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Abstract: Recently, a crowd crush accident occurred in Seoul. Mathematics and data science can
contribute to understanding this incident and to avoiding future accidents. In this paper, I suggest an
optimized monitoring methodology to avoid crowd crush accidents with scattered data by searching
the global minimum of the minimax data or minsum data. These scattered data are the position data
of cell phones with time t. Mathematically, I find an exact solution of the optimized monitoring region
with the suggested methodology by using the minimal constraints. The methodology is verified and
validated along with the efficiency.

Keywords: computational optimized monitoring methodology; crowd crush; minimax problem;
minsum problem

1. Introduction

Recently, at Itaewon in South Korea, a crowd crush accident occurred on 29 October
2022. This is a kind of crowing safety problem. Mathematics is contributed to analyze
the data and to avoid the crowd crush accidents. In this paper, I suggest a mathematical
methodology to help avoid these accidents. In real time, one can gather the position data
of cell phones or head count data through CCTV. Monitoring centers have dependent
variables—the longitude and latitude—and an independent variable—time t. These data
are from the signals of satellites. Several local governments, agencies and organizations
can gather crowd Geographic Information Systems (crowdGIS) data for public safety.

I suggest a real-time-dependent model using these data. With the longitude data and
latitude data, the model is a two-dimensional space problem. If one adds the elevation data,
then the model becomes a three-dimensional space problem. In the relative work, I extend
this to N-dimensions in the optimization problem using the Kim method [1]. In this two-
dimensional monitoring model, the measurement of optimization of these data has the key
role in the performance of the methodology to monitor the risk of crowd crush accidents.
Here, this paper focuses on the two-dimensional space problem. In the measurement of
optimization, I describe either the minimax problem or minsum problem [2]. Here, the
focus is on the minimax problem. The constrained optimization problem is then formulated
as an unconstrained minimax problem of finding C∗ such that

J∞(C∗) = min
C∈R2

J∞(C). (1)

In big data, one can extend the suggested problems with artificial intelligence, machine
learning or deep learning. This is future research work.

The organization of the paper is as follows. Section 1 presents the introduction, back-
ground, problem statement and research contribution. The algorithm and the optimization
methodology to solve the problem are described in Section 2 where I prove that the algo-
rithm finds an exact minimax solution. The optimization methodology is verified. Then,
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in Section 3, the numerical results are presented, and the methodology is validated. The
conclusions are given in Section 4.

We need to denote the position Pi(xi(t), yi(t)), i = 1, · · · , n(t) as the position of the
cellphone in two-dimensional with the independent variable time t. First, we fix the time t
for convenience and later, we extend to continuous models with time t. After we set the
problem, to find the solution, we need the following constraint: Two fixed points, F1 and
F2, are needed to begin the problem with the time t.

See Figure 1 for the suggested problem setting in the two-dimensional case. Here, the
closeness of a circle to a set of points is given by the weighted maximum distance from the
circle to the points. Denote, by C, the center of a circle that passes through the two points
F1 and F2, and, by Dw(C), the n-dimensional vector

Dw(C) = (w1d1(C), · · · , wndn(C)),

where dj(C) = |Pj − C| − |F1 − C|, and the weight wj ∈ (0, 1), j = 1, · · · , n.
Set the objective function Jp(C) = ‖Dw(C)‖p, where ‖ · ‖p denotes the `p-norm for

1 ≤ p ≤ ∞.

Figure 1. The constrained optimization model of monitoring a crowd crush risk by using the position
of cell phones. The constraint is to pass through F1 and F2. The blue dot is the position of the cell
phone. F1 and F2 are constrained points. u is the optimal solution of minimax problem with radius r.

A class of similar problems to (1) has a long history of development in operation
research. This goes back to Pierre de Fermat who considered the case of dj(C) = |Pj − C|,
n = 3 and p = 1 with equal weights whose solution is called the Fermat point. Consider the
case of dj(C) = |Pj − C|, for a general n and p = 1 with equal weights. Then, the problem
is to find the geometric median of the set of points Pj, j = 1, · · · , n, which is a standard
problem in facility location to minimize the cost of transportation.

The minimizer C∗ of J1(C) is known as the Fermat–Weber [3] point or 1-median.
The Fermat–Weber problem has drawn attention from mathematicians and facility loca-
tion scientists and engineers; see, for instance, [4–16] and the references therein. For the
Euclidean metric d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 only, see the references [8–12,14–17]

and for the rectilinear (Manhattan) metric d(x, y) = |x1 − y1|+ |x2 − y2| and Euclidean
metric, see the references [6,13]. For a survey paper on the Fermat–Weber problem, see
Wesolowsky [18–21].

The case of dj(C) = |Fj − C| − |F1 − C|, with equal weights without the constraint
on the circle passing through any point was covered by Drezner [17] for p = 1, 2, and ∞,
and the case with equal and unequal weights was addressed by Brimberg et al. [22] for
p = ∞. Nonlinear minimax problems with successive approximation methods for finding a
stationary point were also studied by Demjanov [23].
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The suggested optimized optimization method (Kim method) in a two-dimensional
case can be applied to the detection of a circle on the image [24]. The sphere-detection
method (the Kim method in three-dimensions) can be applied to a three-dimensional image
with depth.

This method is effective for big-data optimization problems of machine-learning
models and algorithms [1,25]. The comparison study is shown in an N-dimensional
research paper [1]. In a general N-dimensional model, the Kim method was verified and
validated [1].

2. Optimization Methodology

The minimax crowd crush location optimization models are set up mathematically in
this section. Let the cell phone location be Pj(xj, yj), j = 1, · · · , n, with time t.

We suppose that two additional points F1 and F2 are given, which are distinct from
Pi(xi, yi), i = 1, · · · , l. Likewise, we set F1 and F2.

As described in the beginning of the section, this paper is restricted to the optimization
model of finding a circle that passes through two given points. I propose a systematic
approach to resolve this minimax model, thereby, obtaining an exact solution algorithm that
is fast. The organization of the paper is as follows. The models are described in Section 2.
I prove that the model methodology searches for an exact minimax solution. Then, in
Section 3, the numerical results are presented. The conclusions are given in Section 4.

Since the circles are constrained to pass F1 and F2, the centers should lie on the straight
line which bisects the line segment F1F2 perpendicularly. To simplify the problem let us
translate and rotate F1, F2 and Pi, i = 1, · · · , l so that the locations of F1 and F2 are (a, 0)
and (−a, 0) where 2a is the distance between F1 and F2. Furthermore, denote the coordinate
of Pi by (xi, yi), i = 1, · · · , l. Since the center of the circle lies on the y-axis, Problem (1) is
then reduced to a one-dimensional problem. Denoting by (0, u) the coordinate of C, the
radius of the circle, which passes through F1 and F2 is

√
u2 + a2.

For i = 1, · · · , l, let ψj(u) denote the weighted distance φi(u) = |ψi(u)|, where

ψi(u) = widi(C), di(C) =

√
xi

2 + (u− yi)
2 −

√
u2 + a2.

Since Dw(C) = (ψ1(u), · · · , ψl(u)), Problem (1) can be rewritten as finding u∗ ∈ R
such that

φ(u∗) = min
u

φ(u) where φ(u) := max
i

φi(u) = i∞(C). (2)

Lemma 1. Suppose that there does not exist a circle that passes through F1,F2 and the data points
Pi, i = 1, · · · , l. A local optimum to the minimax problem is then taken at the intersection point of
the graphs of y = φk1(u) and y = φk2(u) for some k1 and k2. In the general N−dimensional case,
see the reference [1].

Proof. Assume that the function φ(u) has a local minimum at a point u′, which is not an
intersection point of any two graphs of y = φk1(u) and y = φk2(u) for any k1 and k2. Since
the graph of y = φ(u) is a finite number of piecewise smooth curves, there should exist
some i and a sufficiently small positive ε such that φ(u) = φj(u) on (u′ − ε, u′ + ε) where
u′ is a critical point of φ, and thus it is a critical point of φi thereon.

Such critical points should be either the zeros of the first derivative of ψi(u) or the zero
of φi(u). Thus, the exact critical point t′ of the function φi(u) should be either u± =

ayj
a±xj

, or

u0 =
x2

j +y2
j−a2

2yj
, which are zeros of ψ′i(u) = wj(

u−yi√
x2

i +(u−yi)2
− u√

u2+a2 ), or φi(u), respectively.
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In order to derive a contradiction from the existence of such critical points, notice that the
second derivative of ψi(u) is given as follows:

ψ′′j (u) = wi(
x2

i
(x2

i + (u− yi)2)3/2
− a2

(u2 + a2)3/2 ).

I treat the two cases separately.

(i) First, let us consider the points u′ = u±. Observe that

ψi(u±)ψ′′j (u±) = −
w2

j (|a| − |xi|)2(a± xi)
2

|axi|
< 0.

This means that if ψi(u±) is greater (or less) than zero, then ψ′′i (u±) is less (or greater)
than zero, and thus the function ψi(u) has a local maximum (or local minimum) at u±.
Since φi(u) = |ψi(u)|, it follows that the function φi(u) has a local maximum at u±.

(ii) Next, consider the point u′ = u0. Since the function φ(u) has a local minimum at u0
and φ(u) = φi(u) on (u′ − ε, u′ + ε), it is trivial that φ(u0) = φi(u0) = 0.

Both cases (i) and (ii) lead to a contradiction to the assumption. Therefore, the local
minimum of φ(u) must be taken at a point u′, which is an intersection point of two graphs
of y = φk1(u) and y = φk2(u) for some k1 and k2. This completes the proof.

The local minima of y = φjk(u) are taken at the intersection points of y = φj(u) and
y = φk(u).

Theorem 2. Let tj,k’s be all the intersection points of the graphs of y = φj(u) and y = φk(u) for
all j, k = 1, · · · , n. Let u∗ be such that

φ(u∗) = min
j,k

φ(uj,k).

If φ(u∗) ≤ maxj wj|yj|, then φ(u∗) is a global minimum for Problem (2); otherwise, Problem (2)
does not have a global minimum solution. In the general N−dimensional case, see the reference [1].

Proof. Let us begin with finding the candidates of global minimum of φ(t) using the above
Lemma 1. Since the equation φj(u) = φk(u) is equivalent to the equation φ2

j (u) = φ2
k(u),

one can find the intersection points of φj and φk by solving

0 = φ2
j (u)− φ2

k(u)

=

(
wj

√
x2

j + (u− yj)2 − wk

√
x2

k + (u− yk)2 − (wj − wk)
√

u2 + a2
)

×
(

wj

√
x2

j + (u− yj)2 + wk

√
x2

k + (u− yk)2 − (wj + wk)
√

u2 + a2
)

=: Iw
1 (u)× Iw

2 (u). (3)

Equation (3) is divided into Iw
1 (u) = 0 or Iw

2 (u) = 0.
To solve the equation Iw

1 (u) = 0, move the radical term (wj −wk)
√

u2 + a2 to the right
side of the equation and square both sides. Then, we find

(w2
j + w2

k)u
2 − 2(w2

j yj + w2
kyk)u + {w2

j (x2
j + y2

j ) + w2
k(x2

k + x2
k)}

− 2wjwk

√
x2

j + (u− yj)2
√

x2
k + (u− yk)2

= (wj − wk)
2(u2 + a2).
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To isolate the radical expression to the left side, move all the other terms to the right
and square both sides of the equation again. Then, one gets the following cubic polynomial:

pjk(t) = a0u3 + a1u2 + a2u + a3,

where

a0 = 8wjwk(wj − wk)(wjyj − wkyk),

a1 = −4
[
{w2

j (x2
j + y2

j − a2) + 2wjwka2 + w2
k(x2

k + y2
k − a2)}wjwk

+ (w2
j yj + w2

kyk)
2 − w2

j w2
k{x

2
j + y2

j + x2
k + y2

k + 4yjyk}
]
,

a2 = 4{w2
j (x2

j + y2
j − a2) + 2wjwka2 + w2

k(x2
k + y2

k − a2)}(w2
j yj + w2

kyk)

+ 8w2
j w2

k{(x2
j + y2

j )yk + (x2
k + y2

k)yj},

a3 = −{w2
j (x2

j + y2
j − a2) + 2a2wjwk + w2

k(x2
k + y2

k − a2)}2 − 4w2
j w2

k(x2
j + y2

j )(x2
k + y2

k).

Similarly, solving the equation Iw
2 (u) = 0 is equivalent to solving the following cubic

polynomial:
qjk(u) = b0u3 + b1u2 + b2u + b3,

where

b0 = 8wjwk(wj + wk)(wjyj + wkyk),

b1 = −4
[
{w2

j (x2
j + y2

j − a2)− 2wjwka2 + w2
k(x2

k + y2
k − a2)}wjwk

− (w2
j yj + w2

kyk)
2 + w2

j w2
k{x

2
j + y2

j + x2
k + y2

k + 4yjyk}
]
,

b2 = −4{w2
j (x2

j + y2
j − a2)− 2wjwka2 + w2

k(x2
k + y2

k − a2)}(w2
j yj + w2

kyk)

+ 8w2
j w2

k{(x2
j + y2

j )yk + (x2
k + y2

k)yj},

b3 = {w2
j (x2

j + y2
j − a2)− 2wjwka2 + w2

k(x2
k + y2

k − a2)}2 − 4w2
j w2

k(x2
j + y2

j )(x2
k + y2

k).

By using Cardano’s formula, one can find all the real roots of pjk(u) = 0 and qjk(u) = 0.
In this way, one can find all the intersection points of y = φj(u) and y = φk(u) for
j, k = 1, · · · , n. Then, by comparing the values of the function φ(t) at these points, one
can find the candidate of global minimum at u∗. As the function φ(u) is defined on R, the
global minimum may not exist. However, using the expression

φj(u) =
wj

∣∣∣x2
j + y2

j − a2 − 2uyj

∣∣∣√
x2

j + (u− yj)2 +
√

u2 + a2
,

we have φ(u) → maxj wj|yj| as u → ±∞. Thus, if φ(u∗) ≤ maxj wj|yj|, then φ(u∗) is a
global minimum. If φ(u∗) > maxj wj|yj|, then the function φ(u) does not have global
minimum. This completes the proof.

Summarizing the above procedure in the proof of Theorem 2, we propose the following
algorithm for solving the minimax problem (2):

Step1. Compute the distance 2a between F1 and F2; choose the coordinates system such that
F1(a, 0) and F2(−a, 0); by a rigid-motion transform to Pj associate all the coordinates
(xj, yj) for j = 1, · · · , n;

Step2. If F1, F2 and Pj, j = 1, · · · , n are on one specific circle, then it is done.
Step3. Find all the intersection points uj,k’s of the graphs y = φj(u) and y = φk(u) for all

j, k;
Step4. For all such the intersection points uj,k’s, evaluate φi(ujk) for all i = 1, · · · , n; then

compute φ(uj,k) = maxi φi(uj,k); and find the minimum φ(u∗) = minj,k φ(uj,k).
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Step5. If φ(u∗) ≤ maxj wj|yj|, then φ(u∗) is the global minimum. If φ(u∗) > maxj wj|yj|,
the global minimum of the function φ(u) does not exist.

3. Numerical Results

I developed a minimax circle to monitor the crowd crush risk by using the position
of a cell phone with time t. I show several test cases with 20 data of cell phone position
including the weight 1.0. See the Table 1–3. The Table shows the detailed input data
with the weights (the weights are 1). C∗ is the numerical solution from the exact solution
procedure of the suggested models. I tested many times for various random input data
and the results are satisfactory. The computation is executed using the fortran compiler in
a window system with the architecture Intel Pentium CPU 4405U of 2.10 GHz. See Figure 2
for the validation. The verification was proved in Section 2. See Figures 3–5 for the fixed
single time t. Figures 6 and 7 were shown for the multiperiod.

Generally, in N-dimensional, I performed the comparison study with the suggested
methodology and other methodology of the data [1,26]. See the Table 4 with a comparison
study of several methodology with the random data set from [26]. AUC is the area under
the curve. The method result of AUC (KIM) has 1.0000 in Table 4 because the two distinct
circles are not overlapped. DT is the decision tree method. k−NN is the k-nearest neighbor
method. LogR is the logistic regression method. NB is the Naive Bayes method. C4.5 is a
decision tree with divide-and-conquer. SVM is the support vector machine method. LC
is the linear classifier method [26]. The methodology is to find the mathematical exact
solution. I find the two distinct circle with centers and radii.

Table 1. F1 = (5.00,8.00) and F2 = (−5.00,2.00) are given with the equal weighted 20 points (Value is 1).
The minimax value is 20.582.

Pj xj yj

P1 2.700 4.900
P2 −0.200 3.53
P3 4.97 1.40
P4 −2.30 8.63
P5 8.70 13.9
P6 −8.20 3.53
P7 19.00 6.90
P8 −12.3 8.63
P9 33.7 27.9
P10 −25.3 22.6
P11 6.70 4.90
P12 −6.20 3.53
P13 2.7 1.92
P14 −26.3 18.6
P15 8.37 15.9
P16 −8.62 23.5
P17 9.97 9.90
P18 −16.3 2.63
P19 21.7 2.90
P20 −15.3 9.83

Solution −13.413 27.355
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Table 2. F1 = (6.00,6.00) and F2 = (−8.00,8.00) are given with the equal weighted 20 points (Value is 1).
The minimax value is 13.117.

Pj xj yj

P1 2.700 14.900
P2 −8.7200 13.50
P3 6.97 21.40
P4 −12.30 18.63
P5 28.20 13.9
P6 −8.20 3.53
P7 19.0 6.90
P8 −12.2 28.60
P9 33.7 27.9
P10 −25.3 22.6
P11 16.7 4.90
P12 −6.42 13.50
P13 12.7 6.92
P14 −26.7 18.6
P15 8.70 5.90
P16 −8.62 23.5
P17 9.70 9.90
P18 −16.3 12.6
P19 21.7 2.90
P20 −2.83 12.5

Solution 1.5994 25.196

Table 3. F1 = (25.00,18.00) and F2 = (−25.00,12.00) are given with the equal weighted 20 points (Value
is 1). The minimax value is 15.5322.

Pj xj yj

Pj xj yj
P1 −16.20 23.50
P2 12.700 21.90
P3 −26.30 28.60
P4 18.40 15.90
P5 −8.62 23.50
P6 20.00 9.90
P7 −16.30 2.63
P8 21.70 22.90
P9 −15.30 9.83
P10 12.70 4.90
P11 −0.20 3.53
P12 15.00 21.40
P13 −2.30 28.60
P14 8.70 13.90
P15 −8.20 23.50
P16 19.00 6.90
P17 −12.30 28.60
P18 33.70 27.90
P19 −25.3 22.60
P20 26.7 4.90

Solution −0.32476 17.706

Table 4. AUC values for a dataset with a sample size of 200 with other methodologies [1,26].

KIM DT k− NN LogR

1.0000 0.7941 0.7683 0.6328

NB C4.5 SVM LC

0.7126 0.7452 0.7448 0.6408
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Figure 2. The validation figure of the constrained optimization problem of finding a circle in 2D that
is closest to all four points, (3.58, 1.78), (−3.00, 2.61), (2.12, −3.45), (−3.26,−2.34) among all the circles
that are constrained to pass through (−4, −4) and (4, 4). The solution is the center (0.034375, 0.034375)
with radius 1.7081.
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Figure 3. The constrained optimization model (the specific time t) of finding a circle in 2D that is
closest to all cell phone 20 position points among all the circles that are constrained to pass through
(5, 8) and (−5, 2). The solution is the center (−13.4130, 27.355) with radius 20.582.
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Figure 4. The constrained optimization model (the specific time t) of finding a circle in 2D that is
closest to all cell phone 20 position points.
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Figure 5. The constrained optimization model (the specific time t) of finding a circle in 2D that is
closest to all cell phone 20 position points.
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Figure 6. The constrained optimization model (the specific time t) of finding a circle in 2D that
is closest to all cell phone 20 position points, which depend on the time t. Earlier time: solid
dots; the minimax black circle. Middle time: asterisk; the minimax wavy black circle. Later time:
upper-oriented triangle; the minimax wavy gray circle.
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Figure 7. The closed dots are the 20 cell phone position data at the earlier time. The open dots are the
20 cell phone position data at the later time. From the suggested model, I analyze the multiperiod
optimized crowd crush monotiring at those times. The solid line circle with all 20 cell phone position
data at the earlier time (closed dots) has the center (−13.413, 27.355) with the minimax radius 20.582,
and the wavy line circle with 20 points (open dots) at the later time has the center (−10.222, 22.038)
with the minimax radius 18.830.

4. Conclusions

This paper proposed an optimized monitoring methodology to avoid crowd crush
accidents with scattered data by searching the global minimum of the minimax data or
minsum data with the independent variable time t. These scattered data are the position
data of cell phones with time t. Mathematically, I found an exact solution of the optimized
monitoring region with the suggested methodology using the Kim method [1].

This paper investigated the suggested minimax problem with the suggested optimiza-
tion method (the Kim method). This problem was applied to analyze monitoring to avoid
crowd crush accidents. Here, I also considered the general weighted case. The weighted
value can be considered as the historical value of the risk of the crowd crush possibility.
Furthermore, I obtained the exact solution of the minimizing circle to avoid the risk of
crowd crush accidents by maximizing the distance between the circle through two fixed
points and multiple points. By finding the local optima, one finds the global optimum.

After verifying and validating the exact solution of monitoring with the suggested
monitoring problem, an efficient algorithm was proposed. The advantage of this method-
ology is to theoretically find the exact solution. Thus, one can save on computation time
by using the exact formula to find the coefficients of the equations. This is the optimiza-
tion method of 2D scattered cell phone position data. This contributes to the analysis of
monitoring for crowd crush accidents.
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