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Abstract: The leftmost column entries of RNA arrays I and II count the RNA numbers that are
related to RNA secondary structures from molecular biology. RNA secondary structures sometimes
have mutations and wobble pairs. Mutations are random changes that occur in a structure, and
wobble pairs are known as non-Watson–Crick base pairs. We used topics from RNA combinatorics
and Riordan array theory to establish connections among combinatorial objects related to linear
trees, lattice walks, and RNA arrays. In this paper, we establish interesting new explicit bijections
(one-to-one correspondences) involving certain subclasses of linear trees, lattice walks, and RNA
secondary structures. We provide an interesting generalized lattice walk interpretation of RNA array
I. In addition, we provide a combinatorial interpretation of RNA array II as RNA secondary structures
with n bases and k base-point mutations where ω of the structures contain wobble base pairs. We
also establish an explicit bijection between RNA structures with mutations and wobble bases and a
certain subclass of lattice walks.
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1. Introduction

RNA combinatorics is one of the mathematical fields used for RNA sequence analysis
and prediction [1–3]. This relatively new field combines topics from molecular biology,
enumerative combinatorics, and bioinformatics. In this paper, we will interpret and analyze
RNA secondary structures using various combinatorial techniques such as analyzing RNA
arrays as combinatorial matrices, manipulating generating functions, solving recurrence
relations, counting certain linear trees and lattice walks, and establishing explicit bijections.
The main motivation for the bijections is that the given combinatorial objects may provide
insight into the prediction of optimal RNA secondary structures. These bijections will
allow RNA researchers to find and model optimal folding patterns that otherwise would
be hard to observe and discover. Finding optimal structures may lead to more biological
functionality for certain RNAs. Note that no RNA secondary structure prediction or
folding was performed for this paper. Evans [4] used lattice walks to predict optimal RNA
secondary folds of microRNAs related to tumor growth and cancer. This paper contributes
to the literature on finding bijections between various combinatorial objects and RNA
structures. See the following references [1,2,5–10] for other bijections between certain trees
and RNA secondary structures.

Before we move on to the main results of the paper, we introduce Ribonucleic Acid
(RNA) structures, RNA arrays, and the combinatorial objects presented in this paper. RNA
plays a vital role in biological processes such as coding, decoding, regulation, and the
expression of genes [11]. A single-stranded RNA molecule consists of a sequence of four
nucleotides or bases, namely Adenine (A), Cytosine (C), Guanine (G), and Uracil (U). A
sequence can be considered as a string of letters defined over Σ where Σ = {A, C, G, U}. A
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linear RNA sequence of such bases is a one-dimensional structure called a primary structure.
The RNA sequence in Figure 1 is an example of a specific one-dimensional structure.
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Figure 1. Primary RNA Structure.

When RNA molecules fold onto themselves, some nucleotides form base pairs through
the creation of hydrogen bonds between complementary bases, where A pairs with U,
U pairs with A, G pairs with C, and C pairs with G. These pairings are identified as
Watson–Crick base pairs and this folding creates a two-dimensional structure. Uncommon
cases where G pairs with U and U pairs with G are identified as non-Watson–Crick base
pairs, called wobble pairs. The presence of GU (or UG) pairs occurs in the region of
electronegative potential, which is proposed as the recognition site for the binding of metal
ions and other positively charged ligands [12]. Molecules formed by the two-dimensional
folding of RNA molecules are known as secondary structures. Those formed through
the three-dimensional folding of RNA molecules are known as tertiary structures. For
more information on RNA secondary structures and molecular biology, see the following
references [11,13]. Note that if the nucleotide Uracil (U) is replaced by the nucleotide
Thymine (T), then from the four nucleotides we obtain a Deoxyribonucleic Acid (DNA)
molecule. DNA molecules are only mentioned in Section 5.

There are various ways to visually represent RNA secondary structures, such as
biplanar graphs, arc diagrams, conventional diagrams, bracket notation, and tree represen-
tations [14]. As an example of arc diagrams, which are used most often throughout this
paper, we start with the primary structure given above in Figure 1. A primary structure
is first written along a horizontal line as depicted in Figure 1. Base pairs are represented
as non-intersecting chords to form secondary structures. Figure 2 shows examples of two-
dimensional RNA secondary structures represented by (a) non-intersecting arc diagrams
and a conventional representation where, in (b), the stems are regions of stacked base
pairs and the loops are identified as gaps between the stems. RNA secondary structures
and RNA sequences are used interchangeably in this paper. Note that pseudoknot RNA
secondary structures represented by intersecting arc diagrams are not considered in this
paper.
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Figure 2. (a) An arc diagram representation of a longer RNA secondary structure; (b) a conventional
diagram representation of RNA secondary structure.

In a non-biological context, secondary structures are of vital consideration in RNA
computing, prediction, and analysis since the pattern of base pairs ultimately determine
the overall structure of a molecule. Knowing a biomolecule’s precise structure is one
of the foremost goals of molecular biology [15]. It is the structure that determines the
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molecule’s function. Moreover, determining the three-dimensional tertiary structure of
RNA has proved to be more difficult [16]. Such a situation has created an intense search for
secondary structure prediction methods: methods that can predict the optimal secondary
structure of a molecule based on the folding of its one-dimensional primary structure.

We now consider the two infinite lower triangular arrays R∗ and R∗∗—which we call
RNA arrays I and II, respectively—that are associated with RNA secondary structures.
The first few entries are listed below in Figure 3. The leftmost column entries of the arrays
count the sequence of integers {1, 1, 1, 2, 4, 8, 17, . . . } known as the RNA numbers [17].
Focusing on the leftmost columns, note that the leading ‘1’ in the sequence is not included in
R∗∗. The RNA numbers are also called generalized Catalan numbers [17]. See the following
references [18–20] for background information on the construction and development of R∗

and R∗∗.
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Figure 3. RNA arrays I and II.

These two lower triangular RNA arrays (or combinatorial matrices) were first intro-
duced by Nkwanta [18–21]. It is also known that the RNA arrays are proper Riordan
arrays [18–20]. Riordan arrays form a special subset of infinite lower triangular arrays
that are typically used as tools for proving combinatorial identities [22]. The definition of
Riordan array is given in Section 4.1. The method used to produce combinatorial interpre-
tations of Riordan arrays and to solve combinatorial recurrence relations related to Riordan
arrays is called the Riordan matrix method. Some parts of the method are introduced in
this paper. See [7,20,23] for more information on the Riordan matrix method.

We will now explore well-established explicit bijections between RNA secondary
structures and the various combinatorial objects, as illustrated in Figure 4.
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Figure 4. Refs. [18,19,24,25] Connections among linear trees, lattice walks, and RNA secondary structures.

In 1994, Schmitt and Waterman [24] established an explicit bijection between the set
of all secondary structures of a given length with a fixed number of base pairs and a
particular set of plane trees. In 1997, Nkwanta [19] introduced a lattice walk interpretation
of RNA array I, denoted by R∗, by showing that the entries of the array count the number
of a certain subset of lattice walks of length n ending at height k = 0, denoted by NSE∗.
Consequently, this led to establishing an explicit bijection between NSE∗ lattice walks
and RNA secondary structures. Additionally, also in 1997, Nkwanta established another
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bijection between another subclass of unit-step lattice walks of length n ending at height
k = 0, denoted by NSE∗∗ and the NSE∗ lattice walks. The NSE∗∗ lattice walks were given as
a combinatorial interpretation of RNA array II, denoted by R∗∗. Then in 2009, motivated by
Nkwanta and Schmitt and Waterman’s correspondences, Rudra [25] established an explicit
bijection between the NSE∗ lattice walks and a certain subclass of linear trees denoted
by L∗. By establishing another subclass of linear trees denoted by L∗∗, Rudra introduced
an additional bijection between the NSE∗∗ lattice walks and L∗∗ linear trees. In addition,
Rudra established a correspondence between L∗ linear trees and L∗∗ linear trees. In 2020,
Evans [4] resolved two open problems presented by Rudra [25] by establishing explicit
bijections among L∗∗ linear trees, NSE∗∗ lattice walks, and RNA secondary structures.
See the following references [1,2,5–10] for other bijections between certain trees and RNA
secondary structures. The motivation for the bijections is that the given combinatorial
objects may provide insight into the prediction of RNA secondary structures. Note that no
RNA secondary structure prediction or folding was performed in this paper.

This paper is organized as follows. In Section 2, a brief introduction describes the
combinatorial objects presented in the paper. The new explicit bijections by Evans are
proved in Section 3. The motivation for the bijections is that the NSE∗∗ lattice walks and/or
linear trees may provide some insight into the folding (modeling) of RNA secondary
structures [26]. In Section 4, we propose an interesting generalized interpretation of R∗. We
do this by taking j-copies of R∗, denoted by (R∗)j, and proving that the entries of the array
count the number of j-colored NSE∗ lattice walks, of length n, ending at height k. This
result is not obvious and exhibits a nice pattern of the formation rules of the column entries
of the higher dimensional arrays. In Section 5, we combinatorially interpret R∗∗ in terms
of RNA base-point mutations and wobble base pairs. We denote rω(n, k) as the number
of RNA secondary structures of length n with k base-point mutations that have ω wobble
base pairs. Since the entries of R∗∗ count NSE∗∗ lattice walks as well as RNA secondary
structures with k base-point mutations where ω of the structures contain wobble base
pairs, a new explicit bijection is established between these two combinatorial structures.
Recall that the definition of wobble base pairs is given earlier in this section. Mutations are
defined later in Section 5. For more details on the new results presented in this paper, see
reference [4].

2. Combinatorial Objects
2.1. RNA Secondary Structure

Schmitt and Waterman [24] presented the below definition of RNA secondary structure
from a graph theoretic point of view.

Definition 1. “A secondary structure of length n is a simple graph on [n] = {1, 2, · · · , n} with
vertices in [n] and edges in P, i.e., a set P of unordered pairs of elements of [n], that satisfies

(a) degree i ≤ 3 for 1 ≤ i ≤ n,
(b) if (i, j) ∈ P , then |i− j| ≥ 2,
(c) if (i, j), (k, l) ∈ P , where i < j and k < l , and [i, j] ∩ [k, l] 6= ∅, then ei-

ther [i, j] ⊂ [k, l] or [k, l] ⊂ [i, j] (where [i, j] denotes the interval {r : i ≤ r ≤ j})”.

An edge (i, j) between vertices labeled i and j is defined as a base pair, and a vertex
k not adjacent to any edge is defined as an unpaired base. We visually represent these
RNA secondary structures starting with the primary structure along a horizontal line and
drawing edges as arcs in the upper half-plane. Condition (a) of the definition restricts a
single base to pair with only one other base in the structure. Condition (b) guarantees that
no two adjacent bases can pair. Condition (c) guarantees that no two arcs cross one another.
In addition, if arc (i, j) is nested in arc (i1, j1) then [i1, j1] ⊂ [i, j]. These conditions align
well with the Watson–Crick base pairing restrictions placed on an RNA molecule [3].
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Let s(n) be the sequence of the number of secondary structures on [n] denoted by

{s(n)}n≥0 = {1, 1, 1, 2, 4, 8, 17, 37, . . .}.

Thus, for n ≥ 2 and initial conditions s(0) = s(1) = s(2) = 1, we have the following
recurrence relation:

s(n + 1 ) = s(n) + ∑n−1
j=1 s(j− 1)s(n− j).

The generating function of {s(n)} (of the RNA numbers) is derived from the recurrence
relation and given as

s(z) = ∑
n≥0

s(n)zn =
1− z + z2 −

√
1− 2z− z2 − 2z3 + z4

2z2 . (1)

Proofs of the generating function and recurrence relations can be found in the following
references [27,28].

2.2. Linear Trees

Below is the definition of the linear trees mentioned in this paper.

Definition 2. [24] A linear tree is defined as a rooted tree with a linear ordering on the set of
children of each vertex in the tree. In a linear tree, the number of edges from the current vertex vto
the root is called the level of v. Each vertex has a level from 0 to h where h represents the height of
the rooted tree. There is exactly one vertex at level 0, which is the root. All vertices adjacent to vertex
v on a lower level are called the children of v. A vertex is called terminal if it has no children and is
called non-terminal otherwise. If vertex v immediately precedes vertex w on the path from the root
to w, then v is the parent of w. Vertices that have the same parent vertex are identified as siblings. A
linear tree will be depicted with the root at level 0 and with the children of level h arranged on level
h + 1. The trees are inverted (that is, flipped upside down) and the root at level 0 is the highest level.

Let τn,k be the set of unlabeled linear trees with n vertices, with k of them being
non-terminal. The exact formula for τn,k is given in [24] by

τn,k =
1

k− 1

(
n− 1

k

)(
n− 2
k− 2

)
.

For example, Figure 5 shows the six members of the set τ5,3.
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2.3. Lattice Walks

A lattice walk is a sequence of contiguous and reversible unit steps which traverses a
d-dimensional integral lattice Zd [18]. Most of the interpretations mentioned in this paper
arise from the combinatorial objects called lattice walks: specifically, those walks that have
the step directions of north, south, and east, respectively represented by the symbols N, S,
and E. The N and S steps are the only reversible unit steps mentioned in this paper.

Definition 3. [18] An NSE lattice walk is a sequence of adjoining unit steps that covers the
two-dimensional integral lattice Z2. An NSE lattice walk of length n and height k begins at (0, 0),
remaining above the x-axis in the first quadrant. The step directions are: (0, 1) = N (North or up),
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(0, -1) = S (South or down), and (1, 0) = E (East or right). The length of each walk is the number of
unit steps, and the height corresponds to the y-value at end-point (x, y).

An example of a NSE lattice walk is given below in Figure 6.
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Figure 6. NSE lattice walk: NEESEENEES of length 10 and height 0.

We put additional restrictions on the NSE lattice walks as given by Definition 3 to
create the following walks that are also two-dimensional.

Definition 4. [18–20] Let NSE∗ and NSE∗∗ denote unit step NSE lattice walks, defined as follows:

(a) NSE∗ are lattice walks that do not have consecutive pairs of N (north) and S (south) steps.
For instance, the walk NEESENSEE is not an example of an NSE∗ walk.

(b) NSE∗∗are lattice walks that do not have consecutive pairs of S(south) and N(north) steps. For
instance, the walk NEESNEES is not an example of an NSE∗∗ walk.

In the next section, we present explicit bijections among the combinatorial objects
given in this section.

3. New Explicit Bijections

The following theorem gives a new explicit bijection between the set of NSE∗∗ lattice
walks and a certain subset of RNA secondary structures.

Theorem 1. There is an explicit bijection between the set of unit-step NSE∗∗ lattice walks of length
n ending at height k = 0 and the set of RNA secondary structures of length n + 1.

Proof. To establish the required correspondence, let l∗∗ be an arbitrary unit-step NSE∗∗

lattice walk of length n ending at height k = 0. Since l∗∗ is an NSE∗∗ lattice walk, there are
no SN steps in the walk. To form an RNA secondary structure of length (n + 1), we use the
rules described below.

Given l∗∗, insert an additional (n + 1)th step at the end of the walk, restricting this
step to an E step only. Beginning with the (n + 1)th step and moving left through the
sequence, we move every E step we encounter y positions to the left, where y is the number
of consecutive S steps directly to the left of the E step. E steps can only move if there is a S
step to the left of it. Note that some E steps will be fixed depending upon the walk structure
of l∗∗ (i.e., if there are no S steps to the left of the E step). In this construction: (1) Walks
never go below the x-axis; (2) there is no pairing between S and N steps; and (3) since walks
are of height k = 0, there is always an E step or a sequence of E steps between consecutive
N and S steps.

Next, we form an RNA secondary structure of length (n + 1) and height k = 0. We
label corresponding NS steps as (i, j)th base pairs and they become bonded bases of RNA
following the Watson–Crick base pairing rules. We label E steps as kth unpaired bases.
Additionally, note that the nested innermost NS steps are paired first to avoid base pairs
from crossing. Then, we number the positions of the steps of l∗∗ from one to (n + 1) and pair
position i with position j to form the base pairs (i, j). Recall that the E steps are unpaired
bases. Via the bijection between the NSE∗ walks and RNA secondary structures [19], we
obtain a NSE∗ walk of length (n + 1). The trivial case of the correspondence is when there
are only E steps in the walk, so the appended step does not move left. Therefore, an RNA
structure of length (n + 1) is formed. The correspondence is constructed, and reversing
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the process illustrated in Figure 7 produces the outline of the proof of the reverse map.
As a consequence of the reverse map, by following the Watson–Crick base pairing rules
and the way the lattice walk steps are assigned to a walk, no consecutive S and N steps
are possible. We move through the example of reversing the steps as follows: let s be an
arbitrary RNA secondary structure of length (n + 1) and height k = 0. We write s in its
linear form as a sequence of bases, denoted by integers, increasing in order from left to
right along a horizontal axis with (n + 1) bases. We identify paired and unpaired bases
and arcs are drawn between paired bases. By the correspondence, if an arc links integers
i and j with i < j, we then label the (i, j)th pairing members as (N,S) steps. If a base is
unpaired, label the kth unpaired base as an E (east) step. Moving through the sequence
from left to right, we move every E step we encounter y positions to the right where y is
the number of consecutive S steps directly to the right of the E step. Lastly, we remove the
right most E step resulting in an NSE∗∗ lattice walk of length n at height k = 0. Thus, the
correspondence is one-to-one, and the theorem is proved. �

As an example of the correspondence, consider the unit step NSE∗∗ walk

NNESSENNSENSEES

of length n = 15. By the rules of the correspondence, a possible RNA secondary structure
of length 16 is obtained in the following figure.
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Now, before we move on to the next new theorem, we will discuss the labeling of the
linear tree L∗∗, which we now denote by τn,k,i. Recall that the linear tree τn,k was given
earlier in Section 2.2. Thus, the linear tree τn,k,i is a modified version of τn,k, described as
follows. Each vertex has a level, ranging from 0 down to level h, with exactly one root
vertex, which is at level 0. All adjacent vertices differ by exactly one level and each vertex
at level h + 1 is adjacent to exactly one vertex at level h. τn,k,i are labeled linear trees with
a linear ordering on the set of children of each vertex in the tree. Vertices are labeled
consecutively by searching depth first from left to right, starting with 0 at the root. Vertices
are labeled only when they are first encountered and last encountered, thus resulting in
each vertex in a linear tree being labeled by two integers. However, there is an exception to
the rules of labeling. Children with the same parent vertex will always have every other
sibling labeled with one integer. The descriptions for terminal and non-terminal vertices
are given in the proof for Theorem 2.
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Recall that the notion of bijectivity is an equivalence relation on sets. Since there are
explicit bijections between RNA secondary structures and L∗ linear trees, and between L∗

linear trees and L∗∗ linear trees, there exists an explicit bijection between RNA secondary
structures and the set of L∗∗ linear trees, with τn,k,i, given by the following theorem.

Theorem 2. For all n, k, i ≥ 1, there is an explicit bijection between the set of linear trees τn,k,i
with n vertices, k of which are non-terminal, and i of which are terminal vertices that are labeled by
two consecutive integers and the set of RNA secondary structures S(n + k + i− 1, k + i− 1) of
length n + k + i− 1 that have k + i− 1 base pairs.

Proof. Suppose n, k, i ≥ 1 and τn,k,i is a rooted labeled linear tree with n vertices, k of which
are non-terminal, and i of the terminal vertices are labeled by two consecutive integers.
To establish the required correspondence, we begin by considering each vertex at level
h of τn,k,i, starting at level 0 and moving to the lowest level in the tree. We consider the
following cases:

(a) If the vertex at level h is non-terminal, then the vertex remains unchanged.
(b) If the vertex at level h is terminal and

(i) labeled with two consecutive integers, then a child vertex (terminal) is inserted
at the endpoint. This new child will be on level h + 1

(ii) labeled with one integer, then the child vertex remains unchanged, except in
the case that the vertex is positioned between two vertices that are labeled
by two integers, in which case the child vertex (terminal) is removed from in
between the vertices. Note that this vertex will be labeled with one integer.

Next, after reconstructing the new linear tree by deleting and/or adding vertices, we
remove all labels from τn,k,i. The linear tree receives new labeling rules by a depth-first
search moving left to right around the tree. We relabel the vertices as they are encountered
by consecutive integers (starting with 0 at the root); however, we label internal vertices
only when they are first and last encountered. Note that these will be the non-terminal
vertices that are labeled by two integers. Terminal vertices are labeled by one integer. As
we leave the linear tree form, we now represent the tree as an RNA secondary structure.
The resulting pairs of labels on the non-terminal vertices of the linear tree correspond to
the paired bases of the structure. Following the Watson–Crick pairing rules, the unpaired
labels on the terminal vertices of the linear tree are associated with the unpaired bases of a
secondary structure.

The following properties are observed in the above construction: (i) The length of
the RNA secondary structure is composed of all vertices of τn,k,i, in addition to all vertices
that are labeled by two integers (paired integers). This includes non-terminal (internal)
vertices and terminal vertices that are labeled by two consecutive integers. Therefore, we
obtain an RNA secondary structure of length n + k + i− 1. (ii) The number of base pairs
in the RNA secondary structure is composed of all internal vertices of τn,k,i, in addition
to all terminal vertices that are labeled by two consecutive integers. Therefore, we obtain
an RNA secondary structure that has k + i− 1 base pairs. (iii) We also observe that the
unpaired bases of the RNA secondary structure correspond to n− (k + i) + 1.

Therefore, an RNA secondary structure of length n + k + i− 1 with k + i− 1 base pairs
is formed and denoted by S(n + k + i− 1, k + i− 1). The correspondence is constructed
and reversible. Thus, the theorem is proved. �

As an example of the correspondence, consider τn,k,i for n = 8, k = 4, and i = 2, as in
Figure 8 below. To construct an RNA secondary structure, we consider each vertex at level
h = 0, 1, 2, 3 of τn,k,i. Starting at the highest level 0 and moving to the lowest level:

• Level 0 has one non-terminal vertex 0 (the root), so according to the rules, the vertex
remains unchanged.

• Level 1 has one non-terminal vertex (1, 11) and one terminal vertex (12) labeled with
one integer. According to the rules of the bijection, both vertices remain unchanged.
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• Level 2 has one terminal vertex (6) positioned between two vertices {(2, 5), (7, 10)}
that are labeled by two integers; therefore, we remove the terminal vertex (6) from in
between the vertices.

• Level 3 has two terminal vertices {(3, 4), (8, 9)}, both labeled with two consecutive
integers, so we add a terminal vertex at the end of (3, 4) and at the end of (8, 9).
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Figure 8. (a) τ8,4,2 labeled linear tree. (b) By following the rules of the bijection, a new linear tree
is formed by removing all labels, re-attaching the edge (1, 6) denoted by the dotted line to the end
of old vertex (3, 4), and adding a new edge denoted by an edge with a tick mark to the end of old
vertex (8, 9). (c) Follow the new labeling rules and number the vertices from one to thirteen and
associate pairs and unpaired bases with a specific RNA structure. (d) RNA secondary structure S
(13, 5). Dashed lines represent paired bases.

Next, starting with the root, we move around the tree starting with a depth-first
search and relabel vertices using consecutive integers where only non-terminal (internal)
vertices are labeled with two integers. Internal vertices are labeled as they are first and last
encountered. We ignore the root as we move to form the secondary structure. As a result of
relabeling the vertices, vertices labeled by two integers form the set of base pairs {(1, 12),
(2, 6), (3, 5), (7, 11), (8, 10)} and vertices labeled by a single integer form the set of unpaired
bases {4, 9, 13} for the secondary structure S(13, 5) of length 13 with five base pairs.

We note when i = 0 for τn,k,i we obtain τn,k, which is the set of unlabeled linear trees
that have n vertices and k of which are non-terminal.

4. Generalized Lattice Walk Interpretation of R∗

A generalized interpretation of R∗ is presented in this section. We take higher ordered
arrays of R∗ and prove that (R∗)j counts j-colored lattice walks when j ≥ 1. Recall that
R∗ counts the lattice walks identified according to Definition 4(a). Note that the walks
come in j-colored E (east) steps. We first prove (R∗)j is a Riordan matrix. Then, we give a
combinatorial interpretation of (R∗)j in Section 4.2.
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4.1. Recursions for Generalized Array (R∗)j

Consider (R∗)2, the first few entries of which are given below.

(R∗)2 =



1 0 0 0 0 0
2 1 0 0 0 0
4 4 1 0 0 0
10 12 6 1 0 0
(28) 36 24 8 1 0
82 112 86 40 10 1


here, we give an example for j = 2 to show how the entries of (R∗)2 are formed. We observe
that the first column entry 36 is computed by 10 + [12 + 1 + 0 + · · ·]× 2, and the leftmost
column entry (28) is computed by [10 + 4 + 0 + · · ·]× 2. See the following diagrams that
illustrate the formation rules shown above, (a) 28, (b) 36.

These patterns continue to form all of (R∗)2. In fact, the pattern continues for all j
of (R∗)j.

In general, the (n, k)th entry of the array (R∗)j is formed and computed recursively
using the following recursions. Let Rj(0, 0) = 1 be the initial condition. Then, for n ≥
0, k ≥ 1, and j ≥ 1

Rj(n + 1, 0) = j
(

Rj(n, 0) + Rj(n− 1, 1) + Rj(n− 2, 2) + · · ·
)

(2)

Rj(n + 1, k)= Rj(n, k− 1) + j
(

Rj(n, k) + Rj(n− 1, k + 1) + · · ·
)

(3)

where Rj(n + 1, k) = 0 if k > n + 1.

The leftmost column entries of (R∗)j are given by Equations (2) and (3) and produce
the other column entries of (R∗)j. The Riordan matrix method will subsequently be used
to prove the recursions.

From the recursions, we can derive explicit generating functions whose coefficients
make up the column entries of (R∗)j. With these generating functions we can define
(R∗)j as a Riordan matrix. The concept of a Riordan matrix was introduced in 1991 by
Shapiro [29]. The definition is given below.

Definition 5. An infinite matrix M = (mn,k)n,k≥0 with complex entries C is called a Riordan
array if the kth column satisfies

∑
n≥0

mn,kzn = g(z) f k(z)

where g(z) = 1 + g1z + g2z2 + · · · corresponds to the leftmost column and the expression
g(z) f k(z) corresponds to the kth column, where f (z) = f1z + f2z2 + f3z3 + · · ·

From Definition 5, if g0 6= 0 for g(z) and f1 6= 0 for f (z), then the Riordan arrays are
called proper Riordan arrays. A set of all proper Riordan arrays are Riordan matrices, and
they form a group called the Riordan group (R, ∗) [29].
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Thus, the coefficients of the column-generating functions of the form g, g f , g f 2, . . . , g f k,
. . . make up the columns of M. In this case, M is an infinite lower triangular array, denoted as a
pair M = (g(z), f (z)).

The first few terms of the well-known Pascal triangle, shown below in lower triangular
form and denoted by P, is an example of a typical Riordan matrix.

P =

(
1

1− z
,

z
1− z

)
=



1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0
1 4 6 4 1 0
...

...
...

...
...

. . .


RNA arrays I and II are defined, respectively, as Riordan matrices by

R∗ = (s(z), zs(z)) and R∗∗ =
(

s(z)− 1
z

, zs(z)
)

where s(z) is the generating function given by Equation (1).
We now apply the Riordan matrix method to solve the recursion and generating func-

tions associated with (R∗)j. According to the formation rules of (R∗)j given by Equation (3),
the kth column-generating function of the matrix is defined as

g· f k = zg f k−1 + zj
(

g f k + zg f k+1 + z2g f k+2 + · · ·
)

.

Solving for f , we obtain

f = z f 2 +
(

zj− z2
)

f + z.

Then, by using the quadratic formula, solving f in terms of f (z), and simplifying,
f (z) becomes

f (z) =
1− zj + z2 −

√
1− 2z–− 2z2 + z2 j2 − 2z3 j + z4

2z
. (4)

Similarly, according to the formation rules of (R∗)j given by Equation (2), the leftmost
column-generating function is defined as

g = 1 + zj
(

g + zg f + z2g f 2 + z3g f 3 + · · ·
)

.

Simplifying this equation and expressing g in terms of g(z) produces

g(z) =
z f (z)− 1

zj + z f (z)− 1
(5)

where g(z) is the generating function of the other array columns and f (z) is given by
Equation (4). By substituting the value of f (z), rationalizing the denominator, and simpli-
fying, we obtain

g(z) =
z2 − zj− 1−

√
1− 2z–− 2z2 + z2 j2 − 2z3 j + z4

z2 + zj− 1−
√

1− 2z–− 2z2 + z2 j2 − 2z3 j + z4
=

f (z)
z

. (6)
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Now, let Sj(z) = f (z)
z . Using Equations (4) and (6), we obtain explicit generating

functions of (R∗)j given in pair form as the Riordan matrix.

(R∗)j =
(
Sj(z), zSj(z)

)
.

Four remarks are now given for (R∗)j.

Remark 1. (R∗)j is a Riordan matrix since R ∗ is an element of the Riordan group, and we know by
closure that (R∗)j is an element of the Riordan group. In addition, (R∗)j is a pseudo involution and
an element of the Bell subgroup of the Riordan group. See, the references [29,30] for the definition of
pseudo involution and Bell subgroup, respectively.

Remark 2. (R∗)j is related to the Catalan-generating function [31], denoted below by c(z).
The generalized Riordan form of RJ in [30] is given as

(R∗)j = (s(z), zs(z))j =
(

tc
(

t2
)

, ztc
(

t2
))

where s(z) is the RNA-generating function given by Equation (1),

t =
1

1− jz + z2 and c(z) =
1−
√

1− 4z
2z

.

However, the correct form is

(R∗)j = (s(z), zs(z))j =
(

tc
(

zt2
)

, ztc
(

zt2
))

Remark 3. The expression

s(z) =
1

1− z− (s(z) − 1)z2

is known for s(z) [32]. It generalizes to

Sj(z) =
1

1− zj−
(
Sj(z) – 1

)
z2

and can be shown to hold for j = 1. That is, S1(z) = s(z). Additionally, note that Sj(z) and zSj(z)
generalize Equations (3) and (4), respectively.

Remark 4. A generalized form of Equation (5) is given as

Sj(z) =
z2Sj(z)− 1

z2Sj(z)− 1 + zj

4.2. Combinatorial Interpretation of (R∗)j

Before proving Theorem 3 below, we define a generalization of the NSE∗ lattice walks.
Recall that NSE∗ are the lattice walks given by Definition 4(a). Let Rj(n, k) denote the set

of all j-colored NSE* lattice walks of array (R∗)j, where j ≥ 0, of length n and height k. We
will prove Rj(n, k) later in this subsection. This array is a product of j copies of R∗, where
each East(E) step is one of j colors. We start with examples of j-colored NSE∗ lattice walks
(see Figures 9 and 10 below).
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Figure 9. All 10 lattice walks of entry R2(3, 0) of (R∗)2. Variation of arrows represent j = 2 different
colored E steps.
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Note that we continue with the Riordan matrix method for proving combinatorial
interpretations of Riordan arrays. Given Equations (2) and (3), we provide a combina-
torial proof that Rj(n, k) counts j-colored NSE∗ lattice walks of length n and height k of

array (R∗)j.

Theorem 3. Given the initial condition Rj(0, 0) = 1, n ≥ 0, and k, j ≥ 1, Rj(n + 1, k) then
satisfies the following recurrence relation where (a) is defined for the leftmost column of (R∗)j and
(b) is defined for the other columns of (R∗)j:

(a) Rj(n + 1, 0) = j ∑
m≥0

Rj(n–m, m)

(b) Rj(n + 1, k) = 1·Rj(n, k− 1)+ jRj(n, k)+ jRj(n− 1, k + 1)+ j ∑
m≥2

Rj(n−m, k + m).

Proof. We start by proving (b). Suppose a j-colored NSE∗ lattice walk of length n and
height k for array (R∗)j is given. Then, to form a new walk of length n + 1 and height k,
consider the following cases:
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Case (i): If the given walk has length n and height k− 1, then on the last step there
is one choice for height k− 1 (the N step). In this case, all walks whose last step is N are
counted by Rj(n, k− 1).

Case (ii): If the given walk has length n and height k, then on the last step there is one
choice for height k (the E step). In this case, there are j possible colored E steps. Thus, all
walks whose last step is E are counted by jRj(n, k).

Case (iii): If the given walk has length n− 1 and height k + 1, then the last possible
sequence of steps for height k + 1 is ES (east, south steps). In this particular case, there are j
possible colored ES steps. Thus, all walks whose last consecutive sequence of steps is ES
are counted by jRj(n− 1, k + 1).

Case (iv): If we continue and have a walk of length n−m and height k + m, then the
last possible sequence of steps for height ESm (east, south m times). These sequences occur
since there are no NS steps allowed. There are also j possible colored ESm sequences of steps.
Here, all walks whose last sequence of steps is ESm are counted by jRj(n−m, k + m).

Applying the addition principle and multiplication rule concludes that recurrence
relation (b) is proved. Recursion (a) is easy to prove by similar reasoning. �

5. RNA Interpretation of R∗∗ and Bijection

In this section, we give two RNA combinatorial interpretations of R∗∗. One interpre-
tation is given in terms of RNA secondary structures with mutations and wobble pairs,
and the other is in terms of RNA secondary structures with mutations and structures with
wobble pairs and non-wobble pairs. Before deriving the interpretations of R∗∗, we define
what we mean by RNA mutation.

In biology, mutations are defined as random changes/alternations in the genomes
in a cell, either in DNA or RNA. Mutations occur due to exposure to ultraviolet (UV)
light, replication errors, or the degradation of bonds in DNA. Alternations that happen
during the DNA replication of a single nucleotide (base) where a base may be substituted,
inserted, or deleted are defined as point mutations. The consequences of these mutations
lead to protein composition, production, and functionality. Point mutations include several
types [33]:

(a) Substitution—when one or more nucleotides (bases) in the sequence are replaced by
the same number of bases (for example, a cytosine substituted for an adenine).

(b) Insertion—when one or more nucleotides (bases) are added to the sequence.
(c) Deletion—when one or more nucleotides (bases) are removed from the sequence.

Figure 11 below shows an example of various point mutations of an RNA sequence,
where each mutation is underlined and in bold print.
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5.1. RNA Mutations and Wobble Base Pairs

Recall that Rudra proposes an RNA combinatorial interpretation of R∗ in terms of
RNA structures with mutations in [25]. We now propose, in this subsection, an RNA
combinatorial interpretation of R∗∗ in terms of RNA structures with mutations where ω of
the structures contain wobble base pairs. A combinatorial meaning of wobble base pairs is
given in terms of arc diagrams. This is completed by labeling consecutive G and U base
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pairs as G–U pairs and U and G base pairs as U–G pairs. We call the G–U (U–G) pairs
‘wobble base pairs.’ Wobble base pairs are connected by arcs of consecutive base pairs at
positions i and j of an RNA sequence. Recall that RNA sequences and RNA structures are
used interchangeably. Wobble pairs are restricted to not allowing consecutive G–U (U–G)
base pairs. This means there are no sequences with GUGU (UGUG, UGGU, GUUG) bases.
Generally, we mention here that in the biological literature, wobble pairs are not necessarily
labeled as G–U (U–G) pairs [34]. In this paper, base-point mutations are represented by �
and restricted to the following conditions:

(a) They do not occur under an arc of two paired bases .

(b) They do not occur as a point of a base pair .
(c) They do not occur to the right of any wobble base pairing, whether that pairing is

isolated or nested under an additional base pair that is connected by an arc diagram

.

Proposition 1 below gives a combinatorial interpretation of R∗∗ in terms of RNA
secondary structures with mutations that contain wobble base pairs. See Figure 12 for an
example where seven RNA sequences contain base-point mutations and wobble base pairs.

AppliedMath 2023, 3, FOR PEER REVIEW 15 
 

 

(a) They do not occur under an arc of two paired bases . 

(b) They do not occur as a point of a base pair . 

(c) They do not occur to the right of any wobble base pairing, whether that pairing is

 isolated or nested under an additional base pair that is connected by an arc diagram 

. 

Proposition 1 below gives a combinatorial interpretation of �∗∗ in terms of RNA sec-

ondary structures with mutations that contain wobble base pairs. See Figure 12 for an 

example where seven RNA sequences contain base-point mutations and wobble base 

pairs. 

 

Figure 12. RNA sequences with a length of five and one base-point mutation that contains sequences 

with wobble base pairs. 

Proposition 1. Given the initial conditions �(0, 0) = 1, �(1, 0) = 0, and �(0, 1) = 1, for � ≥

1 and � ≥ 0, �(� − 1, � + 1) satisfies the following recurrence relation for all column entries of 

�∗∗ except for the leftmost column 

w(� − 1, � + 1)  =  w(� −  2, �)  +  w(� −  2, � +  1)  +  w(� −  2, � + 2)  −  w(� − 3, � + 1) 

where �(� − 1, � +  1) counts the number of RNA secondary structures of length � − 1 with 

� + 1 mutations that contain wobble pairs. 

See Figure 13 below for an example of the construction of the seven sequences with 

base-point mutations and wobble base pairs given by Figure 12. By the recursion, the entry 

associated with w(4, 2) of R** is computed by 

w(4, 2)  =  w(3, 1)  +  w(3, 2)  +  w(3, 3)  −  w(2, 2)  =  7. 

The outline of the proof of Proposition 1 is illustrated by the cases given in the exam-

ple below. For the given RNA sequences: Case (i) insert one base-point mutation to the 

leftmost position of the sequence; Case (ii) insert one unpaired base point (base point with-

out a mutation) to the leftmost position of the sequence; Case (iii) delete one base-point 

mutation from the sequence, starting with the leftmost base-point mutation, substitute the 

deleted mutation with an unpaired base point at this position in the sequence, then insert 

an additional unpaired base point at the very beginning of the sequence; Case (iv) insert 

two unpaired base points to the leftmost position of the sequence. In addition, Proposition 

1 and Theorem 4 have the same recurrence relations; thus, the proof of Proposition 1 is 

similar to the proof for Theorem 4. The proof for Theorem 4 is given after the example. 

Figure 12. RNA sequences with a length of five and one base-point mutation that contains sequences
with wobble base pairs.

Proposition 1. Given the initial conditions w(0, 0) = 1, w(1, 0) = 0, and w(0, 1) = 1, for
n ≥ 1 and k ≥0, w(n− 1, k + 1) satisfies the following recurrence relation for all column entries
of R∗∗ except for the leftmost column

w(n− 1, k + 1) = w(n− 2, k) + w(n− 2, k + 1) + w(n− 2, k + 2)−w(n− 3, k + 1)

where w(n− 1, k + 1) counts the number of RNA secondary structures of length n − 1 with
k + 1 mutations that contain wobble pairs.

See Figure 13 below for an example of the construction of the seven sequences with
base-point mutations and wobble base pairs given by Figure 12. By the recursion, the entry
associated with w(4, 2) of R** is computed by

w(4, 2) = w(3, 1) + w(3, 2) + w(3, 3)−w(2, 2) = 7.
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The outline of the proof of Proposition 1 is illustrated by the cases given in the example
below. For the given RNA sequences: Case (i) insert one base-point mutation to the leftmost
position of the sequence; Case (ii) insert one unpaired base point (base point without a
mutation) to the leftmost position of the sequence; Case (iii) delete one base-point mutation
from the sequence, starting with the leftmost base-point mutation, substitute the deleted
mutation with an unpaired base point at this position in the sequence, then insert an
additional unpaired base point at the very beginning of the sequence; Case (iv) insert two
unpaired base points to the leftmost position of the sequence. In addition, Proposition 1
and Theorem 4 have the same recurrence relations; thus, the proof of Proposition 1 is similar
to the proof for Theorem 4. The proof for Theorem 4 is given after the example.

Thus, the lower triangular RNA array R∗∗ is interpreted as the number of RNA
secondary structures with base-point mutations that contain wobble base pairs. Recall
that wobble base pairs represent all entries of R∗∗ except for the entries of the leftmost
column. Since the combinatorial arguments in the proof for Proposition 1 are similar
to the combinatorial arguments in the proof of Theorem 4, we omit a formal proof for
Proposition 1.

Let ω = w(n− 1, k + 1) where w(n− 1, k + 1) counts RNA structures of length n− 1
that have k + 1 mutations and contain wobble base pairs. Let rω(n, k) denote the set
of RNA secondary structures of length n with k base-point mutations, where ω of the
RNA sequences contain wobble base pairs. Before proving Theorem 4, as given below,
we give the example r7(5, 1) = 20 which is illustrated in Figure 14, which has secondary
structures with lengths of five and one base-point mutation. Of the twenty RNA sequences,
seven sequences contain wobble base pairs and thirteen sequences do not contain wobble
base pairs.

Proposition 1, given above, confirms that ω is the entry of R∗∗ that counts the number
of RNA secondary structures with mutations that contain wobble base pairs. The entry
(n− 1, k + 1) of w(n− 1, k + 1) is associated with the entry (n, k) of rω(n, k). We now
give a combinatorial interpretation of R∗∗ in terms of RNA mutations with wobble pairs
and non-wobble pairs.
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Figure 14. Twenty RNA secondary structures with lengths of five and one base-point mutation, of
which seven sequences contain wobble base pairs and thirteen sequences do not contain wobble
base pairs.

Theorem 4. Given the initial condition r0(1, 0) = 1 and the condition r0(n, n) = 1, then for
n, ω ≥ 0 and k ≥ 1, rω(n + 1, k) satisfies the following recurrence relations

(a) rω(n + 1, 0) = rω(n, 0) + rω(n, 1)

(b) rω(n + 1, k) =
{

rω(n, k− 1) + rω(n, k) + rω(n, k + 1)− rω(n− 1, k)
0, i f k > n + 1

where (a) is defined for the leftmost column of R∗∗ , (b) is defined for the other columns of
R∗∗, and rω(n, k) counts RNA secondary structures of length n with k base point mutations where
ω = w(n− 1, k + 1) of the structures contain wobble base pairs.

Proof. Condition r0(n, n) = 1 follows the definition of rω(n, k), the restrictions placed on
base-point mutations and wobble base pairs, and the way the entries ω = w(n− 1, k + 1)
are formed of R∗∗. By convention, there is only one possibility for the condition r0(1, 0).
Suppose we have an RNA sequence of length n with k base-point mutations where ω of
the sequences contain wobble pairs. Then, to form a new sequence of length n + 1 with k
base-point mutations where ω of the structures contain wobble base pairs, we consider the
following cases to prove recursion (b).

Case (i): If the given sequence has length n with k− 1 base-point mutations and ω of
the sequences contain wobble pairs, where ω = w(n− 1, k + 1), then there is one choice: to
insert one base-point mutation to the leftmost position of the sequence with k− 1 base-point
mutations where ω of the sequences contain wobble pairs. In this case, all sequences whose
leftmost point is a base-point mutation where ω of the sequences contain wobble pairs are
counted by rω(n, k− 1).

Case (ii): If the given sequence has length n with k base-point mutations and ω of the
sequences contain wobble pairs, where ω = w(n− 1, k + 1), then there is one choice: to
insert one unpaired base point (base point without a mutation) to the leftmost position of
the sequence with k base-point mutations where ω of the sequences contain wobble pairs.
In this case, all sequences whose leftmost point is an unpaired base point where ω of the
sequences contain wobble pairs are counted by rω(n, k).

Case (iii): If the given sequence has length n with k + 1 base-point mutations and ω of
the sequences contain wobble pairs, where ω = w(n− 1, k + 1), then there is one choice:
to delete one base-point mutation from the sequence, starting with the leftmost base-point
mutation. We substitute the deleted mutation with an unpaired base point at this position
in the sequence. Then, we insert an additional unpaired base point at the very beginning of
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the sequence. We form an arc between the two new base points if they are not successive,
and if they are successive, we do not form an arc. Note that from the construction of the
sequence, no base-point mutations occur under an arc. In this case, all sequences with a
substitution of a base-point mutation where ω of the sequences contain wobble pairs are
counted by rω(n, k + 1).

Case (iv): If the given sequence has a length of n− 1 and k base-point mutations and
ω of the sequences contain wobble pairs, where ω = w(n− 1, k + 1), then there is one
choice: to insert two unpaired base points to the leftmost position of the sequence with k
base-point mutations. In this case, all sequences whose two leftmost successive points are
unpaired base points (base points without a mutation) where ω of the sequences contain
wobble pairs are counted by rω(n− 1, k).

Note that in Case (iii) there is an over count and Case (iv) accounts for an over count.
This over count occurs in Case (iii) because we are deleting a base-point mutation and
this produces, in some cases, the same structure as in Case (ii). Therefore, all sequences
are removed from the count by −rω(n− 1, k). Combining all of the cases accounts for all
possible ways of forming rω(n + 1, k) where ω = w(n− 1, k + 1). Applying the addition
principle concludes that the recurrence relation (b) is proved. By similar reasoning we can
prove part (a). �

This provides an elegant connection between RNA array I and RNA array II by
the equation

rω(n, k)−w(n− 1, k + 1) = r(n, k) (7)

where r(n, k) counts the RNA secondary structures of length n with k mutations given by
R∗ [25]. Thus, as a consequence of rω(n, k) and w(n− 1, k + 1), rω(n, k)−w(n− 1, k + 1)
counts the number of RNA structures that contain non-wobble base pairs.

5.2. Bijection between Modified NSE∗∗ Walks and rω(n, k)
Recall that NSE∗∗ are the lattice walks identified by Definition 4(b). In this subsection,

we present modified unit-step NSE∗∗ lattice walks. Modified NSE∗∗ lattice walks consist
of NSE∗∗ lattice walks with three different kinds of north steps denoted by N, Ñ, and N,
and two different kinds of south steps denoted by S and S. These steps are subsequently
described in the proof of Theorem 5. Since R∗∗ counts RNA secondary structures with k
base-point mutations where ω of the sequences contain wobble pairs and modified unit-step
NSE∗∗ lattice walks, there exists an explicit bijection between these sets of combinatorial
objects. See Figure 15 below for an example of the bijection. We now state and prove the
following theorem.

Theorem 5. There exists an explicit bijection between the set of modified unit-step NSE∗∗ lattice
walks of length n ending at height k with consecutive north and south steps and the set of RNA
secondary structures of length n with k base-point mutations where ω of the sequences contain
wobble pairs.

Proof. To establish the required correspondence, let s be an arbitrary secondary structure
of length n with k base-point mutations where ω of the sequences contain wobble pairs.
We write s in its linear form as a sequence of bases, denoted by integers, increasing in order
from left to right along a horizontal axis with n bases where the k base-point mutations
are denoted by �. Arcs are drawn between two paired bases, allowing consecutive and
non-consecutive bases to be paired. The arcs joining consecutive bases are wobble pairs.

Now, we will form a modified unit-step NSE∗∗ lattice walk as follows. Consider each
� (i.e., base-point mutation) as an unpaired N (north) step, denoted by Ñ of the modified
unit-step NSE∗∗ lattice walk. If a base is unpaired, label the base as an E (east) step. If an
arc links non-consecutive integers i and j with i < j, then label the (i, j)th pairing members
as non-consecutive (N, S) steps (non-wobble pairs). If an arc links consecutive integers i1
and j1 with i1 < j1, then label the (i1, j1)th pairing members as consecutive (N, S) steps
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(wobble pairs). Using the definition of rω(n, k), we confirm that the modified unit-step
NSE** walks do not have consecutive south and north steps of any type of height k = 0
and no two arcs intersect. Thus, there are no lattice walks with SN, SN, SN, or SN steps.
However, ÑS steps are allowed for lattice walks ending at height k > 0. To form a modified
unit-step NSE∗∗ walk, we now have the following mappings: Ñ steps maps to N steps, (N,
S) maps to unconsecutive N and S steps to form unconsecutive NS base pairs, (N, S) maps
to consecutive N and S steps to form consecutive NS steps, and E steps map to E steps.
Note that (N, S) and (N, S) steps will have the same number of N and S and N and S steps,
respectively. The number of k base-point mutations correspond to the height k of modified
unit-step NSE∗∗ lattice walks. From rω(n, k), we can obtain ω from the (n− 1, k + 1)th
entry of R∗∗. The correspondence is constructed and reversible. Thus, the correspondence
is one-to-one, and the theorem is proved. �

See Figure 7 for an example of a lattice walk ending at height k = 0. As an example
of the bijection of a lattice walk ending at height k > 0 (Theorem 5), consider one of the
sequences of r2307(12, 3) = 7367 in Figure 15a below, where ω = w(11, 4) = 2307 is an entry
of R∗∗. Let s be one secondary structure of length 12 with three base-point mutations. Of
the structures, 2307 contain wobble base pairs. Applying the mapping, the integers are
assigned as follows: 1→ Ñ , 2 → Ñ , 3 → Ñ , 4→ N, 5 → N , 6 → S , 7→ S, 8→ E, 9→ N,
10 → N , 11 → S , 12 → S. We can then apply the rules of the correspondence to obtain one
of the possible modified unit-step NSE∗∗ lattice walks with a length of 12, a height of three,
and consecutive north and south steps given by Figure 15b.
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gers are assigned as follows: 1→ ��, 2 → �� , 3 → ��, 4 → N, 5 → ��, 6 → �̅, 7 → S, 8 → E, 9 

→ N, 10 → ��, 11 → �̅, 12 → S. We can then apply the rules of the correspondence to obtain 

one of the possible modified unit-step ���∗∗ lattice walks with a length of 12, a height of 

three, and consecutive north and south steps given by Figure 15b. 
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Figure 15. (a) One representation of �����(12, 3); (b) corresponding modified unit-step NSE** lattice 

walk with a length of 12, a height of three, and consecutive north and south steps. 

6. Concluding Remarks 

RNA combinatorics is one of the primary mathematical tools used for RNA second-

ary structure prediction and analysis. The connection between RNA secondary structures 

and discrete mathematical biology (a subfield of enumerative combinatorics) is conveyed 

in this paper by manipulating generating functions, solving recurrence relations, analyz-

ing RNA arrays as combinatorial matrices, and providing explicit bijections. We pre-

sented new explicit bijections involving certain subclasses of �∗∗ linear trees, ���∗∗ lat-

tice walks, and RNA secondary structures. We gave a generalized interpretation of �∗, by 

taking �-copies of �∗, denoted by (�∗)�, and proved that the entries of the array count the 

number of �-colored NSE* lattice walks. We combinatorically interpreted �∗∗ in terms of 

RNA base-point mutations and wobble base pairs. Since the entries of �∗∗counted ���∗∗ 

lattice walks as well as RNA secondary structures with � base-point mutations where � 

of the structures contain wobble base pairs, we established a new explicit bijection be-

tween these two combinatorial structures. These bijections provide combinatorial struc-

tural information that may provide insight into future biological applications of folding 

and modeling new RNA secondary structures. No RNA secondary structure prediction 

or folding was performed in this paper. See Evans [4] for applications and predictions of 

optimal RNA secondary folds of microRNAs related to tumor growth and cancer. 

Future work in this field may include finding new bijections between RNA secondary 

structures, specifically structures that contain wobble base pairs, and modeling these 

structures to find new optimal viral RNAs. Finding bijections between (�∗)� and other 

combinatorial objects and modeling (�∗)� for some � where � ≥ 2 are of interest for fu-

ture work as well. 
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Figure 15. (a) One representation of r2307(12, 3); (b) corresponding modified unit-step NSE** lattice
walk with a length of 12, a height of three, and consecutive north and south steps.

6. Concluding Remarks

RNA combinatorics is one of the primary mathematical tools used for RNA secondary
structure prediction and analysis. The connection between RNA secondary structures and
discrete mathematical biology (a subfield of enumerative combinatorics) is conveyed in
this paper by manipulating generating functions, solving recurrence relations, analyzing
RNA arrays as combinatorial matrices, and providing explicit bijections. We presented
new explicit bijections involving certain subclasses of L∗∗ linear trees, NSE∗∗ lattice walks,
and RNA secondary structures. We gave a generalized interpretation of R∗, by taking
j-copies of R∗, denoted by (R∗)j, and proved that the entries of the array count the number
of j-colored NSE* lattice walks. We combinatorically interpreted R∗∗ in terms of RNA
base-point mutations and wobble base pairs. Since the entries of R∗∗ counted NSE∗∗

lattice walks as well as RNA secondary structures with k base-point mutations where ω of
the structures contain wobble base pairs, we established a new explicit bijection between
these two combinatorial structures. These bijections provide combinatorial structural
information that may provide insight into future biological applications of folding and
modeling new RNA secondary structures. No RNA secondary structure prediction or
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folding was performed in this paper. See Evans [4] for applications and predictions of
optimal RNA secondary folds of microRNAs related to tumor growth and cancer.

Future work in this field may include finding new bijections between RNA secondary
structures, specifically structures that contain wobble base pairs, and modeling these
structures to find new optimal viral RNAs. Finding bijections between (R∗)j and other
combinatorial objects and modeling (R∗)j for some j where j ≥ 2 are of interest for future
work as well.
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