate the sophisticated pdf g(x; λ, θ, δ) to a manageable
sum of simple exponential functions as

g(x; λ, θ, δ) ≈
M

∑
i,j=0

zi,j e−[j+2(1+δi)] x
λ

(
1− e−

x
λ

)
, x > 0.

Some important statistical measures related to the HEB distribution can therefore be
simply approximated, as developed later.

Using (2) and (3), the hrf of the HEB distribution is given by

h(x; λ, θ, δ) =
6 (1− e−

x
λ )

λ
(

3− 2e−
x
λ

)[
1− θ

(
3e−

2x
λ − 2e−

3x
λ

)δ
] , x > 0.

It is understood that h(x; λ, θ, δ) = 0 for x ≤ 0. Figures 1 and 2 display the pdf and hrf
of the HEB distribution for different parameter values, respectively.

From Figure 1, we can see that the pdf is unimodal and right-skewed. Figure 2 shows
that the hrf can be increasing (IFR), upside-down bathtub (UBT), and roller-coaster, which
is not shared by the general Bilal (GB) distribution (see [2]).
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Figure 1. Plots of the pdf of the HEB distribution.
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Figure 2. Plots of the hrf of the HEB distribution.

3. Statistical Properties

In this section, some mathematical properties of the HEB distribution are intended for
comparison because of the structural complexity of the Harris extended family of distributions.

3.1. Moment Generating Function and Moments

The next result presents a series expansion of the mgf of the HEB distribution.

Proposition 2. Let X be a random variable following the HEB distribution. Then, the mgf of X is
given by M(t) = E(etX), and can be expressed as

M(t) =
∞

∑
i,j=0

zi,j
λ

[j + 2(1 + δi)− λt](j + 3 + 2δi− λt)
, t <

2
λ

.

Proof. From the expansion in Theorem 1 and integration, we obtain

M(t) =
∞

∑
i,j=0

zi,j

∫ ∞

0
e−[j+2(1+δi)−λt] x

λ

(
1− e−

x
λ

)
dx.

Considering the change in variables, v = e−
x
λ , we obtain

M(t) =
∞

∑
i,j=0

zi,j λ
∫ 1

0
vj+2(1+δi)−λt−1 (1− v) dv =

∞

∑
i,j=0

zi,j λ B(j + 2(1 + δi)− λt, 2),

where B(a, b) refers to the standard beta function, B(a, b) =
∫ 1

0 va−1(1− v)b−1dv, with
a > 0 and b > 0. Since B(a, 2) = 1

a(a+1) , we obtain the desired result.
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As usual, the mgf can serve to generate the raw moments of X, find bounds for
some probability involving X into an event via the Markov inequality, or characterize the
independence of several random variables following the HEB distribution.

The next result presents a comprehensive expansion of the raw moments of X.

Proposition 3. Let X be a random variable following the HEB distribution and r be an integer.
Then, the rth raw moment of X is given by µ

′
r = E(Xr) and can be expressed as

µ
′
r =

∞

∑
i,j=0

zi,j λr+1r!
(

1
[j + 2(1 + δi)]r+1 −

1
[1 + j + 2(1 + δi)]r+1

)
,

where zi,j is expressed in (4).

The derivation is given in Appendix B.
In particular, from Proposition 3, we can derive the first two raw moments of X as

µ
′
1 =

∞

∑
i,j=0

zi,j λ2
(

1
[j + 2(1 + δi)]2

− 1
[1 + j + 2(1 + δi)]2

)

and

µ
′
2 =

∞

∑
i,j=0

zi,j λ32
(

1
[j + 2(1 + δi)]3

− 1
[1 + j + 2(1 + δi)]3

)
,

respectively. The variance and standard deviation follow immediately.

3.2. Quantile Function

The following proposition gives the quantile function of the HEB distribution.

Proposition 4. The quantile function of the HEB distribution is given by
Q(u; λ, θ, δ) = F−1(u; λ, θ, δ), and can be expressed as

Q(u; λ, θ, δ) = −λ log[γ(u)],

where

γ(u) =


0.5 + sin

(
αu +

π

6

)
i f 0 < α < 0.5

0.5 i f α = 0.5

0.5− cos
(

αu +
π

3

)
i f 0.5 < α < 1

,

αu =
1
3

tan−1

(
2
√

α (1− α)

2 α− 1

)
and α = 1− 1− u

[θ + θ (1− u)δ]
1
δ

.

Proof. Using (3), we need to solve 1− G(x; λ, θ, δ) = u, which is equivalent to

1−
(

3e−
2x
λ − 2e−

3x
λ

)
= 1− 1− u

[θ + θ (1− u)δ]
1
δ

.

The left term is the cumulative distribution function (cdf) of the Bilal distribution.
Hence, the proof follows from the quantile function of the Bilal distribution (see ([1]
Equation (7))).

Since the HEB distribution has a closed-form quantile function, it has a variate genera-
tion property, which is very useful in simulation studies.
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3.3. Entropy

Entropy is the measure of uncertainty about a random variable. The most common
measure of uncertainty is the Rényi entropy. It is given in the following proposition in the
context of the HEB distribution.

Proposition 5. Let X be a random variable following the HEB distribution. Then, the Rényi
entropy of X is given by IR = (1− v)−1 log

{
E
[

g(X; λ, θ, δ)v−1]}, with v > 0 and v 6= 1, and
can be expressed as

IR = (1− v)−1 log

[
∞

∑
i,j=0

z(v)i,j λ B(j + 2(v + δi), v + 1)

]
,

where

z(v)i,j = w(v)
i 3δi−j

(
δi
j

)
(−1)j2j

and

w(v)
i =



(
−v(δ−1 + 1)

i

)
(−1)iθ

i 6v

λv θ
v
δ i f 0 < θ < 1

6v

(λθ)v (−1)i

[
∞

∑
l=i

(
1
θ
− 1
)l (l

i

) (
−v(δ−1 + 1)

l

)]
i f θ > 1

.

The derivation is given in Appendix C.

4. Parameter Estimation

Here, we estimate the unknown parameters of the HEB distribution using the max-
imum likelihood (ML), least squares (LS), and weighted least squares (WLS) methods.
Through the use of a simulation study, the effectiveness of these methods is assessed.

4.1. Maximum Likelihood Estimation

Let n be a positive integer and X1, X2, . . . , Xn be n iid random variables, which con-
stitutes a random sample of size n, from the HEB(λ, θ, δ) distribution. Let x1, x2, . . . , xn be
observations of these random variables. From (2), the log-likelihood function is given by

log L(λ,θ,δ) = n log

(
6 θ

1
δ

λ

)
−

n

∑
i=1

2xi
λ

+
n

∑
i=1

log
(

1− e−
xi
λ

)
− 1 + δ

δ

n

∑
i=1

log

[
1− θ

(
3e−

2xi
λ − 2e−

3xi
λ

)δ
]

. (5)

The ML estimates λ̂, θ̂, and δ̂ of the parameters λ, θ, and δ, respectively, are those
maximizing log L(λ,θ,δ) with respect to λ, θ, and δ. They may be obtained from the solution
of the following equations:

∂ log L(λ,θ,δ)

∂λ
= 0,

∂ log L(λ,θ,δ)

∂θ
= 0,

∂ log L(λ,θ,δ)

∂δ
= 0,
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where

∂ log L(λ,θ,δ)

∂λ
= − n

λ
+

n

∑
i=1

2xi
λ2 −

n

∑
i=1

xi e−
xi
λ

(1− e−
xi
λ )λ2

+
n

∑
i=1

6 (1 + δ) θ xi

(
3e−

2xi
λ − 2e−

3xi
λ

)δ−1 (
e−

2xi
λ − e−

3xi
λ

)
λ2

[
1− θ

(
3e−

2xi
λ − 2e−

3xi
λ

)δ
] ,

∂ log L(λ,θ,δ)

∂θ
=

n
δθ
− 1 + δ

δ

n

∑
i=1

[3e−
2xi
λ − 2e−

3xi
λ ]δ

1− θ

(
3e−

2xi
λ − 2e−

3xi
λ

)δ

and

∂ log L(λ,θ,δ)

∂δ
= −n log(θ)

δ2 − 1
δ2

n

∑
i=1

log

[
1− θ

(
3e−

2xi
λ − 2e−

3xi
λ

)δ
]

+
1 + δ

δ

n

∑
i=1

θ log
(

3e−
2xi
λ − 2e−

3xi
λ

)
(

3e−
2xi
λ − 2e−

3xi
λ

)−δ

− θ

.

Since we cannot find the solution in explicit form when equating to zero, we would go
for the direct maximization of (5) using numerical methods.

The inference analysis on the parameters can be performed using the underlying
asymptotic properties of the random ML estimators. For the vector parameter estimate
φ̂ = (λ̂, θ̂, δ̂), assuming classical regularity conditions, the asymptotic distribution behind
φ̂ is the trivariate normal N3(φ, K−1) distribution, where K−1 is the information matrix of
the parameters, K = −Jn, and

Jn =


∂2 log L(λ,θ,δ)

∂λ2
∂2 log L(λ,θ,δ)

∂λ∂θ

∂2 log L(λ,θ,δ)
∂λ∂δ

∂2 log L(λ,θ,δ)
∂θ∂λ

∂2 log L(λ,θ,δ)
∂θ2

∂2 log L(λ,θ,δ)
∂θ∂δ

∂2 log L(λ,θ,δ)
∂δ∂λ

∂2 log L(λ,θ,δ)
∂δ∂θ

∂2 log L(λ,θ,δ)
∂δ2


∣∣∣∣∣∣∣∣∣
(λ,θ,δ)=(λ̂,θ̂,δ̂)

.

4.2. Least and Weighted Least Squares Estimation

Let X(1), X(2), . . . , X(n) be the order statistics of X1, X2, . . . , Xn, i.e., such that
P(X(1) ≤ X(2) ≤ . . . ≤ X(n)) = 1. Let x(1), x(2), . . . , x(n) be observations of these ran-
dom variables. By minimizing the following function with respect to λ, θ, and δ, we obtain
the LS estimates of the parameters:

LS(λ,θ,δ) =
n

∑
i=1

1−
θ

1
δ

(
3e−

2x(i)
λ − 2e−

3x(i)
λ

)
[

1− θ

(
3e−

2x(i)
λ − 2e−

3x(i)
λ

)δ
] 1

δ

− i
n + 1



2

.
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Similarly, the WLS estimates of the parameters λ, θ, and δ are obtained by minimizing
the following function:

WLS(λ,θ,δ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

1−
θ

1
δ

(
3e−

2x(i)
λ − 2e−

3x(i)
λ

)
[

1− θ

(
3e−

2x(i)
λ − 2e−

3x(i)
λ

)δ
] 1

δ

− i
n + 1



2

.

5. Simulation

The performance of the HEB model is analyzed by means of a simulation study. The
simulation is run with N = 1000 replications for a sample of size of n = 50, 100, 150,
200, and 250, and the following arbitrary choices of parameter values: (λ = 1.5, θ = 0.8,
δ = 2), (λ = 1.3, θ = 1.1, δ = 2.1), and (λ = 1.18, θ = 1.45, δ = 2). The parameter
estimation is carried out by the ML, LS, and WLS methods, and the following quantities
are computed:

1. Average bias (Bias) of the parameters, given by the following formula:

Bias(α̂) =
1
N

N

∑
i=1

(α̂i − α), where α ∈ {λ, θ, δ},

2. Root mean square error (RMSE) of the parameters, given by the following formula:

RMSE(α̂) =

√√√√ 1
N

N

∑
i=1

(α̂i − α)2, where α ∈ {λ, θ, δ}.

The simulation result is displayed in Table 1. In general, we can conclude that the ML, LS,
and WLS estimations perform very well. Indeed, as n increases, the RMSE and bias decrease.

Table 1. Simulation results.

λ = 1.5, θ = 0.8, δ = 2

n
MLE LSE WLSE

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

λ

50 1.5548 0.0548 0.4551 1.6060 0.1060 0.3637 1.5903 0.0903 0.3584

100 1.5482 0.0482 0.3320 1.5483 0.0483 0.2449 1.5393 0.0393 0.2273

150 1.5505 0.0505 0.2677 1.5380 0.0380 0.2034 1.5238 0.0238 0.1881

200 1.5375 0.0375 0.2218 1.5196 0.0196 0.1600 1.5180 0.0180 0.1541

250 1.5386 0.0386 0.2011 1.5200 0.0200 0.1592 1.5174 0.0174 0.1449

θ

50 1.0431 0.2431 0.8600 0.8595 0.0595 0.5013 0.9240 0.1240 0.6263

100 0.9290 0.1290 0.5843 0.8342 0.0342 0.3843 0.8551 0.0551 0.3696

150 0.8257 0.0257 0.3729 0.8312 0.0312 0.3099 0.8455 0.0455 0.3042

200 0.8358 0.0358 0.3072 0.8186 0.0186 0.2566 0.8315 0.0315 0.2620

250 0.8052 0.0052 0.2505 0.8210 0.0210 0.2424 0.8228 0.0228 0.2306

δ

50 2.2408 0.2408 1.4854 2.0767 0.0767 0.2950 2.1169 0.1169 0.7809

100 2.1601 0.1601 1.6306 2.0554 0.0554 0.2487 2.0356 0.0356 0.2715

150 2.4490 0.4490 1.9049 2.0873 0.0873 0.4424 2.1011 0.1011 0.6818

200 1.9850 0.0150 1.1910 2.0337 0.0337 0.2847 2.0644 0.0644 0.3883

250 2.2019 0.2019 1.2663 2.0335 0.0335 0.3734 2.0239 0.0239 0.2982
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Table 1. Cont.

λ = 1.3, θ = 1.1, δ = 2.1

n
MLE LSE WLSE

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

λ

50 1.3266 0.0266 0.2974 1.4003 0.1003 0.3127 1.3939 0.0939 0.3163

100 1.3203 0.0203 0.2035 1.3586 0.0586 0.2225 1.3393 0.0393 0.1928

150 1.3186 0.0186 0.1680 1.3455 0.0455 0.2210 1.3312 0.0312 0.1798

200 1.3013 0.0013 0.1491 1.3164 0.0164 0.1546 1.3108 0.0108 0.1461

250 1.2944 0.0056 0.1306 1.3221 0.0221 0.1414 1.3087 0.0087 0.1254

θ

50 1.3943 0.2943 0.6610 1.2530 0.1530 0.6308 1.2654 0.1654 0.6178

100 1.2521 0.1521 0.5096 1.1712 0.0712 0.4988 1.1931 0.0931 0.4799

150 1.1555 0.0555 0.4304 1.1240 0.0240 0.4578 1.1317 0.0317 0.4344

200 1.2098 0.1098 0.3973 1.1756 0.0756 0.4053 1.1808 0.0808 0.3868

250 1.2069 0.1069 0.3800 1.1581 0.0581 0.3869 1.1731 0.0731 0.3616

δ

50 1.9696 0.1304 0.9042 2.2069 0.1069 0.9106 2.1328 0.0328 0.9044

100 2.1444 0.0444 0.9194 2.2281 0.1281 0.9197 2.2334 0.1334 0.9314

150 2.2667 0.1667 0.8827 2.2886 0.1886 0.9103 2.3618 0.2618 0.9016

200 2.0157 0.0843 0.9188 2.1105 0.0105 0.9097 2.1128 0.0128 0.9251

250 2.0627 0.0373 0.9314 2.2765 0.1765 0.9257 2.2484 0.1484 0.9397

λ = 1.18, θ = 1.45, δ = 2

n
MLE LSE WLSE

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

λ

50 1.1882 0.0082 0.1566 1.2320 0.0520 0.1802 1.2216 0.0416 0.1700

100 1.1866 0.0066 0.1267 1.2222 0.0422 0.1370 1.2100 0.0300 0.1292

150 1.1873 0.0073 0.1198 1.2139 0.0339 0.1274 1.2048 0.0248 0.1197

200 1.1673 0.0127 0.0968 1.1834 0.0034 0.0950 1.1781 0.0019 0.0929

250 1.1751 0.0049 0.0845 1.1947 0.0147 0.0887 1.1876 0.0076 0.0843

θ

50 1.5109 0.0609 0.4363 1.4232 0.0268 0.4562 1.4451 0.0049 0.4440

100 1.4781 0.0281 0.4183 1.3919 0.0581 0.4350 1.4307 0.0193 0.4258

150 1.5186 0.0686 0.3696 1.4606 0.0106 0.3765 1.4790 0.0290 0.3693

200 1.4985 0.0485 0.3646 1.4467 0.0033 0.3648 1.4644 0.0144 0.3681

250 1.4845 0.0345 0.3112 1.4317 0.0183 0.3093 1.4524 0.0024 0.3061

δ

50 1.9650 0.0350 0.4795 2.0465 0.0465 0.4672 2.1132 0.1132 0.4708

100 2.0627 0.0627 0.4781 2.0839 0.0839 0.4543 2.1279 0.1279 0.4638

150 2.0291 0.0291 0.4763 2.0639 0.0639 0.4571 2.0714 0.0714 0.4698

200 2.0325 0.0325 0.4875 2.0361 0.0361 0.4721 2.0316 0.0316 0.4707

250 1.9716 0.0284 0.4689 2.0103 0.0103 0.4621 2.0473 0.0473 0.4494

6. Data Analysis
6.1. Methodology

We assess the performance of the proposed model with two real hydrological data
sets: the Wheaton River data set given in [11], and the Kiama Blowhole data used in [12].

We compare the performance of the HEB distribution to that of some other compet-
ing distributions, such as the HEL distribution, HEE distribution, MOB distribution, GB
distribution introduced in [2], exponentiated exponential (EE) distribution defined in [13],
exponentiated Weibull (EW) distribution introduced in [14], power Lindley (PL) distribu-
tion proposed in [15], Marshall–Olkin exponential (MOE) distribution, which is the HEE
distribution with δ = 1, Marshall–Olkin Lindley (MOL) distribution, which is the HEL
distribution with δ = 1, and the exponentiated Lindley (EL) distribution discussed in [16].

The ML method is used to estimate the unknown parameters of the HEB model,
and the model’s performance is evaluated using well-referenced information criteria and
goodness-of-fit statistics. The smaller values of the Akaike information criterion (AIC) and
Bayesian information criterion (BIC) and the large value of the estimated log likelihood
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(log L) indicate the model adequacy. The goodness-of-fit statistics are evaluated by em-
ploying the Kolmogorov–Smirnov (KS) statistic and associated p value, Anderson–Darling
(AD), Cramér–von Mises (CM), and average scaled absolute error (ASAE) statistics (see
[17]). The smaller the goodness-of-fit measures, the better the fit.

6.2. Wheaton River Data

The considered data set consists of the exceedances of flood peaks (in m3/s) of the
Wheaton River, Canada, for the years 1958-1984, which is used to fit the HEL distribution
proposed in [11].

Figure 3 displays the total time on test (TTT) plot and box plot for the data, and we can
see that the observations are right-skewed and have an increasing hrf, which is applicable
under the HEB model.
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Figure 3. TTT plot (left) and box plot (right) based on the Wheaton river data.

Table 2 lists the ML estimates with standard errors (SEs), information criteria, and
goodness-of-fit-measures for different models. We can see that the HEB model has the
maximum log L and the lowest AIC and BIC values. Moreover, the associated KS statistic
is the minimum with a large p value, and the AD, CM, and ASAE statistics have the
smallest values. We can conclude that the HEB model performs well among the considered
competitive models.

Table 2. ML estimates with SEs (in parentheses), information criteria, and goodness-of-fit-measures
of the models for the Wheaton river data.

Distribution Estimates logL AIC BIC KS p value AD CM ASAE

HEB 21.099 0.024 8.878 –247.47 500.94 507.77 0.06 0.97 0.24 0.02 0.04(λ, θ, δ) (2.601) (0.014) (2.654)

HEL 0.110 0.077 6.132 –248.60 503.19 510.02 0.07 0.84 0.34 0.02 0.05(λ, θ, δ) (0.014) (0.038) (2.029)

HEE 0.071 0.434 5.085 –250.23 506.46 513.29 0.08 0.76 0.55 0.02 0.09(λ, θ, δ) (0.011) (0.194) (3.148)

MOB 24.847 0.196 –268.35 540.70 545.25 0.20 0.00 7.72 0.05 0.88(λ, θ) (6.438) (0.112)

GB 0.932 13.875 –273.59 551.18 555.73 0.27 0.00 11.97 0.05 1.06(θ, λ) (0.069) (1.353)

EE 0.828 13.802 –251.29 506.59 511.14 0.10 0.45 0.75 0.00 0.13(α, β) (0.123) (2.230)
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Table 2. Cont.

Distribution Estimates logL AIC BIC KS p value AD CM ASAE

EL 0.509 0.104 –252.67 509.35 513.90 0.12 0.28 0.83 0.02 0.13(α, β) (0.077) (0.015)

EW 1.387 19.913 0.519 –251.03 508.05 514.88 0.11 0.38 0.64 0.02 0.11(α, σ, θ) (0.590) (8.293) (0.312)

MOE 0.069 0.697 –251.76 507.52 512.07 0.11 0.31 1.06 0.03 0.18(λ, θ) (0.018) (0.303)

MOL 0.090 0.216 –259.29 522.57 527.12 0.17 0.02 4.15 0.04 0.58(λ, θ) (0.025) (0.128)

PL 0.700 0.339 –252.22 508.44 513.00 0.11 0.41 0.88 0.03 0.15(λ, θ) (0.057) (0.056)

The fitted pdf and cdf plots, the quantile-quantile (Q-Q) plot, and the probability-
probability (P-P) plots of the HEB model for the Wheaton river data are given in Figure 4.
The points in the Q-Q and P-P plots are almost in a straight line. We can infer that the HEB
model yields the best fit for the Wheaton river data.
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Figure 4. The fitted pdf (a), cdf (b), Q-Q plot (c), and P-P plot (d) of the HEB model for the Wheaton
river data.

6.3. Kiama Blowhole Data

Here, the considered data set is the waiting times between consecutive eruptions of
the Kiama Blowhole used in [12] to fit the HEE distribution. Figure 5 displays the TTT plot
and box plot for the data, and we can see that the observations are right-skewed and with
an increasing hrf that is applicable under the HEB model.
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Table 3 lists the ML estimates with SEs and goodness-of-fit-measures for different
models. We can see that the HEB model has the minimum KS statistic with a large p value,
and the AD, CM, and ASAE statistics have the smallest values. We can conclude that the
HEB model performs well among the considered competitive models.

The fitted pdf and cdf plots, the Q-Q plot, and the P-P plot of the HEB model for the
Kiama Blowhole data are displayed in Figure 6. The points in the Q-Q and P-P plots are
almost in a straight line. We can infer that the HEB model yields the best fit for the Kiama
Blowhole data.
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Figure 5. TTT plot (left) and box plot (right) for the Kiama Blowhole data.

Table 3. ML estimates, SEs (in parentheses), and goodness-of-fit-measures of the models for the
Kiama Blowhole data.

Distribution Estimates KS p value AD CM ASAE

HEB 61.601 0.362 2.406 0.085 0.741 0.583 0.063 0.021
(λ, θ, δ) (12.2480) (0.1770) (1.5820)

HEL 0.038 0.395 2.091 0.091 0.670 0.631 0.068 0.021
(λ, θ, δ) (0.0080) (0.1940) (1.5420)

HEE 0.030 146,785.300 58.237 0.103 0.507 0.852 0.114 0.025
(λ, θ, δ) (0.0040) (8398.7530) (9.7700)

MOB 71.973 0.348 0.099 0.553 0.772 0.103 0.026
(λ, θ) (23.2651) (0.2374)

GB 1.064 49.364 0.147 0.126 1.583 0.239 0.042
(θ, λ) (0.0819) (4.9325)

EE 1.731 28.579 0.123 0.291 0.962 0.143
(α, β) (0.3200) (4.1710) -

EL 0.859 0.045 0.127 0.252 1.046 0.159 0.030
(α, β) (0.1540) (0.0060)

EW 0.351 0.586 32.630 0.095 0.607 0.861 0.120 0.029
(α, σ, θ) (0.2514) (2.8828) (93.8733)

MOE 0.035 2.067 0.121 0.302 0.962 0.113 0.025
(λ, θ) (0.0070) (0.8340)

MOL 0.033 0.364 0.097 0.581 0.733 0.094 0.025
(λ, θ) (0.0103) (0.2413)

PL 0.909 0.070 0.115 0.361 0.889 0.126 0.028
(λ, θ) (0.0751) (0.0209)
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Figure 6. The fitted pdf (a), cdf (b), Q-Q plot (c), and P-P plot (d) of the HEB model for the Kiama
Blowhole data.

7. Sampling Plan
7.1. Method

Here, we look forward to introducing an ASP based on the assumption that the life-
times of sample products follow the HEB distribution. The number of items to be examined
and the maximum possible number of defects in them for acceptance are the major concerns
of an ASP. The number of defects when the test is terminated at a predetermined time is
recorded. We accept the lot with a probability of at least p∗ if the number of defects out of
n inspected items does not exceed the maximum possible number of defects (c) at time t.
When the number of defects exceeds c before the specified time t, the lot is rejected. Thus,
the minimum sample size required for the decision rule is the primary interest of our study.

Assume that the lifetime distribution follows the HEB distribution, with known θ and
δ and unknown λ, so that the average lifetime is solely dependent on λ. We recall that the
cdf of the HEB distribution is given by

G(t; λ, θ, δ) = 1−
θ

1
δ

(
3e−

2t
λ − 2e−

3t
λ

)
(

1− θ
[
3e−

2t
λ − 2e−

3t
λ

]δ
) 1

δ

, t > 0.

Let λ0 be the required minimum average lifetime. Then, the following equivalence holds:

G(t; λ, θ, δ) ≤ G(t; λ0, θ, δ) ⇐⇒ λ ≥ λ0.
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The ASP is characterized by the following elements:

• The number of units n on the test;
• The acceptance number c;
• The maximum test duration t;
• The ratio t

λ0
, where λ0 is the specified average lifetime and t is the maximum test duration.

For the sake of consumers, the lot with a true average life λ less than λ0 should be
rejected by the ASP. As a result, the consumer’s risk should not exceed the value 1− p∗,
where p∗ is a lower bound for the probability that a lot is rejected by the ASP. The triplet(

n, c, t
λ0

)
characterizes the ASP for a given p∗. We can obtain the acceptance probability by

using a binomial distribution for sufficiently large lots. The main goal is to find the smallest
sample size n for known c and t

λ0
values so that

L(p0) =
c

∑
i=0

(
n
i

)
pi

0 (1− p0)
n−i ≤ 1− p∗,

where p0 = G(t; λ0, θ, δ) is the failure probability before time t. Table 4 displays the
minimum values of n for p∗ = 0.75, 0.95, t

λ0
= 0.68, 0.84, 0.99, 1.1, 1.3, 1.42, 1.62, 1.81, 2, 2.5,

c = 0, 1, 2, . . . , 10, λ = 1.3, θ = 2, and δ = 1.5.

Table 4. Minimum sample size for specified p∗, t
λ0

, λ = 1.3, θ = 2, and δ = 2.5 for the binomial
approximation.

p∗ c
t

λ0

0.68 0.84 0.99 1.1 1.3 1.42 1.62 1.81 2 2.5

0.75

0 4 3 2 2 2 1 1 1 1 1

1 7 5 4 4 3 3 3 2 2 2

2 11 8 6 6 5 4 4 4 3 3

3 14 11 8 7 6 6 5 5 5 4

4 18 13 10 9 8 7 6 6 6 5

5 21 15 12 11 9 9 8 7 7 6

6 24 18 14 13 11 10 9 8 8 7

7 27 20 16 14 12 11 10 10 9 8

8 31 23 18 16 14 13 11 11 10 9

9 34 25 20 18 15 14 13 12 11 11

10 37 27 22 20 17 15 14 13 12 12

0.95

0 8 5 4 4 3 3 2 2 2 1

1 12 9 7 6 5 4 4 3 3 3

2 17 12 9 8 7 6 5 5 4 4

3 21 15 12 10 8 7 7 6 6 5

4 24 18 14 12 10 9 8 7 7 6

5 28 20 16 14 12 11 9 9 8 7

6 32 23 18 16 13 12 11 10 9 8

7 36 26 21 18 15 14 12 11 10 9

8 39 29 23 20 16 15 13 12 11 10

9 43 31 25 22 18 16 15 13 13 11

10 46 34 27 24 20 18 16 15 14 12

For large values of n and small values of p0, we can use the Poisson approximation
with parameter α = np0 as

L1(p0) =
c

∑
i=0

αi

i!
e−α ≤ 1− p∗. (6)
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The minimum values of n satisfying (6) are obtained in the same way as above, and
are given in Table 5.

Table 5. Minimum sample size for specified p∗, t
λ0

, λ = 1.3, θ = 2, and δ = 2.5 for the Poisson
approximation.

p∗ c
t

λ0

0.68 0.84 0.99 1.1 1.3 1.42 1.62 1.81 2 2.5

0.75

0 5 4 3 3 2 2 2 2 2 2

1 8 6 5 5 4 4 4 4 3 3

2 12 9 8 7 6 6 5 5 5 5

3 15 12 10 9 8 7 7 6 6 6

4 19 14 12 11 9 9 8 8 7 7

5 22 17 14 12 11 10 9 9 9 8

6 26 19 16 14 12 12 11 10 10 9

7 29 22 18 16 14 13 12 11 11 10

8 32 24 20 18 15 14 13 13 12 12

9 35 27 22 20 17 16 15 14 13 13

10 39 29 24 21 18 17 16 15 15 14

0.95

0 9 7 6 5 5 4 4 4 4 4

1 14 11 9 8 7 7 6 6 6 5

2 19 14 12 11 9 9 8 8 7 7

3 23 18 14 13 11 11 10 9 9 8

4 27 21 17 15 13 12 11 11 10 10

5 31 24 19 17 15 14 13 12 12 11

6 35 26 22 20 17 16 15 14 13 13

7 39 29 24 22 19 17 16 15 15 14

8 43 32 26 24 20 19 18 17 16 15

9 46 35 29 26 22 21 19 18 18 17

10 50 38 31 28 24 22 21 20 19 18

The operating characteristic (OC) function of the ASP
(
n, c, t

λ

)
gives the probability of

accepting the lot. It is given by

L(p) =
c

∑
i=0

(
n
i

)
pi (1− p)n−i,

where p = G(t; λ, θ, δ). The OC function acts as a base for the choices of n and c for given
values of p∗ and t

λ0
. By considering the fact that

t
λ
=

t/λ0

λ/λ0
,

the OC values for the ASP
(
n, c, t

λ

)
are obtained and displayed in Table 6. Figure 7 shows

the OC curve for p∗ = 0.75, d = t
λ0

, and f = λ
λ0

.
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Table 6. The OC values for the ASP
(
n, c, t

λ

)
p∗ n c t

λ0

λ
λ0

2 4 6 8 10 12

0.75

11 2 0.68 0.87663 0.99462 0.99935 0.99987 0.99996 0.99999

8 2 0.84 0.87247 0.99424 0.99929 0.99985 0.99996 0.99998

6 2 0.99 0.88618 0.99493 0.99937 0.99986 0.99996 0.99999

6 2 1.1 0.83142 0.99150 0.99890 0.99976 0.99993 0.99997

5 2 1.3 0.80897 0.98982 0.99865 0.99970 0.99991 0.99997

4 2 1.42 0.86029 0.99319 0.99911 0.99980 0.99994 0.99998

4 2 1.62 0.77858 0.98724 0.99825 0.99960 0.99988 0.99996

4 2 1.81 0.68743 0.97867 0.99694 0.99929 0.99978 0.99992

3 2 2 0.82267 0.99005 0.99863 0.99969 0.99990 0.99996

3 2 2.5 0.65521 0.97233 0.99586 0.99902 0.99969 0.99988

0.95

12 2 0.68 0.84890 0.99300 0.99914 0.99982 0.99995 0.99998

9 2 0.84 0.83090 0.99168 0.99895 0.99978 0.99993 0.99998

8 2 0.99 0.77053 0.98717 0.99831 0.99963 0.99989 0.99996

7 2 1.1 0.75753 0.98601 0.99813 0.99959 0.99988 0.99996

6 2 1.3 0.70575 0.98124 0.99740 0.99941 0.99982 0.99993

6 2 1.42 0.61972 0.97191 0.99594 0.99907 0.99971 0.99989

5 2 1.62 0.62109 0.97173 0.99588 0.99905 0.99971 0.99989

5 2 1.81 0.49991 0.95393 0.99289 0.99831 0.99947 0.99980

5 2 2 0.38527 0.92982 0.98851 0.99719 0.99911 0.99966

5 2 2.5 0.16147 0.83365 0.96790 0.99156 0.99719 0.99889
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Figure 7. The OC curve of the ASP
(
n, c, t

λ

)
.

For the sake of producers, the lot with λ greater than λ0 should be accepted. The
probability of rejecting a lot when λ is greater than λ0, called producer’s risk, can be found
by determining p = G(t; λ, θ, δ) and with the help of a binomial distribution. For a specified
producer’s risk of, say 0.05, it would be interesting to know what value of λ

λ0
will ensure
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that a producer’s risk is less than or equal to 0.05 if the proposed ASP is adopted. The
smallest value of λ

λ0
must satisfy the following inequality:

c

∑
i=0

(
n
i

)
pi

0 (1− p0)
n−i ≥ 0.95. (7)

For the given ASP
(
n, c, t

λ

)
and prefixed p∗, Table 7 displays the minimum values of

λ
λ0

required to satisfy (7).

Table 7. Minimum values of λ
λ0

required for acceptability of a lot with producer’s risk of 0.05 for the
ASP

(
n, c, t

λ

)
, λ = 1.3, θ = 2, and δ = 1.5.

p∗ c
t

λ0

0.68 0.84 0.99 1.1 1.3 1.42 1.62 1.81 2 2.5

0.75

0 6.51 6.89 6.53 7.25 8.57 6.41 7.31 8.16 9.02 11.27

1 3.03 3.05 3.11 3.46 3.36 3.67 4.19 3.43 3.79 4.74

2 2.44 2.47 2.4 2.66 2.76 2.54 2.89 3.23 2.73 3.41

3 2.09 2.2 2.09 2.1 2.2 2.4 2.34 2.61 2.89 2.84

4 1.96 1.95 1.91 1.96 2.11 2.06 2.03 2.27 2.51 2.51

5 1.81 1.79 1.8 1.87 1.88 2.05 2.1 2.05 2.26 2.3

6 1.72 1.75 1.72 1.81 1.86 1.87 1.93 1.89 2.08 2.14

7 1.64 1.66 1.66 1.66 1.72 1.73 1.79 2 1.95 2.02

8 1.62 1.64 1.61 1.63 1.72 1.76 1.69 1.89 1.85 1.93

9 1.57 1.57 1.57 1.61 1.63 1.67 1.76 1.8 1.76 2.2

10 1.53 1.52 1.54 1.59 1.64 1.59 1.68 1.72 1.69 2.12

0.95

0 9.39 9.05 9.47 10.53 10.67 11.65 10.68 11.93 13.18 11.27

1 4.15 4.34 4.41 4.46 4.71 4.46 5.09 4.68 5.17 6.46

2 3.17 3.18 3.14 3.23 3.49 3.44 3.44 3.84 3.57 4.46

3 2.68 2.69 2.75 2.71 2.74 2.71 3.09 3.06 3.38 3.61

4 2.34 2.42 2.42 2.42 2.51 2.53 2.63 2.63 2.9 3.13

5 2.17 2.17 2.21 2.23 2.36 2.41 2.34 2.61 2.59 2.82

6 2.06 2.06 2.06 2.11 2.13 2.19 2.32 2.38 2.38 2.6

7 1.97 1.98 2.02 2.01 2.07 2.14 2.14 2.21 2.21 2.44

8 1.88 1.91 1.93 1.94 1.93 2 2.01 2.07 2.09 2.31

9 1.83 1.82 1.85 1.88 1.9 1.88 2.03 1.97 2.17 2.2

10 1.76 1.79 1.8 1.83 1.88 1.88 1.93 2.02 2.07 2.12

7.2. Illustration

Allow the lifetime to follow the HEB distribution with parameters λ = 1.3, θ = 2, and
δ = 1.5. Suppose that our interest is an ASP with an unknown average lifetime of 1000 h,
such that the termination time is 1100 h. The consumer’s risk is prefixed at 1− p∗ =
0.25. The required number of n is 6 for an acceptance number of c = 2 and t

λ0
= 1.1,

according to Table 4. Hence, the considered ASP is
(

n = 7, c = 2, t
λ0

= 1.1
)

. During the
test time, we have a confidence level of 0.75 that the average lifetime is at least 1000 h
if at most two failures out of six are observed. The ASP under consideration for the
Poisson approximation is

(
n = 7, c = 2, t

λ0
= 1.1

)
. From Table 6, the OC values of the

ASP
(

n = 6, c = 2, t
λ0

= 1.1
)

under the binomial case with a consumer’s risk of 0.25 are:

0.83142, 0.99150, 0.99890, 0.99976, 0.99993, 0.99997 for λ
λ0

= 2, 4, 6, 8, 10, 12, respectively.

As a result, if λ
λ0

= 2, the producer’s risk is 0.17. The producer’s risk is negligible if it

is 10 or 12. From Table 7, the minimum value of λ
λ0

giving a producer’s risk of 0.05 is 3.23.
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Thus, if the consumer’s risk is fixed at a specified level, then the quality can be reached by
a predetermined ratio.

7.3. Application

Here, we consider a data set regarding software reliability obtained from a software
development project, which was presented in [18] and which worked out the ASP in [19–21].
The 13 ordered failure times are:

519, 968, 1430, 1893, 2490, 3058, 3625, 4422, 5218, 5823, 6539, 7083, 7487.

Let the testing time be 3600 h and the prefixed average lifetime be 3000 h. The ASP
is adopted under the assumption that the lifetime follows the HEB distribution. The
Q-Q plot and goodness-of-fit statistics guarantee a good agreement (θ = 1.758011× 1013,
δ = 4.921590× 102). By taking t

λ0
= 1.2, p∗ = 0.95, and n = 13, we obtain c as 6. Thus, the

considered ASP is (n = 13, c = 6, t
λ0

= 1.2). We accept the lot if and only if the number of
failures is at most 6. There are six values here that are less than t. Thus, we accept the lot.

8. Conclusions

The Harris extended Bilal (HEB) distribution is a three-parameter extension of the
Bilal distribution that we suggested. It is obtained by applying the Harris extended scheme
to the Bilal distribution. The aim of the two additional shape parameters is to provide more
flexibility to the Bilal distribution. The Bilal distribution is included as a sub-distribution,
and the HEB distribution can be considered as a generalization of the Marshall–Olkin Bilal
distribution. The corresponding pdf is unimodal and better suited for right-skewed data
sets. The hrf can increase, or have an upside-down bathtub shape, or a roller coaster shape.
The mathematical properties were discussed and are meant for comparative purposes with
respect to the members of the Harris extended family. Then, an emphasis on the statistical
HEB model’s efficiency was made. The performance of the model parameter estimation
was evaluated using a simulation study. The proposed HEB model provided a better
modeling of hydrological data when compared to the competing models. We developed
an acceptance sampling plan that has a lifetime following the HEB distribution. The
operating characteristic values, the minimum sample size that corresponds to the maximum
possible defects, and the minimum ratios of lifetime associated with the producer’s risk
were discussed. The results were illustrated using a real data set. The perspectives of
this work are numerous, including the applications to various applied fields (biology,
medicine, engineering, informatics, etc.); the extension to the multidimensional case with
use in regression and classification modeling; and the discrete version for the modeling of
count data.
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Appendix A. Theorem 1

Let us distinguish the case 0 < θ < 1 and the case θ > 1.

Case 1 0 < θ < 1

The generalized binomial theorem states that, for any r ∈ R, we have

(1− z)−r =
∞

∑
i=0

(
−r
i

)
(−1)izi, |z| < 1,

with (−r
i ) =

(−r)(−r−1)...(−r−i+1)
Γ(i+1) . By applying this formula with r = δ−1 + 1, the pdf given

in (2) can be expressed as

g(x; λ, θ, δ) =
∞

∑
i=0

(
−(δ−1 + 1)

i

)
(−1)iθ

i 6
λ

θ
1
δ

(
e−

2x
λ − e−

3x
λ

)(
3e−

2x
λ − 2e−

3x
λ

)δi
. (A1)

Case 2 θ > 1

By taking τ = 1
θ in (2) and by the same procedure as above, we have

g(x; λ, θ, δ) =
6
λ

τ
(

e−
2x
λ − e−

3x
λ

) ∞

∑
l=0

(
−(δ−1 + 1)

l

)
(τ − 1)l

[
1−

(
3e−

2x
λ − 2e−

3x
λ

)δ
]l

. (A2)

Using the integer power version of the binomial theorem, for any integer l, we have

(1− z)l =
l

∑
i=0

(
l
i

)
(−1)izi, z ∈ R,

where (n
x) =

Γ(n+1)
Γ(x+1) Γ(n−x+1) .

By using it in (A2) and proceeding to a sum exchange, we obtain

g(x; λ, θ, δ) =
∞

∑
i=0

6
λ

τ(−1)i

[
∞

∑
l=i

(τ − 1)l
(

l
i

) (
−(δ−1 + 1)

l

)](
e−

2x
λ − e−

3x
λ

)(
3e−

2x
λ − 2e−

3x
λ

)δi
. (A3)

Thus, from (A1) and (A3), we have the following unified expression:

g(x; λ, θ, δ) =
∞

∑
i=0

wi

(
e−

2x
λ − e−

3x
λ

)(
3e−

2x
λ − 2e−

3x
λ

)δi
, (A4)

where

wi =



(
−(δ−1 + 1)

i

)
(−1)iθ

i 6
λ

θ
1
δ i f 0 < θ < 1

6
λθ

(−1)i

[
∞

∑
l=i

(
1
θ
− 1
)l (l

i

) (
−(δ−1 + 1)

l

)]
i f θ > 1

.

Now, by a suitable decomposition and the generalized binomial theorem, we have(
e−

2x
λ − e−

3x
λ

)(
3e−

2x
λ − 2e−

3x
λ

)δi

= 3δie−2(1+δi) x
λ

(
1− e−

x
λ

)(
1− 2

3
e−

x
λ

)δi

= 3δie−2(1+δi) x
λ

(
1− e−

x
λ

) ∞

∑
j=0

(
δi
j

)
(−1)j 2j

3j e−j x
λ .
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Therefore, by (A4), we have

g(x; λ, θ, δ) =
∞

∑
i=0

wi3δie−2(1+δi) x
λ

(
1− e−

x
λ

) ∞

∑
j=0

(
δi
j

)
(−1)j 2j

3j e−j x
λ

=
∞

∑
i,j=0

zi,j e−[j+2(1+δi)] x
λ

(
1− e−

x
λ

)
, (A5)

where

zi,j = wi3δi−j
(

δi
j

)
(−1)j2j.

Hence, the theorem.

Appendix B. Moments

Using (A5) and the changes in variables y = [j + 2(1 + δi)] x
λ and z = [1 + j + 2(1 +

δi)] x
λ , the rth raw moment of a random variable following the HEB distribution is given by

µ
′
r =

∞

∑
i,j=0

zi,j

∫ ∞

0
xre−[j+2(1+δi)] x

λ

(
1− e−

x
λ

)
dx

=
∞

∑
i,j=0

zi,j

(∫ ∞

0
xre−[j+2(1+δi)] x

λ dx−
∫ ∞

0
xre−[1+j+2(1+δi)] x

λ dx
)

=
∞

∑
i,j=0

zi,j λr+1r!
(

1
[j + 2(1 + δi)]r+1 −

1
[1 + j + 2(1 + δi)]r+1

)
.

Appendix C. Entropy

First of all, let us notice that the Rényi entropy can be expressed as the following
integral form:

IR = (1− v)−1 log
[∫ ∞

0
g(x; λ, θ, δ)vdx

]
.

Proceeding in the same way as in Appendix A, we obtain the following expansion:

g(x; λ, θ, δ)v =
∞

∑
i,j=0

z(v)i,j e−[j+2(v+δi)] x
λ

(
1− e−

x
λ

)v
,

where

z(v)i,j = w(v)
i 3δi−j

(
δi
j

)
(−1)j2j

and

w(v)
i =



(
−v(δ−1 + 1)

i

)
(−1)iθ

i 6v

λv θ
v
δ i f 0 < θ < 1

6v

(λθ)v (−1)i

[
∞

∑
l=i

(
1
θ
− 1
)l (l

i

) (
−v(δ−1 + 1)

l

)]
i f θ > 1

.



AppliedMath 2023, 3 242

By applying the change in variables, y = e−
x
λ , we obtain

IR = (1− v)−1 log

[∫ 1

0

∞

∑
i,j=0

z(v)i,j λ yj+2(v+δi)−1 (1− y)vdy

]

= (1− v)−1 log

[
∞

∑
i,j=0

z(v)i,j λ B(j + 2(v + δi), v + 1)

]
.

The desired result is established.

References
1. Abd-Elrahman, A.M. Utilizing ordered statistics in lifetime distributions production: A new lifetime distribution and applications.

J. Probab. Stat. Sci. 2013, 11, 153–164.
2. Abd-Elrahman, A.M. A new two-parameter lifetime distribution with decreasing, increasing or upside-down bathtub-shaped

failure rate. Commun. Stat.-Theory Methods 2017, 46, 8865–8880. [CrossRef]
3. Maya, R.; Irshad, M.; Arun, S. Application of U–statistics in Estimation of Scale Parameter of Bilal Distribution. Philipp. Stat.

2021, 70, 67–82.
4. Altun, E.; El-Morshedy, M.; Eliwa, M. A new regression model for bounded response variable: An alternative to the beta and

unit-Lindley regression models. PLoS ONE 2021, 16, e0245627. [CrossRef] [PubMed]
5. Altun, E. A new one-parameter discrete distribution with associated regression and integer-valued autoregressive models. Math.

Slovaca 2020, 70, 979–994. [CrossRef]
6. Maya, R.; Irshad, M.; Arun, S. Farlie- Gumbel- Morgenstern Bivariate Bilal Distribution and Its Inferential Aspects Using

Concomitants of Order Statistics. J. Prob. Stat. Sci. 2021, 19, 1–20.
7. Akhter, Z.; Almetwally, E.M.; Chesneau, C. On the Generalized Bilal Distribution: Some Properties and Estimation under Ranked

Set Sampling. Axioms 2022, 11, 173. [CrossRef]
8. Aly, E.E.A.; Benkherouf, L. A new family of distributions based on probability generating functions. Sankhya B 2011, 73, 70–80.

[CrossRef]
9. Harris, T.E. Branching processes. Ann. Math. Stat. 1948, 19, 474–494. [CrossRef]
10. Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential

and Weibull families. Biometrika 1997, 84, 641–652. [CrossRef]
11. Cordeiro, G.M.; Mansoor, M.; Provost, S.B. The Harris extended Lindley distribution for modeling hydrological data. Chil. J. Stat.

2019, 10, 77–94.
12. Pinho, L.G.B.; Cordeiro, G.M.; Nobre, J.S. The Harris extended exponential distribution. Commun. Stat. Theory Methods 2015,

44, 3486–3502. [CrossRef]
13. Gupta, R.D.; Kundu, D. Theory and methods: Generalized exponential distributions. Aust. N. Z. J. Stat. 1999, 41, 173–188.

[CrossRef]
14. Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993,

42, 299–302. [CrossRef]
15. Ghitany, M.; Al-Mutairi, D.K.; Balakrishnan, N.; Al-Enezi, L. Power Lindley distribution and associated inference. Comput. Stat.

Data Anal. 2013, 64, 20–33. [CrossRef]
16. Nadarajah, S.; Bakouch, H.S.; Tahmasbi, R. A generalized Lindley distribution. Sankhya B 2011, 73, 331–359. [CrossRef]
17. Castillo, E.; Hadi, A.S.; Balakrishnan, N.; Sarabia, J.M. Extreme Value and Related Models with Applications in Engineering and Science;

Wiley: Hoboken, NJ, USA, 2005.
18. Wood, A. Predicting software reliability. Computer 1996, 29, 69–77. [CrossRef]
19. Jose, K.; Tomy, L.; Thomas, S.P. On a Generalization of the Weibull Distribution and Its Application in Quality Control. Stochastics

Qual. Control. 2018, 33, 113–124. [CrossRef]
20. Lio, Y.; Tsai, T.R.; Wu, S.J. Acceptance sampling plans from truncated life tests based on the Burr type XII percentiles. J. Chin. Inst.

Ind. Eng. 2010, 27, 270–280. [CrossRef]
21. Tomy, L.; Jose, M. Applications of HLMOL-X Family of Distributions to Time Series, Acceptance Sampling and Stress-strength

Parameter. Austrian J. Stat. 2022, 51, 124–143. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/03610926.2016.1193198
http://dx.doi.org/10.1371/journal.pone.0245627
http://www.ncbi.nlm.nih.gov/pubmed/33481884
http://dx.doi.org/10.1515/ms-2017-0407
http://dx.doi.org/10.3390/axioms11040173
http://dx.doi.org/10.1007/s13571-011-0017-9
http://dx.doi.org/10.1214/aoms/1177730146
http://dx.doi.org/10.1093/biomet/84.3.641
http://dx.doi.org/10.1080/03610926.2013.851221
http://dx.doi.org/10.1111/1467-842X.00072
http://dx.doi.org/10.1109/24.229504
http://dx.doi.org/10.1016/j.csda.2013.02.026
http://dx.doi.org/10.1007/s13571-011-0025-9
http://dx.doi.org/10.1109/2.544240
http://dx.doi.org/10.1515/eqc-2018-0011
http://dx.doi.org/10.1080/10170661003791029
http://dx.doi.org/10.17713/ajs.v51i2.1253

	Introduction
	The Harris Extended Bilal Distribution
	Statistical Properties
	Moment Generating Function and Moments
	Quantile Function
	Entropy

	Parameter Estimation
	Maximum Likelihood Estimation
	Least and Weighted Least Squares Estimation

	Simulation
	Data Analysis
	Methodology
	Wheaton River Data
	Kiama Blowhole Data

	Sampling Plan
	Method
	Illustration
	Application

	Conclusions
	Appendix A. Theorem 1
	Appendix B. Moments
	Appendix C. Entropy
	References

