Article

The Wiener-Hopf Equation with Probability Kernel and Submultiplicative Asymptotics of the Inhomogeneous Term

Mikhail Sgibnev ©

Citation: Sgibnev, M. The
Wiener-Hopf Equation with Probability Kernel and Submultiplicative Asymptotics of the Inhomogeneous Term. AppliedMath 2022, 2, 501-511. https://doi.org/ 10.3390/appliedmath2030029

Received: 17 August 2022
Accepted: 14 September 2022
Published: 19 September 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Sobolev Institute of Mathematics, 630090 Novosibirsk, Russia; sgibnev@math.nsc.ru

Abstract

We consider the inhomogeneous Wiener-Hopf equation whose kernel is a nonarithmetic probability distribution with positive mean. The inhomogeneous term behaves like a submultiplicative function. We establish asymptotic properties of the solution to which the successive approximations converge. These properties depend on the asymptotics of the submultiplicative function.

Keywords: Wiener-Hopf equation; inhomogeneous equation; nonarithmetic probability distribution; positive mean; submultiplicative function; asymptotic behavior

MSC: 45E10; 60K05

1. Introduction

The classical Wiener-Hopf equation has the form

$$
z(x)=\int_{0}^{\infty} k(x-y) z(y) d y+g(x), \quad x \geq 0
$$

or, equivalently,

$$
z(x)=\int_{-\infty}^{x} z(x-y) k(y) d y+g(x), \quad x \geq 0
$$

We shall consider the inhomogeneous generalized Wiener-Hopf equation

$$
\begin{equation*}
z(x)=\int_{-\infty}^{x} z(x-y) F(d y)+g(x), \quad x \geq 0 \tag{1}
\end{equation*}
$$

where z is the function sought, F is a given probability distribution on \mathbb{R}, and the inhomogeneous term g is a known complex function. A probability distribution G on \mathbb{R} is called nonarithmetic if it is not concentrated on the set of points of the form $0, \pm \lambda, \pm 2 \lambda$, \ldots (see Section V.2, Definition 3 of [1]). Let \mathbb{R}_{+}be the set of all nonnegative numbers and $\mathbb{R}_{-}:=\mathbb{R} \backslash \mathbb{R}_{+}$be the set of all negative numbers. For $c \in \mathbb{C}$, we assume that c / ∞ is equal to zero. The relation $a(x) \sim c b(x)$ as $x \rightarrow \infty$ means that $a(x) / b(x) \rightarrow c$ as $x \rightarrow \infty$; if $c=0$, then $a(x)=o(b(x))$.

Definition 1. A positive function $\varphi(x), x \in \mathbb{R}$, is called submultiplicative if it is finite, Borel measurable, and satisfies the conditions: $\varphi(0)=1, \varphi(x+y) \leq \varphi(x) \varphi(y), x, y \in \mathbb{R}$.

The following properties are valid for submultiplicative functions defined on the whole line (Theorem 7.6.2) of [2]:

$$
\begin{align*}
-\infty<r_{-} & :=\lim _{x \rightarrow-\infty} \frac{\log \varphi(x)}{x}=\sup _{x<0} \frac{\log \varphi(x)}{x} \\
& \leq \inf _{x>0} \frac{\log \varphi(x)}{x}=\lim _{x \rightarrow \infty} \frac{\log \varphi(x)}{x}=: r_{+}<\infty . \tag{2}
\end{align*}
$$

Here are some examples of submultiplicative function on \mathbb{R}_{+}: (i) $\varphi(x)=(x+1)^{r}$, $r>0$; (ii) $\varphi(x)=\exp \left(c x^{\beta}\right)$, where $c>0$ and $0<\beta<1$; and (iii) $\varphi(x)=\exp (\gamma x)$, where $\gamma \in \mathbb{R}$. In (i) and (ii), $r_{+}=0$, while in (iii), $r_{+}=\gamma$. The product of a finite number of submultiplicative function is again a submultiplicative function.

In the present paper, we investigate the asymptotic behavior of the solution to Equation (1), where F is a nonarithmetic probability distribution with finite positive mean $\mu:=\int_{\mathbb{R}} x F(d x)$ and the function $g(x)$ is asymptotically equivalent (up to a constant factor) to a nondecreasing submultiplicative function $\varphi(x)$ tending to infinity as $x \rightarrow \infty$: $g(x) \sim c \varphi(x)$ as $x \rightarrow \infty$. In the main theorems (Theorems 2 and 3), $\varphi(x), x \in \mathbb{R}_{+}$, is a nondecreasing submultiplicative function for which there exists $\lim _{x \rightarrow \infty} \varphi(x+y) / \varphi(x)$ for each $y \in \mathbb{R}$. If such a limit exists, then it is equal to $\exp \left(r_{+} y\right)$.

Earlier [3], the asymptotic behavior of z was studied in detail under the following assumptions: (i) $\mu \in(0,+\infty]$ and (ii) g belong to either $g \in L_{1}(0, \infty)$ or $g \in L_{\infty}(0, \infty)$. Roughly speaking, if $g \in L_{1}(0, \infty)$, then $z(x)$ tends to a specific finite limit as $x \rightarrow \infty$. Moreover, under appropriate conditions, a submultiplicative rate of convergence was given in the form $o(1 / \varphi(x))$. If $g \in L_{\infty}(0, \infty)$, then $z(x)=O(x)$ or even $z(x)=f(\infty) x / \mu$ as $x \rightarrow \infty$, provided $f(\infty):=\lim _{x \rightarrow \infty} f(x)$ exists.

The existence of the solution to Equation (1) and its explicit form (5) were established in [4] for $g \in L_{\infty}(0, \infty)$ and arbitrary probability distributions F, regardless of whether F is of oscillating or drifting type. If $\mu=0$ and if some other hypotheses are fulfilled, then $z(x)$ tends to a specific finite limit as $x \rightarrow \infty$ (Theorem 4 of [4]).

The stability of an integro-differential equation with a convolution type kernel was studied in $[5,6]$.

2. Preliminaries

Consider the collection $S(\varphi)$ of all complex-valued measures \varkappa, such that

$$
\|\varkappa\|_{\varphi}:=\int_{\mathbb{R}} \varphi(x)|\varkappa|(d x)<\infty
$$

here, $|\varkappa|$ stands for the total variation of \varkappa. The collection $S(\varphi)$ is a Banach algebra with norm $\|\cdot\|_{\varphi}$ by the usual operations of addition and scalar multiplication of measures; the product of two elements v and \varkappa of $S(\varphi)$ is defined as their convolution $v * \varkappa$ (Section 4.16) of [2]. The unit element of $S(\varphi)$ is the measure δ_{0} of unit mass concentrated at zero. Define the Laplace transform of a measure \varkappa as $\widehat{\varkappa}(s):=\int_{\mathbb{R}} \exp (s x) \varkappa(d x)$. It follows from (2) that the Laplace transform of any $\varkappa \in S(\varphi)$ converges absolutely with respect to $|\varkappa|$ for all s in the strip $\Pi\left(r_{-}, r_{+}\right):=\left\{s \in \mathbb{C}: r_{-} \leq \Re s \leq r_{+}\right\}$. Let v and \varkappa be two complex-valued measures on the σ-algebra \mathscr{B} of Borel sets in \mathbb{R}. Their convolution is the measure

$$
v * \varkappa(A):=\iint_{\{x+y \in A\}} v(d x) \varkappa(d y)=\int_{\mathbb{R}} v(A-x) \varkappa(d x), \quad A \in \mathscr{B}
$$

provided the integrals make sense; here, $A-x:=\{y \in \mathbb{R}: x+y \in A\}$. Denote by $F^{n *}$ the n-th convolution power of F :

$$
F^{0 *}:=\delta_{0}, \quad F^{1 *}:=F, \quad F^{(n+1) *}:=F^{n *} * F, \quad n \geq 1
$$

Let U be the renewal measure generated by $F: U:=\sum_{n=0}^{\infty} F^{n *}$.
Let $X_{k}, k \geq 1$, be independent random variables with the same distribution F not concentrated at zero. These variables generate the random walk $S_{0}=0, S_{n}=X_{1}+\ldots+X_{n}$, $n \geq 1$. Put $\overline{\mathscr{T}}_{+}:=\min \left\{n \geq 1: S_{n} \geq 0\right\}$. The random variable $\overline{\mathscr{H}}_{+}:=S_{\overline{\mathscr{T}}_{+}}$is called the first weak ascending ladder height. Similarly, $\overline{\mathscr{T}}_{-}:=\min \left\{n \geq 1: S_{n}<0\right\}$ and $\overline{\mathscr{H}}_{-}:=S_{\overline{\mathscr{T}}_{-}}$
is the first strong descending ladder height. We have the factorization identity (the symbol E stands for "expectation").

$$
\begin{equation*}
1-\xi \mathrm{E}\left(e^{s X_{1}}\right)=\left(1-\mathrm{E}\left(\xi^{\overline{\mathscr{T}}_{-}} e^{s \overline{\mathscr{H}}_{-}}\right)\right)\left(1-\mathrm{E}\left(\xi^{\overline{\mathscr{T}}^{-}} e^{s \overline{\mathscr{H}}_{+}}\right)\right), \quad|\xi| \leq 1, \quad \Re s=0 \tag{3}
\end{equation*}
$$

This can easily be deduced from an analogous identity in Section XVIII. 3 of [1] for another collection of ladder variables. Denote by $F_{ \pm}$the distributions of the random variables $\overline{\mathscr{H}}_{ \pm}$, respectively. It follows from the identity (3) that

$$
\begin{equation*}
\delta_{0}-F=\left(\delta_{0}-F_{-}\right) *\left(\delta_{0}-F_{+}\right) \tag{4}
\end{equation*}
$$

Let $U_{ \pm}:=\sum_{k=0}^{\infty} F_{ \pm}^{k *}$ be the renewal measures generated by the distributions $F_{ \pm}$, respectively. Denote by $\mathbf{1}_{\mathbb{R}_{+}}$the indicator of the subset \mathbb{R}_{+}in \mathbb{R} : $\mathbf{1}_{\mathbb{R}_{+}}(x)=1$ for $x \in \mathbb{R}_{+}$and $\mathbf{1}_{\mathbb{R}_{+}}(x)=0$ for $x \in \mathbb{R}_{-}$. Extend the function g onto the whole line: $g(x):=0, x<0$. This convention will be valid throughout. Let v be a measure defined on \mathscr{B}, and $a(x), x \in \mathbb{R}$, a function. Define the convolution $v * a(x)$ as the function $\int_{\mathbb{R}} a(x-y) v(d y), x \in \mathbb{R}$. The following theorem has been proven in [4].

Theorem 1. Let F be a probability distribution and $g \in L_{1}\left(\mathbb{R}_{+}\right)$. Then, the function

$$
\begin{equation*}
z(x)=U_{+} *\left(\left(U_{-} * g\right) \mathbf{1}_{\mathbb{R}_{+}}\right)(x), \quad x \in \mathbb{R}_{+} \tag{5}
\end{equation*}
$$

is the solution to Equation (1), which coincides with the solution obtained by successive approximations.

If μ is finite and positive, then $\mu_{+}:=\int_{\mathbb{R}} x F_{+}(d x)$ is also finite and positive (Section XII.2, Theorem 2 of [1]). We have

$$
\begin{equation*}
\mu=\mu_{+}\left(1-F_{-}\left(\mathbb{R}_{-}\right)\right), \quad U_{-}\left(\mathbb{R}_{-} \cup\{0\}\right)=\frac{1}{1-F_{-}\left(\mathbb{R}_{-}\right)} \tag{6}
\end{equation*}
$$

In fact, pass in (4) to Laplace transforms and divide both sides by s. We get

$$
\frac{1-\widehat{F}(s)}{s}=\left(1-\widehat{F}_{-}(s)\right) \frac{1-\widehat{F}_{+}(s)}{s}, \quad s \neq 0, \quad \Re s=0
$$

Let s tend to zero. Then, the fractions on both sides will tend to μ and μ_{+}, respectively. The second equality in (6) is a consequence of the fact that the distribution F_{-}is defective, i.e., $F_{-}\left(\mathbb{R}_{-}\right)<1$.

Lemma 1. Let F be a nonarithmetic probability distribution, such that

$$
\mu=\int_{\mathbb{R}} x F(d x) \in(0, \infty)
$$

and let $\varphi(x), x \in \mathbb{R}$, be a submultiplicative function with $r_{-} \leq 0 \leq r_{+}$. Assume that

$$
\int_{-\infty}^{0} \varphi(x) F((-\infty, x]) d x<\infty
$$

Suppose additionally that $\widehat{F}\left(r_{-}\right)<1$ if $r_{-}<0$. Then $U_{-} \in S(\varphi)$.
Proof. By Theorem 4 in [7] with $n=1$ and Remark 5 therein, we have

$$
\int_{-\infty}^{0} \varphi(x) F_{-}(d x)<\infty
$$

i.e., $F_{-} \in S(\varphi)$. Let us prove that the element $v:=\delta_{0}-F_{-}$is invertible in $S(\varphi)$. Let $v=v_{\mathfrak{c}}+v_{\mathfrak{d}}+v_{\mathfrak{s}}$ be the decomposition of v into absolutely continuous, discrete, and singular components. By Theorem 1 of [8], the element $v \in S(\varphi)$ has an inverse if $\widehat{v}(s) \neq 0$ for all $s \in \Pi\left(r_{1}, r_{2}\right)$, and if

$$
\begin{equation*}
\inf _{s \in \Pi\left(r_{-}, r_{+}\right)}\left|\widehat{v_{\mathfrak{d}}}(s)\right|>\max \left\{\widehat{\left|v_{\mathfrak{s}}\right|}\left(r_{-}\right), \widehat{\left|v_{\mathfrak{s}}\right|}\left(r_{+}\right)\right\} . \tag{7}
\end{equation*}
$$

Let $F_{-}=F_{-}^{\mathfrak{c}}+F_{-}^{\mathfrak{d}}+F_{-}^{\mathfrak{s}}$ be the decomposition of $F_{-} \in S(\varphi)$ into absolutely continuous, discrete, and singular components. Then, $v^{\mathfrak{d}}=\delta_{0}-F_{-}^{\mathfrak{d}}$ and $v^{\mathfrak{s}}=-F_{-}^{\mathfrak{s}}$. We have

$$
\inf _{s \in \Pi\left(r_{-}, r_{+}\right)}\left|\widehat{v_{\mathfrak{d}}}(s)\right| \geq 1-\sup _{s \in \Pi\left(r_{-}, r_{+}\right)}\left|\widehat{F_{-}^{\mathfrak{d}}}(s)\right|=1-\widehat{F_{-}^{\mathfrak{d}}}\left(r_{-}\right) .
$$

On the other hand, $\max \left\{\widehat{\left|v_{\mathfrak{s}}\right|}\left(r_{-}\right), \widehat{\left|v_{\mathfrak{s}}\right|}\left(r_{+}\right)\right\}=\widehat{F_{-}^{\mathfrak{s}}}\left(r_{-}\right)$. Hence, in order to prove (7), it suffices to show that

$$
1-\widehat{F_{-}^{\mathfrak{d}}}\left(r_{-}\right)-\widehat{F_{-}^{\mathfrak{s}}}\left(r_{-}\right) \geq 1-\widehat{F_{-}}\left(r_{-}\right)>0
$$

If $r_{-}=0$, this follows from the fact that the distribution F_{-}is defective. Let $r_{-}<0$. By assumption, $\widehat{F}\left(r_{-}\right)<1$ and, obviously, $\widehat{F}_{+}\left(r_{-}\right)<1$. Relation (4) implies

$$
\begin{equation*}
1-\widehat{F}(s)=\left(1-\widehat{F_{-}}(s)\right)\left(1-\widehat{F_{+}}(s)\right), \quad s \in \Pi\left(r_{-}, r_{+}\right) \tag{8}
\end{equation*}
$$

whence $1-\widehat{F_{-}}\left(r_{-}\right)>0$ and (7) follows. Finally,

$$
|\widehat{v}(s)| \geq 1-\left|\widehat{F_{-}}(s)\right| \geq 1-\widehat{F_{-}}(|s|) \geq 1-\widehat{F_{-}}\left(r_{-}\right)>0, \quad s \in \Pi\left(r_{-}, r_{+}\right)
$$

Therefore, by Theorem 1 in [8], the measure $\delta_{0}-F_{-}$is invertible in the Banach algebra $S(\varphi)$ and $U_{-}=\left(\delta_{0}-F_{-}\right)^{-1} \in S(\varphi)$. The proof of the lemma is complete.

Lemma 2. Let $a(x), x \in \mathbb{R}_{+}$, be a monotone nondecreasing positive function. Suppose that $\lim _{x \rightarrow \infty} a(x+y) / a(x)=1$ for each $y \in \mathbb{R}$. Then,

$$
a(x)=o\left(\int_{0}^{x} a(y) d y\right) \quad \text { as } x \rightarrow \infty .
$$

Proof. Let $M>0$ be arbitrary. We have

$$
\int_{0}^{x} \frac{a(y)}{a(x)} d y \geq \int_{x-M}^{x} \frac{a(y)}{a(x)} d y \geq \int_{x-M}^{x} \frac{a(x-M)}{a(x)} d y=M \frac{a(x-M)}{a(x)}
$$

It follows that $\liminf _{x \rightarrow \infty} \int_{0}^{x} a(y) d y / a(x)=\infty$. The proof of the lemma is complete.

Lemma 3. Let G be a nonarithmetic probability distribution on \mathbb{R}_{+}, such that

$$
\mu_{G}:=\int_{\mathbb{R}} x G(d x) \in(0, \infty)
$$

and let U_{G} be the corresponding renewal measure: $U_{G}:=\sum_{n=0}^{\infty} G^{n *}$. Suppose that $a(x)$ and $b(x)$, $x \in \mathbb{R}_{+}$, are nonnegative functions such that $a(x) \sim b(x)$ as $x \rightarrow \infty$.Then,

$$
I(x):=U_{G} * a(x) \sim U_{G} * b(x)=: J(x) \quad \text { as } x \rightarrow \infty .
$$

Proof. Given $\varepsilon>0$, choose $A>0$, such that

$$
(1-\varepsilon) b(x) \leq a(x) \leq(1+\varepsilon) b(x), \quad x \geq A
$$

Let

$$
I(x)=\left(\int_{0}^{x-A}+\int_{x-A}^{x}\right) a(x-y) U_{G}(d y)=: I_{1}(x)+I_{2}(x)
$$

Similarly, let $J(x)=J_{1}(x)+J_{2}(x)$. Obviously,

$$
1-\varepsilon \leq \liminf _{x \rightarrow \infty} \frac{I_{1}(x)}{J_{1}(x)} \leq \limsup _{x \rightarrow \infty} \frac{I_{1}(x)}{J_{1}(x)} \leq 1+\varepsilon
$$

Since ε is arbitrary, $\lim _{x \rightarrow \infty} I_{1}(x) / J_{1}(x)=1$, i.e., $I_{1}(x) \sim J_{1}(x)$ as $x \rightarrow \infty$. Moreover, $I_{1}(x) \geq a(x-A) U_{G}([0, x-A]) \rightarrow \infty$ as $x \rightarrow \infty$ by the elementary renewal theorem for the measure $U_{G}: U_{G}([0, x]) \sim x / \mu_{G}$ as $x \rightarrow \infty$ (see Section 1.2 of [9]). According to Blackwell's theorem (Section XI.1, Theorem 1 of [1]),

$$
I_{2}(x) \leq a(A) U_{G}((x-A, x]) \rightarrow a(A) A / \mu_{G} \quad \text { as } x \rightarrow \infty .
$$

Hence, $I(x) \sim I_{1}(x)$ as $x \rightarrow \infty$. A similar relation also holds for $J(x)$, which completes the proof of the lemma.

Lemma 4. Let $\varphi(x), x \in \mathbb{R}_{+}$, be a submultiplicative function, such that there exists $v(y):=$ $\lim _{x \rightarrow \infty} \varphi(x+y) / \varphi(x)$ for each $y \in \mathbb{R}$. Then $v(y)=\exp \left(r_{+} y\right), y \in \mathbb{R}$.

Proof. By the Corollary of Theorem 4.17.3 in Section 4.17 of [2], $v(y)=\exp (\alpha y)$ for some $\alpha \in \mathbb{R}$. Given $\varepsilon>0$, there exists $n_{0}=n_{0}(\varepsilon)$, such that $\log \frac{\varphi(n+1)}{\varphi(n)} \leq \alpha+\varepsilon$ for $n \geq n_{0}$.

Hence, $\varphi\left(n_{0}+m\right) \leq \varphi\left(n_{0}\right) e^{m(\alpha+\varepsilon)}$ and

$$
r_{+}=\lim _{m \rightarrow \infty} \frac{\log \varphi\left(n_{0}+m\right)}{m} \leq \lim _{m \rightarrow \infty} \frac{\log \varphi\left(n_{0}\right)}{m}+\lim _{m \rightarrow \infty} \frac{m(\alpha+\varepsilon)}{m}=\alpha+\varepsilon .
$$

Similarly, $r_{+} \geq \alpha-\varepsilon$. Since $\varepsilon>0$ is arbitrary, $\alpha=r_{+}$. The proof of the lemma is complete.

3. Main Results

Theorem 2. Let F be a nonarithmetic probability distribution, such that

$$
\mu=\int_{\mathbb{R}} x F(d x) \in(0, \infty)
$$

and let $\varphi(x), x \in \mathbb{R}_{+}$, be a nondecreasing continuous submultiplicative function tending to infinity as $x \rightarrow \infty$, such that $r_{+}=0$ and there exists $\lim _{x \rightarrow \infty} \varphi(x+y) / \varphi(x)$ for each $y \in \mathbb{R}$. Suppose that the inhomogeneous term $g(x), x \in \mathbb{R}_{+}$, is bounded on finite intervals and satisfies the relation $g(x) \sim c \varphi(x)$ as $x \rightarrow \infty$, where $c \in \mathbb{C}$. Assume that

$$
\int_{-\infty}^{0} \varphi(|x|) F((-\infty, x]) d x<\infty .
$$

Then, the function $z(x), x \in \mathbb{R}_{+}$, defined by (5) is a solution to Equation (1) and satisfies the asymptotic relation

$$
z(x) \sim \frac{c}{\mu} \int_{0}^{x} \varphi(y) d y \quad \text { as } x \rightarrow \infty
$$

Proof. Put $M(x)=\int_{0}^{x} \varphi(y) d y$. By Lemma $4, \lim _{x \rightarrow \infty} \varphi(x+y) / \varphi(x)=1$ for each $y \in \mathbb{R}$. Extend the function $\varphi(x)$ onto the whole line \mathbb{R} by setting $\varphi(x)=\varphi(|x|)$ for $x \in \mathbb{R}_{-}$. The extended function retains the submultiplicative property and $r_{ \pm}=0$. To prove the
first statement of the theorem, it suffices to assume $g \geq 0$. Choose $C>0$, such that $g(x) \leq C \varphi(x), x \in \mathbb{R}_{+}$. The function $z(x)$ defined by (5) is finite, since

$$
\begin{aligned}
& U_{-} * g(x) \leq C U_{-} * \varphi(x)=C \int_{-\infty}^{0+} \varphi(x-y) U_{-}(d y) \leq C \varphi(x)\left\|U_{-}\right\|_{\varphi} \\
& z(x) \leq C\left\|U_{-}\right\|_{\varphi} \int_{0}^{x} \varphi(x-y) U_{+}(d y) \leq C\left\|U_{-}\right\|_{\varphi} \varphi(x) U_{+}([0, x])<\infty
\end{aligned}
$$

for all $x \in \mathbb{R}_{+}$. Let n be a natural number. Denote by $\mathbf{1}_{[0, n]}$ the indicator of $[0, n]$. Consider Equation (1) with the inhomogeneous term $g_{n}(x)=g(x) \mathbf{1}_{[0, n]}(x)$. Let z_{n} be the solution to the equation

$$
\begin{equation*}
z_{n}(x)=\int_{-\infty}^{x} z_{n}(x-y) F(d y)+g_{n}(x), \quad x \in \mathbb{R}_{+} \tag{9}
\end{equation*}
$$

defined by formula (5):

$$
\begin{equation*}
z_{n}(x)=U_{+} *\left(\left(U_{-} * g_{n}\right) \mathbf{1}_{\mathbb{R}_{+}}\right)(x), \quad x \in \mathbb{R}_{+} \tag{10}
\end{equation*}
$$

The integral in (9) can be written as

$$
\int_{\mathbb{R}} z_{n}(x-y) \mathbf{1}_{[0, x]}(y) F(d y) \leq z_{n}(x) \leq z(x)<\infty
$$

The last two inequalities are consequences of (5). Obviously, $z_{n}(x) \uparrow$ as $n \uparrow$. By Section 27, Theorem B of [10], the integral tends to $\int_{-\infty}^{x} z(x-y) F(d y)$ as $n \uparrow \infty$. Letting $n \uparrow \infty$ in (9) and (10), we get that z is a solution to (1). Let us prove the assertion of the theorem for the solution z_{φ} to (1) for $g=\varphi$. Let us show that

$$
\begin{equation*}
\frac{U_{-} * \varphi(x)}{\varphi(x)} \rightarrow U_{-}\left(\mathbb{R}_{-} \cup\{0\}\right) \quad \text { as } x \rightarrow \infty \tag{11}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{U_{-} * \varphi(x)}{\varphi(x)}=\int_{-\infty}^{0} \frac{\varphi(x-y)}{\varphi(x)} U_{-}(d y) \tag{12}
\end{equation*}
$$

By Lemma 4 , the integrand tends to 1 as $x \rightarrow \infty$ and it is majorized by the U_{--} integrable function $\varphi(y)$, since

$$
\frac{\varphi(x-y)}{\varphi(x)} \leq \varphi(-y)=\varphi(y)
$$

and $U_{-} \in S(\varphi)$ by Lemma 1. Applying Lebesgue's bounded convergence theorem (Section 26, Theorem D of [10]), we can pass to the limit under the integral sign in (12), which proves (11). Apply Lemma 3 with the following choice of $G, a(x)$ and $b(x)$:

$$
G:=F_{+}, \quad a(x):=\mathbf{1}_{\mathbb{R}_{+}}(x) U_{-} * \varphi(x), \quad b(x):=U_{-}\left(\mathbb{R}_{-} \cup\{0\}\right) \mathbf{1}_{\mathbb{R}_{+}}(x) \varphi(x)
$$

We get

$$
z_{\varphi}(x)=\int_{0}^{x} U_{-} * \varphi(x-y) U_{+}(d y) \sim U_{-}\left(\mathbb{R}_{-} \cup\{0\}\right) \int_{0}^{x} \varphi(x-y) U_{+}(d y) \quad \text { as } x \rightarrow \infty
$$

Recalling (6), we see that in order to prove the theorem for z_{φ}, it suffices to establish

$$
\begin{equation*}
U_{+} *\left(\mathbf{1}_{\mathbb{R}_{+}} \varphi\right)(x)=\int_{0}^{x} \varphi(x-y) U_{+}(d y) \sim \frac{1}{\mu_{+}} \int_{0}^{x} \varphi(y) d y=\frac{1}{\mu_{+}} M(x) \quad \text { as } x \rightarrow \infty \tag{13}
\end{equation*}
$$

Integrating by parts, we get

$$
\begin{align*}
\int_{0}^{x} \varphi(x-y) U_{+}(d y) & =\left.\varphi(x-y) U_{+}([0, y])\right|_{y=0} ^{x}-\int_{0}^{x} U_{+}([0, y]) d_{y} \varphi(x-y) \\
& =U_{+}([0, x])-\varphi(x)-\int_{0}^{x} U_{+}([0, y]) d_{y} \varphi(x-y) \tag{14}
\end{align*}
$$

The following three estimates hold:

$$
\begin{equation*}
\varphi(x), x, U_{+}([0, x])=o(M(x)) \quad \text { as } x \rightarrow \infty \tag{15}
\end{equation*}
$$

The first estimate follows from Lemma 2 with $a(x)=\varphi(x)$. The second one follows from the assumption $\varphi(y) \rightarrow \infty$ as $y \rightarrow \infty$. The third estimate follows from the second one and the elementary renewal theorem for the measure $U_{+}: U_{+}([0, x]) \sim x / \mu_{+}$as $x \rightarrow \infty$.

Show that

$$
\begin{align*}
&-\int_{0}^{x} U_{+}([0, y]) d_{y} \varphi(x-y) \sim-\frac{1}{\mu_{+}} \int_{0}^{x} y d_{y} \varphi(x-y) \quad \text { as } x \rightarrow \infty \tag{16}\\
&-\frac{1}{\mu_{+}} \int_{0}^{x} y d_{y} \varphi(x-y) \sim \frac{1}{\mu_{+}} M(x) \quad \text { as } x \rightarrow \infty \tag{17}
\end{align*}
$$

We prove first (17). This follows from the second estimate in (15) and the equality

$$
-\int_{0}^{x} y d_{y} \varphi(x-y)=-\left.y \varphi(x-y)\right|_{y=0} ^{x}+\int_{0}^{x} \varphi(x-y) d y=-x+M(x)
$$

Let $\varepsilon>0$ be arbitrary. Use the elementary renewal theorem and choose $y_{0}=y_{0}(\varepsilon)$, such that

$$
(1-\varepsilon) U_{+}([0, y]) \leq \frac{y}{\mu_{+}} \leq(1+\varepsilon) U_{+}([0, y]), \quad y \geq y_{0}
$$

Write the left-hand side of (16) in the form

$$
-\left(\int_{0}^{y_{0}}+\int_{y_{0}}^{x}\right) U_{+}([0, y]) d_{y} \varphi(x-y)=: K_{1}(x)+K_{2}(x)
$$

and let $M_{1}(x)+M_{2}(x)$ be a similar decomposition for the right-hand side. Obviously,

$$
\begin{equation*}
(1-\varepsilon) M_{2}(x) \leq K_{2}(x) \leq(1+\varepsilon) M_{2}(x) . \tag{18}
\end{equation*}
$$

Let us prove that, as $x \rightarrow \infty$, both sides in (16) are asymptotically equivalent to $K_{2}(x)$ and $M_{2}(x)$, respectively. We have

$$
\begin{aligned}
M_{2}(x) & =-\frac{1}{\mu_{+}} \int_{y_{0}}^{x} y d_{y} \varphi(x-y)=-\left.\frac{y}{\mu_{+}} \varphi(x-y)\right|_{y=y_{0}} ^{x}+\frac{1}{\mu_{+}} \int_{y_{0}}^{x} \varphi(x-y) d y \\
& =-\frac{x}{\mu_{+}}+\frac{y_{0}}{\mu_{+}} \varphi\left(x-y_{0}\right)+\frac{1}{\mu_{+}} \int_{0}^{x-y_{0}} \varphi(y) d y .
\end{aligned}
$$

Let us show that

$$
M_{3}(x):=\int_{0}^{x-y_{0}} \varphi(y) d y \sim M(x) \quad \text { as } x \rightarrow \infty
$$

Using the first estimate in (15), we get

$$
\begin{aligned}
\int_{x-y_{0}}^{x} \varphi(y) d y & \leq \varphi(x) \int_{x-y_{0}}^{x} \varphi(y-x) d y \\
& =\varphi(x) \int_{0}^{y_{0}} \varphi(y) d y \leq \varphi(x) \varphi\left(y_{0}\right) y_{0}=o(M(x)) \quad \text { as } x \rightarrow \infty .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\frac{M_{3}(x)}{M(X)} & =\frac{1}{M(x)}\left(\int_{0}^{x} \varphi(y) d y-\int_{x-y_{0}}^{x} \varphi(y) d y\right) \\
& =1-\frac{1}{M(x)} \int_{x-y_{0}}^{x} \varphi(y) d y=1-o(1) \rightarrow 1 \quad \text { as } x \rightarrow \infty
\end{aligned}
$$

which establishes the desired equivalence $M_{3}(x) \sim M(x)$ as $x \rightarrow \infty$. Taking into account the estimates in (15), we see that $M_{2}(x) \sim M(x) / \mu_{+}$as $x \rightarrow \infty$. Moreover,

$$
M_{1}(x)=-\frac{-y_{0} \varphi\left(x-y_{0}\right)}{\mu_{+}}+\frac{1}{\mu_{+}} \int_{x-y_{0}}^{x} \varphi(u) d u
$$

The integral is estimated by $y_{0} \varphi(x) / \mu_{+}$. Thus, $M_{1}(x)=o(M(x))$ as $x \rightarrow \infty$ (see (15)). Relation (17) is proven. Now, divide all parts of (18) by $M_{2}(x)$ and let x tend to infinity. We obtain

$$
1-\varepsilon \leq \liminf _{x \rightarrow \infty} \frac{K_{2}(x)}{M_{2}(x)} \leq \limsup _{x \rightarrow \infty} \frac{K_{2}(x)}{M_{2}(x)} \leq 1+\varepsilon
$$

Hence, $K_{2}(x) \sim M_{2}(x) \sim M(x)$ as $x \rightarrow \infty$. Relation (16) is proven, since, as $x \rightarrow \infty$,

$$
\begin{aligned}
K_{1}(x) & \leq-U_{+}\left(\left[0, y_{0}\right]\right) \int_{0}^{y_{0}} d_{y} \varphi(x-y) \\
& =U_{+}\left(\left[0, y_{0}\right]\right)\left[\varphi(x)-\varphi\left(x-y_{0}\right)\right] \leq U_{+}\left(\left[0, y_{0}\right]\right) \varphi(x)=o(M(x))
\end{aligned}
$$

The equivalence (13) now follows from (14)-(17), which proves the theorem in the particular case $g=\varphi$. Let g satisfy the hypotheses of the theorem. If, for some $C>0$, $|g(x)| \leq C \varphi(x), x \in \mathbb{R}_{+}$, then

$$
\limsup _{x \rightarrow \infty}|z(x)| / \int_{0}^{x} \varphi(y) d y \leq \frac{C}{\mu}
$$

It follows that if $c=0$, then $z(x)=o\left(z_{\varphi}(x)\right)$ as $x \rightarrow \infty$. To see this, choose a small $\varepsilon>0$ and a natural number n, such that $|g(x)| \leq \varepsilon \varphi(x), x \geq n$. Write

$$
g=\mathbf{1}_{[0, n]} g+\left(g-\mathbf{1}_{[0, n]} g\right)=: g_{1}+g_{2}
$$

Let z_{1} and z_{2} be the solutions to (1) corresponding to g_{1} and g_{2}, respectively. Then, $z=z_{1}+z_{2}$ and $\left|z_{2}(x)\right| \leq \varepsilon z_{\varphi}(x), x \in \mathbb{R}_{+}$. By Theorem 6.2 in [3], $z_{1}(x)=o(x)$ as $x \rightarrow \infty$. Since $\varphi(x) \geq 1, x \in \mathbb{R}_{+}$, it follows that $z_{1}(x)=o\left(\int_{0}^{x} \varphi(y) d y\right)$ as $x \rightarrow \infty$. Therefore,

$$
\limsup _{x \rightarrow \infty}|z(x)| / \int_{0}^{x} \varphi(y) d y \leq \frac{\varepsilon}{\mu}
$$

Since $\varepsilon>0$ is arbitrary, the assertion of the theorem is true for $c=0$. Let $c \neq 0$. Write g in the form $g=c \varphi+g_{1}$. Then, $g_{1}(x)=o(\varphi(x))$ as $x \rightarrow \infty$, and we have $z=c z_{\varphi}+z_{1}$, where z_{1} is the solution to Equation (1) with the inhomogeneous term g_{1}. The proof of the theorem is complete.

Theorem 3. Let F be a nonarithmetic probability distribution, such that

$$
\mu=\int_{\mathbb{R}} x F(d x) \in(0, \infty)
$$

and let $\varphi(x), x \in \mathbb{R}_{+}$, be a nondecreasing submultiplicative function, such that $r_{+}>0$, and there exists $\lim _{x \rightarrow \infty} \varphi(x+y) / \varphi(x)$ for each $y \in \mathbb{R}$. Suppose that the inhomogeneous term $g(x)$,
$x \in \mathbb{R}_{+}$, is bounded on finite intervals and satisfies the relation $g(x) \sim c \varphi(x)$ as $x \rightarrow \infty$, where $c \in \mathbb{C}$. Assume that

$$
\int_{-\infty}^{0} \varphi(|x|) F((-\infty, x]) d x<\infty
$$

and $\widehat{F}\left(-r_{+}\right)<1$. Then, the function $z(x), x \in \mathbb{R}_{+}$, defined by (5) is a solution to Equation (1) and satisfies the asymptotic relation

$$
z(x) \sim \frac{c}{1-\widehat{F}\left(-r_{+}\right)} \varphi(x) \quad \text { as } x \rightarrow \infty .
$$

Proof. As in the proof of the preceding theorem, we verify that $z(x)$ is a solution to (1). First, let us prove the assertion of the theorem for the solution z_{φ} to (1) corresponding to $g=\varphi$, i.e., let us prove that, as $x \rightarrow \infty$,

$$
\begin{equation*}
\frac{z_{\varphi}(x)}{\varphi(x)}=\int_{0}^{x} \frac{U_{-} * \varphi(x-y)}{\varphi(x)} U_{+}(d y) \rightarrow \widehat{U}_{-}\left(-r_{+}\right) \widehat{U}_{+}\left(-r_{+}\right)=\frac{1}{1-\widehat{F}\left(-r_{+}\right)} \tag{19}
\end{equation*}
$$

Write the integrand in the form

$$
I(x, y):=\mathbf{1}_{[0, x]}(y) \frac{U_{-} * \varphi(x-y)}{\varphi(x-y)} \frac{\varphi(x-y)}{\varphi(x)}, \quad y \in \mathbb{R}_{+}
$$

Notice that

$$
\begin{equation*}
\frac{U_{-} * \varphi(x)}{\varphi(x)}=\int_{-\infty}^{0} \frac{\varphi(x-y)}{\varphi(x)} U_{-}(d y) \rightarrow \widehat{U}_{-}\left(-r_{+}\right) \quad \text { as } x \rightarrow \infty \tag{20}
\end{equation*}
$$

In fact, $\varphi(x-y) / \varphi(x) \rightarrow e^{-r_{+} y}$ as $x \rightarrow \infty$ by Lemma 4 and, according to Lemma 1 , this ratio is majorized by the U_{-}-integrable function $\varphi(y), y \in \mathbb{R}_{-}$:

$$
\frac{U_{-} * \varphi(x)}{\varphi(x)}=\int_{-\infty}^{0} \frac{\varphi(x-y)}{\varphi(x)} U_{-}(d y) \leq \int_{-\infty}^{0} \varphi(|y|) U_{-}(d y)=\left\|U_{-}\right\|_{\varphi}<\infty
$$

Relation (20) now follows from Lebesgue's bounded convergence theorem. Our further actions are as follows. We will pick out a majorant for the function $I(x, y), y \in \mathbb{R}_{+}$, in the form $M e^{\beta y}$ with $\beta \in\left(-r_{+}, 0\right)$. Then, by Lebesgue's theorem, we pass to the limit under the integral sign in the left-side integral in (19) as $x \rightarrow \infty$, and thus prove relation (19). Put $f(x)=\log \varphi(x)-r_{+} x$. By hypothesis, we have

$$
\begin{equation*}
f(x-y)-f(x)=\log \varphi(x-y)-\log \varphi(x)+r_{+} x \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{21}
\end{equation*}
$$

for each $y \in \mathbb{R}$. According to Lemma 1.1 in [11], relation (21) is fulfilled uniformly in $y \in[0,1]$. Hence,

$$
\frac{\varphi(x-y) \exp \left(r_{+} y\right)}{\varphi(x)} \rightarrow 1 \quad \text { as } x \rightarrow \infty
$$

uniformly in $y \in[0,1]$. Choose a small $\varepsilon>0$ such that $\beta:=\log (1+\varepsilon)-r_{+}<0$. Let $N=N(\varepsilon)>0$ be an integer such that

$$
\frac{\varphi(x-y) \exp (r+y)}{\varphi(x)} \leq 1+\varepsilon, \quad x \geq N, \quad y \in[0,1]
$$

Denote by $[x]$ the integral part of a real number x; i.e., $[x]$ is the maximal integer not exceeding $x: x=[x]+\vartheta, \vartheta \in[0,1)$. For $y \in[l, l+1], l=0, \ldots,[x]-N-1$, we have

$$
\begin{gathered}
\frac{\varphi(x-y)}{\varphi(x)}=\frac{\varphi(x-l-(y-l))}{\varphi(x-l)} \frac{\varphi(x-l)}{\varphi(x)} \\
\frac{\varphi(x-l-(y-l))}{\varphi(x-l)} \leq(1+\varepsilon) \exp \left(-r_{+}(y-l)\right) \\
\frac{\varphi(x-l)}{\varphi(x)}=\frac{\varphi(x-l)}{\varphi(x-l+1)} \frac{\varphi(x-l+1)}{\varphi(x-l+2)} \ldots \frac{\varphi(x-1)}{\varphi(x)} \leq(1+\varepsilon)^{l} \exp \left(-l r_{+}\right)
\end{gathered}
$$

Ultimately,

$$
\begin{aligned}
\frac{\varphi(x-y)}{\varphi(x)} & \leq(1+\varepsilon)^{l+1} \exp \left(-r_{+}(y-l)\right) \exp \left(-l r_{+}\right)=(1+\varepsilon)^{l+1} \exp \left(-r_{+} y\right) \\
& \leq(1+\varepsilon) \exp (\beta y), \quad y \in[l, l+1], \quad l=0, \ldots,[x]-N-1
\end{aligned}
$$

Now, let $y \in([x]-N-1, x]$. We have

$$
\frac{\varphi(x-y)}{\varphi(x)} \leq \frac{\varphi(N+2)}{\varphi(x)} \leq \frac{\varphi(N+2)}{\exp (r+x)} \leq \frac{\varphi(N+2)}{\exp (r+y)} \leq \varphi(N+2) \exp (\beta y)
$$

Thus, the U_{+}-integrable majorant sought for the function $I(x, y), y \in \mathbb{R}_{+}$, which does not depend on x, is of the form

$$
\left\|U_{-}\right\|_{\varphi} \max \{(1+\varepsilon), \varphi(N+2)\} \exp (\beta y), \quad y \in \mathbb{R}_{+}
$$

Now, in order to prove relation (19), it suffices, by Lebesgue's theorem, to pass to the limit under the integral sign in (19). The last equality in (19) is a consequence of (8) for $\Re s=-r_{+}$:

$$
\widehat{U}(s)=\frac{1}{1-\widehat{F}(s)}=\frac{1}{1-\widehat{F}_{-}(s)} \frac{1}{1-\widehat{F}_{+}(s)}=\widehat{U}_{-}(s) \widehat{U}_{+}(s)
$$

which is admissible, since

$$
|\widehat{F}(s)| \leq \widehat{F}\left(-r_{+}\right)<1, \quad\left|\widehat{F}_{ \pm}(s)\right| \leq \widehat{F}_{ \pm}\left(-r_{+}\right)<1, \quad \Re s=-r_{+}
$$

In the general case, it suffices to repeat the concluding reasoning of the previous proof using the estimate

$$
\limsup _{x \rightarrow \infty} \frac{|z(x)|}{\varphi(x)} \leq \frac{C}{1-\widehat{F}\left(-r_{+}\right)}
$$

for $|g(x)| \leq C \varphi(x), x \in \mathbb{R}_{+}$, and, considering the case $c=0$, take into account the relation $z_{1}(x)=o(x)$ as $x \rightarrow \infty$ and all the more $z_{1}(x)=o(\varphi(x))$ as $x \rightarrow \infty$, since $x \leq e^{r+x} \leq \varphi(x)$, $x \in \mathbb{R}_{+}$.

4. Conclusions

We have established the asymptotic behavior of the solution z of the generalized Wiener-Hopf Equation (1), where the inhomogeneous term g behaves like an unbounded submultiplicative function, up to a constant factor, i.e., $g(x) \sim c \varphi(x)$ as $x \rightarrow \infty$. Depending on whether $r_{+}=0$ or $r_{+}>0$, there are two different types of asymptotics for z (Theorems 2 and 3): either $z(x) \sim c_{1} \int_{0}^{x} \varphi(y) d y$ or $z(x) \sim c_{2} \varphi(x)$ as $x \rightarrow \infty$, where c_{1} and c_{2} are specific constants. Here are two simple examples $(c=1)$:
(i) If $\varphi(x)=(x+1)^{r}, r>0$, then

$$
z(x) \sim \frac{x^{r+1}}{\mu(r+1)} \quad \text { as } x \rightarrow \infty
$$

(ii) If $\varphi(x)=\exp (\gamma x), \gamma>0$, then

$$
z(x) \sim \frac{e^{\gamma x}}{1-\widehat{F}\left(-r_{+}\right)} \quad \text { as } x \rightarrow \infty
$$

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The work was carried out within the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF-2022-0004).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: New York, NY, USA, 1966; Volume 2.
2. Hille, E.; Phillips, R.S. Functional Analysis and Semi-Groups; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1957; Volume 31.
3. Sgibnev, M.S. Wiener-Hopf equation whose kernel is a probability distribution. Differ. Equ. 2017, 53, 1174-1196. [CrossRef]
4. Sgibnev, M.S. The Wiener-Hopf equation with probability kernel of oscillating type. Sib. Èlektron. Mat. Izv. 2020, 17, 1288-1298. [CrossRef]
5. Inoan, D.; Marian, D. Semi-Hyers-Ulam-Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform. Symmetry 2021, 13, 2181. [CrossRef]
6. Inoan, D.; Marian, D. Semi-Hyers-Ulam-Rassias Stability via Laplace Transform, for an Integro-Differential Equation of the Second Order. Mathematics 2022, 10, 1893. [CrossRef]
7. Sgibnev, M.S. Semimultiplicative moments of factors in Wiener-Hopf matrix factorization. Sb. Math. 2008, 199, 277-290. [CrossRef]
8. Sgibnev, M.S. On invertibilty conditions for elements of Banach algebras of measures. Math. Notes 2013, 93, 763-765. [CrossRef]
9. Smith, W.L. Renewal theory and its ramifications. J. R. Stat. Soc. Ser. B 1958, 20, 243-302. [CrossRef]
10. Halmos, P.R. Measure Theory; Springer: New York, NY, USA, 1974.
11. Seneta, E. Regularly Varying Functions; Springer: Berlin, Germany, 1976.
