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Abstract: A nonlocally perturbed linear Schrödinger equation with a small parameter was derived
under the assumption of low-level fractionality by using one of the known general nonlocal wave
equations with an infinite power-law memory. The problem of finding approximate symmetries for
the equation is studied here. It has been shown that the perturbed Schrödinger equation inherits
all symmetries of the classical linear equation. It has also been proven that approximate symme-
tries corresponding to Galilean transformations and projective transformations of the unperturbed
equation are nonlocal. In addition, a special class of nonlinear, nonlocally perturbed Schrödinger
equations that admits an approximate nonlocal extension of the Galilei group is derived. An example
of constructing an approximately invariant solution for the linear equation using approximate scaling
symmetry is presented.
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1. Introduction

The classical Schrödinger equation is one of the most fundamental models in non-
relativistic quantum mechanics [1,2]. It is a linear partial differential equation describing the
behavior of any quantum mechanical system via a wave function. At the same time, there
are numerous nonlinear extensions of the Schrödinger equation that are relevant in many
fields. Generally, such equations describe wave phenomena in nonlinear and dispersive
media. For instance, nonlinear extensions have been used in hydrodynamics [3], nonlinear
optics [4] and plasma physics [5]. Perturbed Schrödinger equations have been investigated
in [6,7] and by many other researchers. Moreover, during the last two decades, several time-
and space-fractional generalizations of linear and nonlinear Schrödinger equations have
been proposed [8–11]. Such equations belong to the class of fractional partial differential
equations [12,13], which allow the description of wave propagation in complex systems
with power memory and spatial nonlocality.

Lie symmetry analysis [14–17] is a powerful mathematical technique frequently used
for studying Schrödinger-type equations, especially nonlinear ones. In 1972, Niederer [18]
proved that the free Schrödinger equation admits a 12-parameter Lie symmetry group
containing time and space translations, dilations, the Galilei group, and a group of pro-
jective transformations. Two years later, he obtained the general potential–independent
form of the maximal kinematical invariance groups for Schrödinger equations with ar-
bitrary potentials, and found a classifying relation for invariance groups depending on
potential [19]. In the same year, Boyer [20] performed a full group classification for these
equations. It is important to note that recently this result has been revised by Nikitin [21].
At the same time, the symmetry approach to the separation of variables for stationary
and nonstationary Schrödinger equations has been developed [22–24] (see also [25] and
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references therein). This approach is based both on classical Lie point symmetries and
on higher (or Lie-Bäcklund) symmetries [16,26]. Higher symmetries of the Schrödinger
equation with an arbitrary potential have been investigated, in particular, in [27–29]. We
also mention here some recent papers on the investigation of the symmetry properties and
construction of invariant solutions for time-dependent and time-independent Schrödinger
equations [30–33].

Symmetry properties of nonlinear Schrödinger equations have been investigated by
many researchers. Here we mention only some of them. Gagnon and Winternitz studied
a generalized Schrödinger equation with a linear combination of the cubic and quintic
terms in 3+1 dimensions. Lie symmetries of this equation have been obtained in [34],
and different exact invariant solutions have been constructed in [35,36]. In [37], these
authors analyzed the symmetry properties of a variable-coefficient nonlinear Schrödinger
equation with three arbitrary complex functions in 1 + 1 dimensions. Classical Lie point
symmetries and invariant solutions, as well as higher symmetries, have been obtained by
Fushchich et al. [29,38,39] for different classes of nonlinear Schrödinger-type equations (see
also [40] and references therein). Results on symmetry group classification for nonlinear
Schrödinger equations can be found in [41–45]. In [46], approximate symmetries for a
perturbed nonlinear equation have been studied. For some more recent results on symmetry
analysis we refer to recent papers [47–49].

During the last two decades, basic methods of the classical Lie group analysis have
been extended to fractional differential equations (see [50–52] and references therein).
In [53–59], these methods were successfully applied for investigating symmetry properties
and finding exact solutions of time- and space-fractional Schrödinger equations. It is worth
noting that fractional-order equations always have much fewer Lie point symmetries than
integer-order ones. In particular, any time-fractional Schrödinger equation describing finite
memory processes does not admit the group of time translations and the Galilei group. As
a result, applying classical Lie group analysis methods to find exact solutions to fractional
Schrödinger equations shows quite low efficiency.

Nevertheless, if the memory effect is weak in the modeled system, a corresponding
small parameter can be introduced. For example, for time-fractional equations with a weak
power-law memory, the order of fractional differentiation can be close to an integer. This is
the so-called low-level fractionality case [60]. Such a fractional order can be written as the
sum of an integer and a small parameter. As a result, the corresponding time-fractional
equation can be approximated by a differential equation with a small nonlocal term. More
details of such approximation technique can be found in [60–63].

At the end of the last century, Baikov, Gazizov and Ibragimov [64–66] developed the
theory of approximate transformation groups (see also Part II in [17]). This theory gives the
tools to investigate approximate symmetry properties of differential equations that have
a small parameter. In [67–69], several methods of this theory were successfully extended
to equations with nonlocal terms that arose during the approximation of time-fractional
differential equations in the case of low-level fractionality. As a result, constructive algo-
rithms for finding approximate symmetries and conservation laws for such equations have
been developed. Note that the dimension of an approximate group of invariance for any
perturbed equation with a small parameter is always larger than the dimension of an exact
group of invariance for the corresponding unperturbed equation; therefore, much more
approximate invariant solutions can be constructed.

In this paper, we dealt with the problem of finding approximate symmetries for
a perturbed Schrödinger equation with a weak infinite power-law memory. Recently,
Uchaikin [70,71] proved that the dynamics of an open system, which is considered as a
subsystem of some closed Hamiltonian system, can be described by an integro-differential
equation with a delayed time argument. This concept provides the physical background
of the equation in question. We prove that the equation inherits all the symmetries of
the classical Schrödinger equation. Moreover, we prove that approximate symmetries of
the perturbed equation in question that corresponded to Galilean transformations and
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projective transformations of the unperturbed equation are nonlocal. To the best of this
author’s knowledge, this is the first study on nonlocal symmetries for nonlocally perturbed
equations obtained from fractional differential equations under the assumption of low-level
fractionality. In addition, a class of nonlinear nonlocally perturbed Schrödinger equations
that have approximate nonlocal Galilean-type symmetries is presented.

The paper is organized as follows. In Section 2, a formal approach to deriving a
linear perturbed Schrödinger equation with infinite memory and low-level fractionality
is proposed. Section 3 contains the results of an approximate symmetry analysis for this
equation. A class of nonlinear Schrödinger equations with a small nonlocal term that have
approximate nonlocal Galilean-type symmetries is discussed in Section 4. A semi-analytical
example of finding an approximately invariant solution for the linear equation by using
the obtained approximate scaling symmetry is given in Section 5. The last section contains
a conclusion.

2. Perturbed Schrödinger Equation with a Weak Infinite Memory

It is well known that E. Schrödinger derived his famous equation from the optics-
mechanics analogy [1,2]. Using this analogy for a particle, the representation for the phase
velocity of a wave can be written (see, e.g., [1]) as

v =
h̄ω√
2m

1√
h̄ω−U

, (1)

where ω is the angular frequency; m is the mass of the particle; U is the potential energy of
the particle in an external field; and h̄ is the reduced Planck constant (or the Dirac constant).

Next, the wave function for a monochromatic harmonic wave is of the form

ψ(t, x) = ψ̂(x)e−iωt, (2)

which satisfies the classical wave equation

ψtt = v2∆ψ. (3)

Substituting (1) and (2) in (3), and using the formal association

ωψ̂→ iψt, (4)

we obtain the classical Schrödinger equation

ih̄ψt +
h̄2

2m
∆ψ−Uψ = 0. (5)

However, it is interesting to note that function (2) is a particular solution both for the
classical (3), and the more general wave equations with an infinite power-law memory

ψtt = a2∆ψ + b2
α −∞ Iα

t ∆ψ, α ∈ (0, 1), (6)

where

(−∞ Iα
t f )(t, x) =

1
Γ(α)

∫ t

−∞

f (τ, x)
(t− τ)1−α

dτ

is the Liouville fractional integral of order α [12]. Here α is a dimensionless number.
Note that (6) can be considered as a particular case of the wave equation with an

infinite memory

ψtt = a2∆ψ +
∫ ∞

0
K(s)∆ψ(t− s, x)ds, (7)

whenever

K(s) = b2
α

sα−1

Γ(α)
.
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Equation (7) is well known and has been investigated, for example, in [72–74]. In particular,
this equation describes wave propagation in an open system considered as a part of a
closed Hamiltonian system. More details of this approach can be found in [70,71].

Substituting (2) into (6), we get

−ω2ψ̂ = a2∆ψ̂ + b2
α∆ψ̂eiωt

−∞ Iα
t (e
−iωt).

For λ > 0, we can use following expressions (see Table 9.2 in [12]):

−∞ Iα
t sin(λt) = ω−α sin(λt− πα/2),

−∞ Iα
t cos(λt) = ω−α cos(λt− πα/2).

Since
e−iωt = cos(|ω|t)− sign(ω) sin(|ω|t), ω ∈ R,

we have
−∞ Iα

t (e
−iωt) = |ω|−αe−iωteisign(ω)πα/2. (8)

As a result, we obtained the equation

−ω2ψ̂ = a2∆ψ̂ + b2
α∆ψ̂|ω|−αeisign(ω)πα/2. (9)

If α = 0, we have −∞ I0
t f = f . Therefore, in this case (6) coincides with the classical

wave equation (3), and a2 + b2
0 = v2. Assuming that

a2 = A2v2, b2
α = B2

αv2, (10)

where A and Bα do not depend on ω, and A2 + B2
0 = 1, we can rewrite (9) as

−ω2

v2 ψ̂ = A2∆ψ̂ + B2
α∆ψ̂|ω|−αeisign(ω)πα/2.

In view of (1), we have

−(h̄ω−U)ψ̂ =
h̄2

2m

(
A2∆ψ̂ + B2

α∆ψ̂|ω|−αeisign(ω)πα/2
)

.

It follows from (8) that
|ω|−αeisign(ω)πα/2∆ψ̂→ −∞ Iα

t ∆ψ.

Using this association and association (4), we obtained

ih̄ψt + A2 h̄2

2m
∆ψ + B2

α
h̄2

2m−∞ Iα
t ∆ψ−Uψ = 0. (11)

This equation is a time-fractional generalization of the Shrödinger equation. If α = 0, it
coincides with the classical equation (5).

It is important to note that, generally, the second equality in (10) is physically quite
restrictive. However, it is approximately valid for the case of a weak memory when α is
small enough. Then we can write α = ε (0 < ε� 1) and B2

ε ≈ B2
0 . In this case, the following

expansion holds (see [12]) for the Liouville fractional integral:

−∞ Iε
t f = f (t) + ε

(
γ f +

∂

∂t

∫ t

−∞
ln(t− τ) f (τ)dτ

)
+ o(ε),

where γ ≈ 0.577215665 is the Euler constant. Substituting this expansion in (11), we get

ih̄ψt + (1 + εB2
0γ)

h̄2

2m
∆ψ + εB2

0
h̄2

2m
∂

∂t

∫ t

−∞
ln(t− τ)∆ψdτ −Uψ = 0. (12)
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This equation is the Shrödinger equation with a small nonlocal perturbations corresponding
to infinite memory. In this equation ε is a dimensionless small numerical parameter.

Assuming that 0 < εB2
0 � 1, by the change of variables

t→ h̄t, x → h̄x√
2m

, ε→ ε

B2
0

,

we transform the equation (12) to the simpler form

iψt + (1 + εβ)∆ψ + ε
∂

∂t

∫ t

−∞
ln(t− τ)∆ψdτ −Uψ = 0 (13)

with β = γ + ln h̄ and a small parameter ε. For simplicity, we call this equation the
perturbed Schrödinger equation (PSE). If ε = 0 and U = 0, this equation coincides with the
free Schrödinger equation

iψt + ∆ψ = 0. (14)

3. Approximate Symmetries for PSE
3.1. Problem Statement

It is known that the free Schrödinger equation (14) is invariant under the extended
Galilei group, also known as the Schrödinger group [34,40]. Let ψ(t, x) = u(t, x) + iv(t, x),
x ∈ Rn. Here u, v are real functions. Then (14) can be rewritten as the system of linear
PDEs

ut + ∆v = 0, −vt + ∆u = 0. (15)

A basis for the Lie algebra admitted by this system is provided (see, e.g., [34]) by a time
translation T, n spatial translations Pi, n rotations Ji, n Galilean transformations Ki, one
phase transformation M, two dilations I and D, and one projective transformation R:

T =
∂

∂t
, Pi =

∂

∂xi
, Ji = xj

∂

∂xk
− xk

∂

∂xj
,

Ki = 2t
∂

∂xi
+ xi

(
u

∂

∂v
− v

∂

∂u

)
, M = u

∂

∂v
− v

∂

∂u
,

I = u
∂

∂u
+ v

∂

∂v
, D = 2t

∂

∂t
+ xi

∂

∂xi
,

R = t2 ∂

∂t
+ txi

∂

∂xi
−
(

n
2

tu +
1
4
|x|2v

)
∂

∂u
−
(

n
2

tv− 1
4
|x|2u

)
∂

∂v
,

(16)

where i = 1, . . . , n. Here summation over repeated indices is implied.
Since system (15) is linear, it also admits infinite transformations with the generator

X∞ = f (t, x)
∂

∂u
+ g(t, x)

∂

∂v
,

where the functions f (t, x) and g(t, x) are solutions of the system

ft + ∆g = 0, −gt + ∆ f = 0.

In this work, we investigated the question of how PSE (13), considered with U = 0,
inherits the symmetries (16) of the unperturbed equation (14). Similarly to (15), we can
rewrite (13) with U = 0 as the system

ut + (1 + εβ)∆v + ε(Sv)(t, x) = 0,

−vt + (1 + εβ)∆u + ε(Su)(t, x) = 0,
(17)
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where we denote for convenience

(Su)(t, x) =
∂

∂t

∫ t

−∞
ln(t− τ)∆u(τ, x)dτ, (Sv)(t, x) =

∂

∂t

∫ t

−∞
ln(t− τ)∆v(τ, x)dτ.

Since ε is assumed to be a small parameter in (17), we can try to find approximate
symmetries for this system in the form

X = X0 + εX1, (18)

where X0 is a symmetry of unperturbed system (15), i.e., any generator from (16). We will
not assume that the operator X1 is local because (17) is a nonlocally perturbed system and
therefore it should admit nonlocal approximate symmetries.

The operator X defined by (18) is an approximate symmetry of (17) if and only if

X̃[ut + (1 + εβ)∆v + εSv] ≈ 0,

X̃[−vt + (1 + εβ)∆u + εSu] ≈ 0,

whenever u and v satisfy (17). Here the approximate equality F ≈ 0 means that F = o(ε),
and X̃ denotes the prolongation of the operator X to all differential and integral variables
in (17). We can rewrite the above system in a more convenient form:

X̃0(ut + ∆v) + ε
[
X̃1(ut + ∆v) + βX̃0(∆v) + X̃0(Sv)

]
≈ 0,

X̃0(−vt + ∆u) + ε
[
X̃1(−vt + ∆u) + βX̃0(∆u) + X̃0(Su)

]
≈ 0.

(19)

Note that the equations of (19) cannot be split by ε because u and v satisfy (17), and
therefore

X̃0(ut + ∆v) = O(ε), X̃0(−vt + ∆u) = O(ε).

To obtain the determining equations for the operator X1 from system (19) in an explicit
form, the prolongations of a point transformation group defined by the infinitesimal
generator X0 to the nonlocal expressions Su and Sv have to be constructed. Further, we
derive such prolongations for transformations defined by generators (16), and then find
corresponding operators X1.

3.2. Groups of Translations and Rotations

Let X0 = T. Then the corresponding infinitesimal transformations are

t̄ = t + a, x̄ = x, ū(t̄, x̄) = u(t, x), v̄(t̄, x̄) = v(t, x),

where a is a group parameter. Applying this transformation to Su, we have

(Su)(t, x) =
∂

∂t̄

∫ t̄−a

−∞
ln(t̄− a− τ)∆x̄u(τ, x̄)dτ = |τ̄ = τ + a|

=
∂

∂t̄

∫ t̄

−∞
ln(t̄− τ̄)∆x̄u(τ̄ − a, x̄)dτ̄ =

∂

∂t̄

∫ t̄

−∞
ln(t̄− τ̄)∆x̄ū(τ̄, x̄)dτ̄ ≡ (Sū)(t̄, x̄).

(20)

Here we use the equality u(τ̄ − a, x̄) = ū(τ̄, x̄) that follows from ū(t̄, x̄) = u(t̄− a, x̄) by
a simple change of variable t̄ → τ̄, and ∆x̄ denotes the Laplace operator with respect to
x̄ = (x̄1, . . . , x̄n). Hence, the function (Su)(t, x) is invariant under time translation, and
therefore the corresponding prolongation of the generator T to Su is equal to zero. The same
is valid for (Sv)(t, x). Since T has zero prolongations to ut, vt, ∆u and ∆v, the equalities (19)
are satisfied for X1 = 0. Thus, the system (17) inherits the symmetry T, i.e., PSE admits any
time translation. Note that this is due to the full memory in this system.
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Similarly, one can easily prove that generators Pi and Ji (i = 1, . . . , n) also have zero
prolongations to (Su)(t, x) and (Sv)(t, x). As a result, system (17) inherits these symmetries,
i.e., PSE admits spatial translations and rotations.

Since the perturbed system admits time and space translations, it has different trav-
eling wave solutions [75,76]. Note that time-fractional generalizations of Schrödinger’s
equation with finite memory does not have such solutions.

3.3. Galilean Transformations

Now let us consider one of the most interesting cases of Galilean transformations:
X0 = Ki. Corresponding infinitesimal transformations reads

t̄ = t, x̄j = xj (j 6= i), x̄i = xi + 2at + o(a),

ū = u− axiv + o(a), v̄ = v + axiu + o(a),
(21)

where a is a group parameter.
At first, we find prolongations ζLu

i and ζLv
i of this group to integrals (Lu)(t, x) and

(Lv)(t, x), where

(L f )(t, x) =
∫ t

−∞
ln(t− τ) f (τ, x)dτ,

such that

(Lū)(t̄, x̄) = (Lu)(t, x) + aζLu
i + o(a), (Lv̄)(t̄, x̄) = (Lv)(t, x) + aζLv

i + o(a).

For convenience, we introduce two vectors

z(s) = (x1, . . . , xi−1, xi + as, xi+1, . . . , xn), z̄(s) = (x̄1, . . . , x̄i−1, x̄i − as, x̄i+1, . . . , x̄n).

By using the infinitesimal approach, we found from (21)

ū(t̄, x̄) = u(t̄, z̄(2t̄))− ax̄iv(t̄, x̄) + o(a),

and therefore

ū(τ, x̄) = u(τ, z̄(2τ))− ax̄iv(τ, x̄) + o(a) = u(τ, z(2t− 2τ))− axiv(τ, x) + o(a).

Hence, the infinitesimal transformation of the integral (Lū)(t̄, x̄) has the form

(Lū)(t̄, x̄) =
∫ t̄

−∞
ln(t̄− τ)ū(τ, x̄)dτ

=
∫ t

−∞
ln(t− τ)[u(τ, z(2t− 2τ))− axiv(τ, x)]dτ + o(a)

=
∫ t

−∞
ln(t− τ)[u(τ, x) + 2a(t− τ)uxi (τ, x)− axiv(τ, x)]dτ + o(a)

= (Lu)(t, x) + 2at(Luxi )](t, x)− 2a[L(tuxi )](t, x)− axi(Lv)(t, x) + o(a).

Thus, we obtain the prolongation formula

ζLu
i = 2t(Luxi )(t, x)− 2[L(tuxi )](t, x)− xi(Lv)(t, x). (22)

Similarly, one can find the prolongation formula for the integral (Lv̄)(t̄, x̄) as

ζLv
i = 2t(Lvxi )(t, x)− 2[L(tvxi )](t, x) + xi(Lu)(t, x). (23)
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Now we can find prolongation of the Galilei group to the expressions (Su)(t, x) and
(Sv)(t, x). Since

(S f )(t, x) =
(

∂

∂t
L∆ f

)
(t, x) =

(
∆

∂

∂t
L f
)
(t, x),

we can write

(Sū)(t̄, x̄) = (Su)(t, x) + aζSu
i + o(a), (Sv̄)(t̄, x̄) = (Sv)(t, x) + aζSv

i + o(a),

where ζSu
i and ζSv

i are defined by the prolongation formulae

ζSu
i = ∆Dt

(
ζLu

i − 2tLuxi

)
+ 2t∆Dt(Luxi ) = ∆Dt(ζ

Lu
i )− 2∆(Luxi ), (24)

ζSv
i = ∆Dt

(
ζLv

i − 2tLvxi

)
+ 2t∆Dt(Lvxi ) = ∆Dt(ζ

Lv
i )− 2∆(Lvxi ). (25)

Here Dt is the total derivative to t. These formulae directly follow from the classical
prolongation formulae to integer-order differential variables (see, e.g., [26]).

Substituting (22) into (24), we get

ζSu
i = ∆Dt{2tLuxi − 2L(tuxi )− xiLv} − 2∆(Luxi ) =

= 2
∂

∂t

∫ t

−∞
(t− τ) ln(t− τ)∆uxi dτ − 2

∂

∂t

∫ t

−∞
ln(t− τ)vxi dτ

−xi
∂

∂t

∫ t

−∞
ln(t− τ)∆vdτ − 2

∫ t

−∞
ln(t− τ)∆uxi dτ

= 2
∫ t

−∞
∆uxi dτ − 2

∂

∂t

∫ t

−∞
ln(t− τ)vxi dτ − xi

∂

∂t

∫ t

−∞
ln(t− τ)∆vdτ.

Thus, we can write

ζSu
i = 2

∫ t

−∞
∆uxi dτ − 2Dt(Lvxi )− xiSv. (26)

Similarly, substituting (23) in (25), we find

ζSv
i = 2

∫ t

−∞
∆vxi dτ − 2Dt(Luxi ) + xiSu. (27)

Prolongations of the generator Ki to ut, vt, ∆u and ∆v are calculated by classical
prolongation formulae. As a result, we found the prolonged generator in the form

K̃i = Ki − (xivt + 2uxi )
∂

∂ut
+ (xiut − 2vxi )

∂

∂vt
− (xi∆v + 2vxi )

∂

∂∆u

+(xi∆u + 2uxi )
∂

∂∆v
+ ζSu

i
∂

∂Su
+ ζSv

i
∂

∂Sv
,

(28)

where ζSu
i and ζSv

i are defined by (26) and (27). Substituting X̃0 = K̃i into (19), in view of
system (17), we obtain

ε

[
(X1(ut + ∆v)− 2Dt(Luxi ) + 2

∫ t

−∞
∆vxi dτ + 2βuxi

]
≈ 0,

ε

[
X1(−vt + ∆u)− 2Dt(Lvxi ) + 2

∫ t

−∞
∆uxi dτ − 2βvxi

]
≈ 0.

(29)

Due to the multiplier ε, this system should be approximately satisfied whenever u and v
are the solutions of the unperturbed system (15).
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We sought the operator X1 in a quite general canonical form

X1 = ηu ∂

∂u
+ ηv ∂

∂v
, (30)

where functions ηu and ηv depend on t, x, u, v, as well as on any derivatives and integrals
of u and v. Then we can rewrite system (29) as the system of determining equations for the
functions ηu and ηv:

Dt(ηu) + ∆ηv ≈ 2Dt(Luxi )− 2
∫ t

−∞
∆vxi dτ − 2βuxi ,

−Dt(ηv) + ∆ηu ≈ 2Dt(Lvxi )− 2
∫ t

−∞
∆uxi dτ + 2βvxi .

(31)

In view of system (15), we have∫ t

−∞
∆uxi dτ =

∫ t

−∞
vτxi dτ = vxi

and ∫ t

−∞
∆vxi dτ = −

∫ t

−∞
uτxi dτ = −uxi .

Here we use natural conditions

lim
t→−∞

uxi = 0, lim
t→−∞

vxi = 0.

Then system (31) takes the form

Dt(ηu) + ∆ηv ≈ 2Dt(Luxi ) + 2(1− β)uxi ,

Dt(ηv)− ∆ηu ≈ −2Dt(Lvxi ) + 2(1− β)vxi .
(32)

Since the r.h.s. of equations in (32) contain the nonlocal operator L, the functions ηu

and ηv should depend on nonlocal variables Luxi and Lvxi . To identify these functions, we
gave several helpful relations. First of all, we proved that Dt(L f ) = L ft. Indeed,

Dt(L f ) ≡ ∂

∂t

∫ t

−∞
ln(t− τ) f (τ, x)dτ = |s = t− τ| = ∂

∂t

∫ ∞

0
ln s f (t− s, x)dτ

=
∫ ∞

0
ln s ft(t− s, x)dτ =

∫ t

−∞
ln(t− τ) fτ(τ, x)dτ ≡ L ft.

Next, by using this equality and system (15), we have

∆(Luxi ) = L∆uxi = L∆uxi = Lvt,xi = Dt(Lvxi ),

∆(Lvxi ) = L∆vxi = L∆vxi = −Lut,xi = −(DtLuxi ).

Therefore, if we set
ηu = Luxi + η̃u, ηv = −Lvxi + η̃v,

system (32) takes the form

Dt(η̃u) + ∆η̃v ≈ 2(1− β)uxi ,

Dt(η̃v)− ∆η̃u ≈ 2(1− β)vxi .

In view of system (15), it is easy to prove that a particular solution of this system is

η̃u = 2(1− β)tuxi , η̃v = 2(1− β)tvxi .
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Thus, we found that X1 is a nonlocal operator of the form

X1 = [2(1− β)tuxi + Luxi ]
∂

∂u
+ [2(1− β)tvxi − Lvxi ]

∂

∂v
.

We can also rewrite it as

X1 = 2(β− 1)t
∂

∂xi
+ Luxi

∂

∂u
− Lvxi

∂

∂v
.

As a result, we concluded that the perturbed system (17) had n nonlocal approximate
symmetries

Kε
i = 2t[1 + ε(β− 1)]

∂

∂xi
+ (−xiv + εLuxi )

∂

∂u
+ (xiu + εLvxi )

∂

∂v
, i = 1, . . . , n. (33)

These symmetries are the nonlocal extensions of the generators Ki of the Galilean transforma-
tions.

3.4. Group of Phase Transformation

Let us consider the case X0 = M corresponding to the so-called phase transformation
or to the rotation in the plane (u, v). Then the infinitesimal transformations are

t̄ = t, x̄i = xi (i = 1, . . . , n), ū = u− av + o(a), v̄ = v + au + o(a). (34)

Applying this transformation to Sū, we have

(Sū)(t̄, x̄) =
∂

∂t̄

∫ t̄

−∞
ln(t̄− τ)∆x̄ū(τ, x̄)dτ =

=
∂

∂t

∫ t

−∞
ln(t− τ)∆x[u(τ, x)− av(τ, x)]dτ + o(a) = (Su)(t, x)− a(Sv)(t, x) + o(a).

So, we get
(Sū)(t̄, x̄) = (Su)(t, x) + aζSu

M + o(a), ζSu
M = −(Sv)(t, x).

Similarly, it is easy to obtain

(Sv̄)(t̄, x̄) = (Sv)(t, x) + aζSv
M + o(a), ζSv

M = (Su)(t, x).

Thus, we have the following prolongation of the generator M:

M̃ = M− vt
∂

∂ut
+ ut

∂

∂vt
− ∆v

∂

∂∆u
+ ∆u

∂

∂∆v
− Sv

∂

∂Su
+ Su

∂

∂Sv
. (35)

Substituting X̃0 = M̃ into (19), in view of system (17), we get

−vt + ∆u + ε[X1(ut + ∆v) + β∆u + Su] ≈ 0,

−ut − ∆u + ε[X1(−ut − ∆v)− β∆v− Sv] ≈ 0.

It is easy to see that if X1 = 0, this system coincides with the initial perturbed system (17).
It means that system (17) admits the phase transformation, i.e., this system has the Lie
point symmetry M.

3.5. Groups of Dilations

Now we consider the dilation with the generator D. The corresponding infinitesimal
transformations are

t̄ = t + 2at + o(a), x̄i = xi + axi + o(a), ū = u, v̄ = v.
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Then for Su we have

(Sū)(t̄, x̄) =
∂

∂t̄

∫ t̄

−∞
ln(t̄− τ̄)∆x̄ū(τ̄, x̄)dτ̄ =

=
1

(1 + 2a)(1 + a)2
∂

∂t

∫ (1+2a)t

−∞
ln(t + 2at− τ̄)∆xu(τ̄ − 2aτ̄, x)dτ̄ + o(a)

= |τ̄ = (1 + 2a)τ| = 1
(1 + a)2

∂

∂t

∫ t

−∞
ln[(1 + 2a)(t− τ)]∆xu(τ, x)dτ + o(a)

=
ln(1 + 2a)
(1 + a)2 ∆u +

1
(1 + a)2

∂

∂t

∫ t

−∞
ln(t− τ)∆xu(τ, x)dτ + o(a)

= (Su)(t, x) + 2a[∆u− (Su)(t, x)] + o(a).

Similarly, for Sv one can find

(Sv̄)(t̄, x̄) = (Sv)(t, x) + 2a[∆v− (Sv)(t, x)] + o(a).

Hence, we can write the prolongation of the generator D as

D̃ = D− 2ut
∂

∂ut
− 2vt

∂

∂vt
− 2∆u

∂

∂∆u
− 2∆v

∂

∂∆v
+ 2[∆u− Su]

∂

∂Su
+ 2[∆v + Sv]

∂

∂Sv
.

Setting X̃0 = D̃ in (19), in view of system (17), we obtain the system of determining
equations for the coordinates of the operator X1 from (30) as

Dtη
u + ∆ηv = −2∆v, Dtη

v − ∆ηu = −2∆u.

It is easy to prove that this system has the particular solution

ηu = 2tut, ηv = 2tvt.

Thus, the operator X1 has the canonical form

X1 = 2tut
∂

∂u
+ 2tvt

∂

∂v
,

or
X1 = −2t

∂

∂t
.

As a result, we concluded that system (17) has the approximate Lie point symmetry

Dε = 2(1− ε)t
∂

∂t
+ xi

∂

∂xi
. (36)

In the same way it can be proven that the perturbed system (17) also admits dilation
with the generator I, which follows from the linearity of this system.

3.6. Group of Projective Transformations

At last, we find the approximate extension of the projective transformation R from (16).
The infinitesimal transformation defined by R is

t̄ = t + at2 + o(a), x̄i = xi + atxi + o(a),

ū = u− 1
4

a(|x|2v + 2ntu) + o(a), v̄ = v +
1
4

a(|x|2u− 2ntv) + o(a).
(37)

First, we consider the infinitesimal transformation of the integral Lu.
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By using (37), we write

ū(t̄, x̄) = u(t̄− at̄2, x̄− at̄x̄)− 1
4

a[|x̄|2v(t̄, x̄) + 2nt̄u(t̄, x̄)] + o(a),

or
ū(τ̄, x̄) = u(τ̄ − aτ̄2, x̄− aτ̄x̄)− 1

4
a[|x̄|2v(τ̄, x̄) + 2nτ̄u(τ̄, x̄)] + o(a).

Then we have

(Lū)(t̄, x̄) =
∫ t̄

−∞
ln(t̄− τ)ū(τ̄, x̄)dτ̄

=
∫ t̄

−∞
ln(t̄− τ̄)

{
u(τ̄ − aτ̄2, x̄− aτ̄x̄)− 1

4
a[|x̄|2v(τ̄, x̄) + 2nτ̄u(τ̄, x̄)]

}
dτ̄ + o(a)

=
∫ t+at2

−∞
ln(t + at2 − τ̄)

×
{

u(τ̄ − aτ̄2, x + atx− aτ̄x)− 1
4

a[|x|2v(τ̄, x) + 2nτ̄u(τ̄, x)]
}

dτ̄ + o(a)

= |τ̄ = τ + aτ2, dτ̄ = (1 + 2a)dτ|

=
∫ t

−∞
ln(t + at2 − τ − aτ2)(1 + 2aτ)

×
{

u(τ, x + atx− aτx)− 1
4

a[|x|2v(τ, x) + 2nτu(τ, x)]
}

dτ + o(a)

=
∫ t

−∞
[ln(t− τ) + a(t + τ)](1 + 2aτ)

×
{

u(τ, x) + a(t− τ)xiuxi (τ, x)− 1
4

a[|x|2v(τ, x) + 2nτu(τ, x)]
}

dτ + o(a)

=
∫ t

−∞
ln(t− τ)u(τ, x)dτ + a

∫ t

−∞
(t + τ)u(τ, x)dτ

+axi

∫ t

−∞
(t− τ) ln(t− τ)uxi (τ, x)dτ − a

|x|2
4

∫ t

−∞
ln(t− τ)v(τ, x)dτ

−a
n
2

∫ t

−∞
ln(t− τ)τu(τ, x)dτ + 2a

∫ t

−∞
ln(t− τ)u(τ, x)dτ + o(a).

We can rewrite this result as

(Lū)(t̄, x̄) = (Lu)(t, x) + aζLu
R + o(a)

with

ζLu
R = −|x|

2

4
Lv +

(
2− n

2

)
L(tu) + xi[tL(uxi )− L(tuxi )] +

∫ t

−∞
(t + τ)u(τ, x)dτ. (38)

By using (38), we can now obtain the infinitesimal transformation of Su as

(Sū)(t̄, x̄) = (Su)(t, x) + aζSu
R + o(a),

where ζSu
R is defined by

ζSu
R = ∆Dt

(
ζLu

R − t2Dt(Lu)− txiLuxi

)
+ t2∆D2

t (Lu) + txi∆Dt(Luxi )

= ∆Dt(ζLu
R )− 2tDt(L∆u)− ∆(xiLuxi )− t∆[xiDt(Luxi )] + txi∆Dt(Luxi ).

(39)
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Substituting (38) in (39), we get

ζSu
R = −1

4
∆[|x|2Dt(Lv)] +

(
2− n

2

)
Dt[L(t∆u)] + ∆[xiDt(tL(uxi )− L(tuxi ))]

+
∫ t

−∞
∆u(τ, x)dτ + 2t∆u− 2tDt(L∆u)− ∆(xiLuxi )− t∆[xiDt(Luxi )] + txi∆Dt(Luxi ).

By direct calculations it is easy to prove that for a smooth function f = f (t, x) the
following equalities are satisfied:

∆(|x2| f ) = 2n f + 4xi fxi + |x|
2∆ f ,

and
∆(xi fxi ) = 2∆ f + xi∆ fxi .

We also have

Dt[tL f − L(t f )] = L f +
∫ t

−∞
f (τ, x)dτ,

or

Dt[L(t f )] = tDt(L f )−
∫ t

−∞
f (τ, x)dτ.

By using these formulae, after simple algebra we obtain the prolongation formula for Su as

ζSu
R = −n

2
Dt(Lv)− xiDt(Lvxi )−

|x|2
4

Sv−
(n

2
+ 2
)

tSu + 2t∆u

+
(n

2
+ 1
) ∫ t

−∞
∆u(τ, x)dτ + xi

∫ t

−∞
∆uxi (τ, x)dτ.

(40)

Similarly, we get
(Sv̄)(t̄, x̄) = (Sv)(t, x) + aζSv

R + o(a),

where ζSv
R is defined by the prolongation formula

ζSv
R =

n
2

Dt(Lu) + xiDt(Luxi ) +
|x|2

4
Su−

(n
2
+ 2
)

tSv + 2t∆v

+
(n

2
+ 1
) ∫ t

−∞
∆v(τ, x)dτ + xi

∫ t

−∞
∆vxi (τ, x)dτ.

(41)

Thus, we can write the prolongation of the generator R as

R̃ = R + ζut
R

∂

∂ut
+ ζvt

R
∂

∂vt
+ ζ∆u

R
∂

∂∆u
+ ζ∆v

R
∂

∂∆v
+ ζSu

R
∂

∂Su
+ ζSv

R
∂

∂Sv
,

where ζSu
R , ζSu

R are defined by (40) and

ζut
R = −|x|

2

4
vt −

(
2 +

n
2

)
tut − xiuxi −

n
2

u,

ζvt
R =

|x|2
4

ut −
(

2 +
n
2

)
tvt − xivxi −

n
2

v,

ζ∆u
R = −|x|

2

4
∆v−

(
2 +

n
2

)
t∆u− xivxi −

n
2

v,

ζ∆v
R =

|x|2
4

∆u−
(

2 +
n
2

)
t∆v + xiuxi +

n
2

u.

These representations were found by using the classical prolongation formulae.
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Setting X̃0 = R̃ in (19), in view of system (17), we obtain the following system of
determining equations for the coordinates of the operator X1:

Dtη
u + ∆ηv =

[
(1− β)

n
2
+ 1
]
u + (1− β)xiuxi − 2t∆v− n

2
Dt(Lu)− xiDt(Luxi ),

Dtη
v − ∆ηu =

[
(1− β)

n
2
+ 1
]
v + (1− β)xivxi + 2t∆u− n

2
Dt(Lv)− xiDt(Lvxi ).

(42)

Here we take into account that due to system (17) and conditions

lim
t→−∞

u = 0, lim
t→−∞

v = 0,

the following approximate equalities hold:

ε
∫ t

−∞
∆u(τ, x)dτ ≈ ε

∫ t

−∞
vt(τ, x)dτ = εv,

ε
∫ t

−∞
∆v(τ, x)dτ ≈ −ε

∫ t

−∞
ut(τ, x)dτ = −εu.

Note that system (42) corresponds to the first order of the small parameter ε.
Since the r.h.s. of equations in (42) contain nonlocal operators, the coordinates ηu and

ηv of the operator X1 also should be nonlocal. Here, we note that

∆
(
|x|2

4
Dt(L f )

)
=
|x|2

4
Dt(L∆ f ) + xiDt(Lui) +

n
2

Dt(L f ),

and

εDt

(
|x|2

4
Dt(Lu)

)
= ε
|x|2

4
Dt(Lut) ≈ −ε

|x|2
4

Dt(L∆v),

εDt

(
|x|2

4
Dt(Lv)

)
= ε
|x|2

4
Dt(Lvt) ≈ ε

|x|2
4

Dt(L∆u).

Using these formulae, it is easy to prove that if we put

ηu = η̃u +
|x|2

4
Dt(Lv), ηv = η̃v − |x|

2

4
Dt(Lu),

system (42) takes the form

Dtη̃
u + ∆η̃v =

[
(1− β)

n
2
+ 1
]
u + (1− β)xiuxi − 2t∆v,

Dtη̃
v − ∆η̃u =

[
(1− β)

n
2
+ 1
]
v + (1− β)xivxi + 2t∆u.

(43)

A particular solution of this system is

η̃u = tu + t2ut − (1− β)
|x|2

4
v, η̃v = tv + t2vt + (1− β)

|x|2
4

u.

Hence, we obtain the nonlocal operator

X1 =

[
tu + t2ut − (1− β)

|x|2
4

v +
|x|2

4
Dt(Lv)

]
∂

∂u

+

[
tv + t2vt + (1− β)

|x|2
4

u− |x|
2

4
Dt(Lu)

]
∂

∂v
.
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This operator can be also rewritten as

X1 = −t2 ∂

∂t
+

[
tu− (1− β)

|x|2
4

v +
|x|2

4
Dt(Lv)

]
∂

∂u

+

[
tv + (1− β)

|x|2
4

u− |x|
2

4
Dt(Lu)

]
∂

∂v
.

Thus, we find that the perturbed system (17) has approximate nonlocal symmetry

Rε = (1− ε)t2 ∂

∂t
+ txi

∂

∂xi

−
[(n

2
− ε
)

tu + (1 + ε(1− β))
|x|2

4
v− ε

|x|2
4

Dt(Lv)
]

∂

∂u

+

[
−
(n

2
− ε
)

tv + (1 + ε(1− β))
|x|2

4
u− ε

|x|2
4

Dt(Lu)
]

∂

∂v
. (44)

As a final remark, it should be noted that the perturbed system (17) also has the
approximate symmetries εT, εPi, εJi, εKi, εM, εI, εD, and εR. This result directly follows
from (19) after the substitution X0 = 0. All these symmetries are trivial but they should
be taken into account for finding approximate invariant solutions. In addition, due to
linearity, system (17) has infinite approximate symmetries

X∞ = [ f 0(t, x) + ε f 1(t, x)]
∂

∂u
+ [g0(t, x) + εg1(t, x)]

∂

∂v
, (45)

where f 0, f 1, g0, and g1 are a solution to the system

f 0
t + ∆g0 = 0, f 1

t + ∆g1 = −β∆g0 − Sg0,

g0
t − ∆ f 0 = 0, g1

t − ∆ f 1 = β∆ f 0 − S f 0.

The results can be summarized as

Theorem 1. The nonlocally perturbed system (17) inherits all symmetries of the unperturbed
system (15). A corresponding basis of its approximate symmetry Lie algebra is provided by the exact
local generators T, Pi, Ji, M, and I from (16), the local approximate generator Dε from (36), nonlocal
approximate generators Kε

i and Rε defined by (33) and (44), respectively, and corresponding local
approximate generators εT, εPi, εJi, εKi, εM, εI, εD, and εR. Also, this linear perturbed system has
infinite approximate symmetries (45).

4. Nonlocally Perturbed Nonlinear Schrödinger Equation

Nonlinear Schrödinger equations play essential role in many areas of applied physics.
An important class of such equations is invariant under the extended Galilei group. A basis
of the Lie algebra corresponding to this group consists of the first 11 operators from (16):
T, Pi, Ji, Ki and M. In particular, this group is admitted by any nonlinear Schrödinger
equation of the form

iψt + ∆ψ = F(|ψ|)ψ,

where F is an arbitrary function (see, e.g., [34]).
Let us consider a corresponding nonlinear generalisation of PSE (13) of the form

iψt + (1 + εβ)∆ψ + ε
∂

∂t

∫ t

−∞
ln(t− τ)∆ψdτ = F(|ψ|)ψ. (46)

In this section, we solve the problem of finding the function F(|ψ|) for which (46) admits
approximate symmetries of the form (18) corresponding to the extended Galilei group.
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We will assume that the function F depends on a small parameter ε and can be written
as F(|ψ|) = F0(|ψ|) + εF1(|ψ|). As previously, let ψ(t, x) = u(t, x) + iv(t, x), x ∈ Rn. Also,
we set F0 = f 0(u2 + v2) + ig0(u2 + v2) and F1 = f 1(u2 + v2) + ig1(u2 + v2). Here u, v, f 0,
f 1, g0 and g1 are real functions. Then (46) can be rewritten as the system

ut + (1 + εβ)∆v + ε(Sv)(t, x) = f 0v + g0u + ε( f 1v + g1u),

−vt + (1 + εβ)∆u + ε(Su)(t, x) = f 0u− g0v + ε( f 1u− g1v).
(47)

The corresponding system of determining equations for the coordinates ηu and ηv of
the operator X1 from (30) can be written as

ε
[
Dt(ηu) + ∆ηv − ηu(g0 + 2uv( f 0)′ + 2u2(g0)′)− ηv( f 0 + 2v2( f 0)′ + 2uv(g0)′)

]
+X̃0(ut + ∆v− f 0v− g0u) + εX̃0(β∆v + Sv− f 1v− g1u) ≈ 0,

ε
[
−Dt(ηv) + ∆ηu − ηu( f 0 + 2u2( f 0)′ − 2uv(g0)′) + ηv(g0 + 2v2(g0)′ − 2uv( f 0)′)

]
+X̃0(−vt + ∆u− f 0u + g0v) + εX̃0(β∆u + Su− f 1u + g1v) ≈ 0.

(48)

Like the previous section, it is easy to prove that (47) admits Lie point transformation
groups with the generators T, Pi and Ji. In all of these cases we have ηu = 0 and ηv = 0.
For the phase transformation M, we should set X̃0 = M̃, where M̃ is defined by (35). Then
(48) takes the form

ε
[
Dt(ηu) + ∆ηv − ηu(g0 + 2uv( f 0)′ + 2u2(g0)′)− ηv( f 0 + 2v2( f 0)′ + 2uv(g0)′)

]
−vt + ∆u− f 0u + g0v + ε(β∆u + Su− f 1u + g1v) ≈ 0,

ε
[
−Dt(ηv) + ∆ηu − ηu( f 0 + 2u2( f 0)′ − 2uv(g0)′) + ηv(g0 + 2v2(g0)′ − 2uv( f 0)′)

]
−ut − ∆v + f 0v + g0u)− ε(β∆u + Su− f 1v− g1u) ≈ 0.

(49)

It can be seen that for ηu = 0 and ηv = 0 the system (49) coincides with the system (47).
Therefore, the nonlinear nonlocal system (47) has symmetry M for any functions f 0, g0,
f 1 and g1. As a result, the corresponding nonlocally perturbed nonlinear Schrödinger
equation (46) admits the phase transformation for any function F.

At last, we consider approximate extensions of Galilean transformations. Let X̃0 = K̃i
in (48), where K̃i is defined by (28). Then, in view of the system (47), we have

Dt(ηu) + ∆ηv − ηu(g0 + 2uv( f 0)′ + 2u2(g0)′)− ηv( f 0 + 2v2( f 0)′ + 2uv(g0)′)

≈ 2Dt(Luxi )− 2
∫ t

−∞
∆vxi dτ − 2βuxi ,

−Dt(ηv) + ∆ηu − ηu( f 0 + 2u2( f 0)′ − 2uv(g0)′) + ηv(g0 + 2v2(g0)′ − 2uv( f 0)′)

≈ 2Dt(Lvxi )− 2
∫ t

−∞
∆uxi dτ + 2βvxi .

If f 0 = 0 and g0 = 0, this system coincides with (31). As a result, we conclude that in this
case the system (47) admits nonlocal approximate symmetries Kε

i (i = 1, . . . , n) from (33).
Thus, the nonlocally perturbed nonlinear Schrödinger equation (46) with F(|ψ|) =

εF1(|ψ|) has the Lie point symmetries T, Pi, Ji, M, and the nonlocal approximate symme-
tries Kε

i .
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5. An Example of Approximate Solution

The symmetries in the previous section can be used to find approximate solutions to
the system (17). To illustrate this possibility, we constructed an approximately invariant
solution corresponding to the approximate scaling symmetry Dε defined by (36). For
simplicity, we considered the case of one spatial dimension (x ∈ R).

First of all, it was necessary to find approximate invariants of the generator Dε. In the
theory of approximate transformation groups [17] it has been proven that such invariants
are written in the form

I(t, x, u, v, ε) = I0(t, x, u, v) + εI1(t, x, u, v) + o(ε),

and they are determined by the equation

Dε(I) = o(ε).

In view of (36), this equation can be rewritten as the system

2t
∂I0

∂t
+ x

∂I0

∂x
= 0, 2t

∂I1

∂t
+ x

∂I1

∂x
= 2t

∂I0

∂t
.

Solving this system, we get three invariants:

u, v,
t

x2 + 2ε ln x
t

x2 .

As a result, we obtain the following form for the approximately invariant solutions of the
system (17):

u(t, x) = u0(z) + 2ε ln xzu′0(z) + εu1(z) + o(ε),

v(t, x) = v0(z) + 2ε ln xzv′0(z) + εv1(z) + o(ε),
(50)

where z = tx−2.
Substituting (50) into (17) and splitting the equations with respect to ε, after simplifica-

tion, we get

u′0 + 6zv′0 + 2z2v′′0 = 0,

−v′0 + 6zu′0 + 2z2u′′0 = 0,

u′1 + 6zv′1 + 2z2v′′1 = (10− 6β)zv′0 + (8− 2β)z2v′′0 +
∂

∂z

∫ z

−∞
ln(z− s)u′0(s)ds,

−v′1 + 6zu′1 + 2z2u′′1 = (10− 6β)zu′0 + (8− 2β)z2u′′0 −
∂

∂z

∫ z

−∞
ln(z− s)v′0(s)ds.

(51)

System (51) is a linear system of ordinary differential equations with respect to functions
u0(z), v0(z), u1(z), v1(z). It can be also considered to be a first-order system with respect
to functions

U0(z) = u′0(z), V0(z) = v′0(z), U1(z) = u′1(z), V1(z) = v′1(z). (52)

Integration of the first and second equations in (51) yielded

U0(z) =
1
z3

[
C1 sin

(
1
2z

)
+ C2 cos

(
1
2z

)]
,

V0(z) =
1
z3

[
C2 sin

(
1
2z

)
− C1 cos

(
1
2z

)]
.
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Further, we restricted our consideration to the case C1 = 1, C2 = 0. The corresponding
particular solution reads

U0(z) =
1
z3 sin

(
1
2z

)
, V0(z) = −

1
z3 cos

(
1
2z

)
. (53)

Integrating corresponding equations in (52), we obtained

u0(z) =
2
z

cos
(

1
2z

)
− 4 sin

(
1
2z

)
, v0(z) =

2
z

sin
(

1
2z

)
+ 4 cos

(
1
2z

)
. (54)

In view of (53), the third and fourth equations in (51) take the form

2z2V′1 + 6zV1 + U1 = F(z), 2z2U′1 + 6zU1 −V1 = G(z), (55)

where

F(z) =
14
z2 cos

(
1
2z

)
+

4− β

z3 sin
(

1
2z

)
+

∂

∂z

∫ z

−∞

ln(z− s)
s3 sin

(
1
2s

)
ds, (56)

G(z) = −14
z2 sin

(
1
2z

)
− 4− β

z3 cos
(

1
2z

)
+

∂

∂z

∫ z

−∞

ln(z− s)
s3 cos

(
1
2s

)
ds. (57)

Integrals in (56), (57) can be evaluated in closed form. In particular, for z < 0 we have

∫ z

−∞

ln(z− s)
s3 sin

(
1
2s

)
ds =

2
z

[
cos
(

1
2z

)
Ci
(
− 1

2z

)
− sin

(
1
2z

)
Si
(
− 1

2z

)]

− 4
[

cos
(

1
2z

)
Si
(
− 1

2z

)
+ sin

(
1
2z

)
Ci
(
− 1

2z

)]
+

2(ln 2− γ)

z
cos
(

1
2z

)

− 4(ln 2− γ) sin
(

1
2z

)
− 8 ln(−z) sin

(
1
2z

)
+

4
z

ln(−z) cos
(

1
2z

)
+ 4Si

(
− 1

2z

)
,

∫ z

−∞

ln(z− s)
s3 cos

(
1
2s

)
ds = −2

z

[
cos
(

1
2z

)
Si
(
− 1

2z

)
+ sin

(
1
2z

)
Ci
(
− 1

2z

)]

− 4
[

cos
(

1
2z

)
Ci
(
− 1

2z

)
− sin

(
1
2z

)
Si
(
− 1

2z

)]
− 2(ln 2− γ)

z
sin
(

1
2z

)

− 4(ln 2− γ)

(
1 + cos

(
1
2z

))
− 8 ln(−z) cos

(
1
2z

)
− 4

z
ln(−z) sin

(
1
2z

)
− 4Ci

(
− 1

2z

)
.

Here

Si(y) =
∫ y

0

sin(s)
s

ds, Ci(y) = −
∫ ∞

y

cos(s)
s

ds

are the sine and the cosine integrals, respectively. Substituting these representations for
integrals in (56), (57), and performing the necessary calculations, we obtained

F(z) =
1
z3

[
18z + Si

(
− 1

2z

)]
cos
(

1
2z

)
− 2

z2

+
1
z3

[
4− β + ln 2− γ− 4z2 + Ci

(
− 1

2z

)
+ 2 ln(−z)

]
sin
(

1
2z

)
, (58)
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G(z) = − 1
z3

[
18z + Si

(
− 1

2z

)]
sin
(

1
2z

)
+

4
z

+
1
z3

[
−4 + β + ln 2− γ− 4z2 + Ci

(
− 1

2z

)
+ 2 ln(−z)

]
cos
(

1
2z

)
. (59)

The general solution of system (55) with (58), (59) is

U1(z) =
1
z3

{[
C11 − 2z− 2 + ln(2)− γ + 2 ln(−z)

2z

]
cos
(

1
2z

)
+ 2z

+

[
C21 +

4− β

2
− 9 ln(−z)

]
sin
(

1
2z

)
+ 2
[

cos
(

1
2z

)
Si
(

1
2z

)
− sin

(
1
2z

)
Ci
(

1
2z

)]
− 1

2z

[
sin
(

1
2z

)
Si
(

1
2z

)
− cos

(
1
2z

)
Ci
(

1
2z

)]}
, (60)

V1(z) =
1
z3

{[
C11 − 2z− 2 + ln(2)− γ + 2 ln(−z)

2z

]
sin
(

1
2z

)
+ 1

+

[
−C21 +

4− β

2
+ 9 ln(−z)

]
cos
(

1
2z

)
+ 2
[

cos
(

1
2z

)
Ci
(

1
2z

)
+ sin

(
1
2z

)
Si
(

1
2z

)]
− 1

2z

[
sin
(

1
2z

)
Ci
(

1
2z

)
− cos

(
1
2z

)
Si
(

1
2z

)]}
, (61)

where C1 and C2 are arbitrary constants. For certainty, we set C11 = C21 = 0. Both functions are
plotted for z < −1 in Figure 1.

Figure 1. Graphs of functions U1(z) and V1(z).

From (52) we have

u1(z) =
∫

U1(z)dz, v1(z) =
∫

V1(z)dz,

where U1(z) and V1(z) are defined by (60) and (61), respectively. Note that these integrals could not
be evaluated explicitly, so we used numerical computations in Maple software.

The results of numerical computations for functions u1(z) and v1(z) are given in Figures 2 and 3,
respectively. The graphs of u0(z) and v0(z) from (54) are presented on the same figures. It can be seen
that the functions u0(z) and v0(z) were positive for z < −1, whereas the functions u1(z) and v1(z)
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were negative. Therefore, in this example, the nonlocal terms in (17) were related to the opposite
dynamics of the system.

Figure 2. Graphs of functions u0(z) and u1(z).

Figure 3. Graphs of functions v0(z) and v1(z).

To study the influence of a small parameter ε on the time dynamics of the system, approximate
solutions of the form (50) were found at the point x = 1 for three different values of ε: 0.05, 0.1 and 0.2.
The results of numerical computations are presented in Figures 4 and 5. It can be seen that increasing
the small parameter affected the dynamics significantly.
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Figure 4. Graphs of approximate solutions u(z) of the form (50) at the point x = 1 for different values
of ε.

Figure 5. Graphs of approximate solutions v(z) of the form (50) at the point x = 1 for different values
of ε.

6. Conclusions
A nonlocally perturbed Schrödinger equation was derived in this paper by using a generalized

nonlocal wave equation, which is used to investigate wave phenomena in an open system considered
to be part of a closed Hamiltonian system under a weak coupling of these systems leading to
weak infinite power-law memory effects. It has been proved that the linear nonlocally perturbed
Schrödinger equation inherits all symmetries of the classical equation. In particular, this equation
admits exact local groups of time and space translations, as well as the group of rotations. It means
that the equation in question has exact classical, fundamental conservation laws, such as those for
energy, momentum, and angular momentum. Moreover, the equation admits the exact group of
phase transformations, and therefore the local conservation law for the probability density is fulfilled.
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The Galilei group and a group of projective transformations were inherited by the equation in a
nonlocal sense. It meant that the corresponding conservation laws should also have been nonlocal
ones. The group of dilations was inherited as an approximate local group of dilations; therefore, the
equation possesses the property of approximate self-similarity.

Based on the exact and approximate symmetries, various approximate invariant solutions can
be constructed for the nonlocally perturbed Schrödinger equation. Since this equation has exact time
and space translation symmetries, it has different classes of traveling wave solutions. By using the
approximate local scaling symmetry, a class of approximate self-similar solutions can be constructed
for this equation. An example of a solution belonging to this class is presented in this paper. Next,
the nonlocal Galilean-type and projective-type symmetries give the opportunity to find nonlocal
approximate solutions for the equation. Classification of approximately invariant solutions can be
performed based on an optimal system of subalgebras, which should be constructed for approximate
symmetry algebra. These are topics for further research.
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