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1. Introduction

The classical Wiener—-Hopf equation has the form

z(x) = /000 k(x —y)z(y) dy + g(x),

or, equivalently,

2(v) = [ - pkw)dy+g(),  x20

We shall consider the inhomogeneous generalized Wiener—-Hopf equation

X
2() = [ _z(x—y) F@y) +8(x), x>0, M)
where z is the function sought, F is a given probability distribution on R, and the inho-
mogeneous term g is a known complex function. A probability distribution G on R is
called nonarithmetic if it is not concentrated on the set of points of the form 0, £A, £24,
... (see Section V.2, Definition 3 of [1]). Let R be the set of all nonnegative numbers and
R_ := R\ R} be the set of all negative numbers. For ¢ € C, we assume that ¢/ is equal
to zero. The relation a(x) ~ cb(x) as x — oo means that a(x)/b(x) — cas x — oo; if c =0,
then a(x) = o(b(x)).

Definition 1. A positive function ¢(x), x € R, is called submultiplicative if it is finite, Borel
measurable, and satisfies the conditions: (0) =1, ¢(x +y) < ¢(x) ¢(y), x, y € R.

The following properties are valid for submultiplicative functions defined on the
whole line (Theorem 7.6.2) of [2]:

—oo < r_ := lim M ZSUPM
X—>—00 X <0 x
< inf log () = lim log p(x) =11y < oo, 2
x>0 X X—00 X
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Here are some examples of submultiplicative function on R: (i) ¢(x) = (x +1)7,
r > 0; (i) ¢(x) = exp(cxP), where ¢ > 0and 0 < B < 1; and (iii) ¢(x) = exp(yx), where
v € R. In (i) and (ii), r+ = 0, while in (iii), 7+ = <. The product of a finite number of
submultiplicative function is again a submultiplicative function.

In the present paper, we investigate the asymptotic behavior of the solution to
Equation (1), where F is a nonarithmetic probability distribution with finite positive mean
p := [ x F(dx) and the function g(x) is asymptotically equivalent (up to a constant fac-
tor) to a nondecreasing submultiplicative function ¢(x) tending to infinity as x — oo:
g(x) ~ cp(x) as x — oo. In the main theorems (Theorems 2 and 3), ¢(x), x € R, isa
nondecreasing submultiplicative function for which there exists limy ;o ¢(x +y)/¢(x) for
each y € R. If such a limit exists, then it is equal to exp(r+y).

Earlier [3], the asymptotic behavior of z was studied in detail under the following
assumptions: (i) 4 € (0,+o0] and (ii) g belong to either g € L1(0,00) or ¢ € Loo(0,0).
Roughly speaking, if g € L1(0,c0), then z(x) tends to a specific finite limit as x — oo.
Moreover, under appropriate conditions, a submultiplicative rate of convergence was given
in the form 0(1/¢(x)). If § € Le(0,00), then z(x) = O(x) or even z(x) = f(o0)x/u as
x — oo, provided f(o0) := limy_,00 f(x) exists.

The existence of the solution to Equation (1) and its explicit form (5) were established
in [4] for g € Lo (0, 00) and arbitrary probability distributions F, regardless of whether F is
of oscillating or drifting type. If 4 = 0 and if some other hypotheses are fulfilled, then z(x)
tends to a specific finite limit as x — oo (Theorem 4 of [4]).

The stability of an integro-differential equation with a convolution type kernel was
studied in [5,6].

2. Preliminaries

Consider the collection S(¢) of all complex-valued measures s, such that

el = [ @) 1l (dx) < oo

here, || stands for the total variation of . The collection S(¢) is a Banach algebra with
norm || - ||, by the usual operations of addition and scalar multiplication of measures; the
product of two elements v and s of S(¢) is defined as their convolution v * 3¢ (Section 4.16)
of [2]. The unit element of S(¢) is the measure Jy of unit mass concentrated at zero. Define
the Laplace transform of a measure ¢ as 3(s) := [ exp(sx) »(dx). It follows from (2) that
the Laplace transform of any » € S(¢) converges absolutely with respect to || for all s
in the strip IT(r_,ry) := {s € C:r— < Rs < r; }. Let v and » be two complex-valued
measures on the o-algebra % of Borel sets in R. Their convolution is the measure

v 5e(A) i= // V(dx) se(dy) = /RV(Afx) x(dx), AcB,
{xfyeA} '

provided the integrals make sense; here, A — x := {y € R: x +y € A}. Denote by F""* the
n-th convolution power of F:

Y .=¢, FY:=F Fots.—pryp  5>1.

Let U be the renewal measure generated by F: U := Y ;> ( F"™*.

Let Xi, k > 1, be independent random variables with the same distribution F not
concentrated at zero. These variables generate the random walk So = 0,5, = X5 +... + Xy,
n>1Put 74 :=min{n >1:S, > 0}. The random variable J# := S5, is called the

first weak ascending ladder height. Similarly, 7 :=min{n >1:5, <0} and #_ =S
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is the first strong descending ladder height. We have the factorization identity (the symbol E
stands for “expectation”).

1-CE@X) = (1-E@E7-¢7)) (1-E@7+e7)), <1, Rs=0. ()

This can easily be deduced from an analogous identity in Section XVIIL3 of [1] for
another collection of ladder variables. Denote by F. the distributions of the random
variables J# 4, respectively. It follows from the identity (3) that

So—F = (6 — F-) * (6o — F+). @

Let Uy = Y5>, Ff* be the renewal measures generated by the distributions Fy,
respectively. Denote by 1g, the indicator of the subset Ry in R: 1g, (x) = 1 for x € R and
1g, (x) = 0 for x € R_. Extend the function g onto the whole line: g(x) := 0, x < 0. This
convention will be valid throughout. Let v be a measure defined on %, and a(x), x € R,
a function. Define the convolution v * a(x) as the function [ a(x —y) v(dy), x € R. The
following theorem has been proven in [4].

Theorem 1. Let F be a probability distribution and ¢ € L1(R4.). Then, the function

z(x) = Uy * (U- % g)1g, ) (x), x € Ry, 5)

is the solution to Equation (1), which coincides with the solution obtained by successive approxima-
tions.

If y is finite and positive, then iy := [ x Fy(dx) is also finite and positive (Sec-
tion XII.2, Theorem 2 of [1]). We have

1

p=pnr(1-F(R-)), U,(R,U{O}):m.

(6)
In fact, pass in (4) to Laplace transforms and divide both sides by s. We get

1_5(5)_(1_1/:\_(5))1_1:/;(5), 57501 s = 0.

S

Let s tend to zero. Then, the fractions on both sides will tend to  and ., respectively.
The second equality in (6) is a consequence of the fact that the distribution F_ is defective,
ie, F_(R_) <1

Lemma 1. Let F be a nonarithmetic probability distribution, such that
i :/ x F(dx) € (0,00)
R
and let ¢(x), x € R, be a submultiplicative function with r— < 0 < r. Assume that
0
/ @(x)F((—o00,x])dx < oo.
Suppose additionally that F(r_) < 1ifr_ < 0. Then U_ € S(g).

Proof. By Theorem 4 in [7] with n = 1 and Remark 5 therein, we have

[ g F (@) <,

—00
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ie., F- € S(¢). Let us prove that the element v := ¢y — F_ is invertible in S(¢). Let
vV = V¢ + Vp + Vs be the decomposition of v into absolutely continuous, discrete, and
singular components. By Theorem 1 of [8], the element v € S(¢) has an inverse if U(s) # 0
foralls € I1(ry,r72), and if

it 1709 > max{ e (), v ()} @)

Let I~ = F¢ + F° + F* be the decomposition of F_ € S(¢) into absolutely continuous,
discrete, and singular components. Then, v° = §y — F° and v® = —F%. We have

inf |R(s)| >1— sup |F(s)| =1—F°(r ).
sell(r_,ry) sell(r_ry)

On the other hand, max{|/1/5\\(r,), |/1/5\|(r+)} = F5 (r_). Hence, in order to prove (7), it
suffices to show that

1-P(r)—F(r.)>1-F (r_) > 0.

If _ = 0, this follows from the fact that the distribution F_ is defective. Let r_ < 0.
By assumption, F(r—) < 1 and, obviously, F;(r—) < 1. Relation (4) implies

1—-F(s)= (1—F_(s))(1—Fi(s)), sell(r_,ry), 8)
whence 1 — F_(r_) > 0 and (7) follows. Finally,
U(s)| >1—|F (s)] >1—F (|s|) >1—F (r_) >0, sell(r_,ry).

Therefore, by Theorem 1 in [8], the measure 6y — F_ is invertible in the Banach algebra
S(¢)and U- = (8 — F-)~! € S(¢). The proof of the lemma is complete. [

Lemma 2. Let a(x), x € Ry, be a monotone nondecreasing positive function. Suppose that
limy_ye0 a(x +y)/a(x) = 1 foreach y € R. Then,

X
a(x) :0(/ a(y)dy> as x — oo.
0
Proof. Let M > 0 be arbitrary. We have

 a(y) Y a(y) Y oa(e-M) . a(x— M)
ham @z ez [, S = M

It follows that liminfy fox a(y)dy/a(x) = oo. The proof of the lemma is com-
plete. O

Lemma 3. Let G be a nonarithmetic probability distribution on R, such that

He = /RxG(dx) € (0,00)

and let Ug be the corresponding renewal measure: Ug := Y ;- G™*. Suppose that a(x) and b(x),
x € Ry, are nonnegative functions such that a(x) ~ b(x) as x — c0.Then,

I(x) :==Ug*a(x) ~Ug*b(x) =: J(x) as x — oo.
Proof. Given ¢ > 0, choose A > 0, such that

(1—e)b(x) <a(x) < (1+¢e)b(x), x> A.
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Let

1) = ([ [, )ate ) Uslay) = ) + ).

Similarly, let J(x) = J1(x) + J2(x). Obviously,

.. hi(x) . I (x)
1—¢ < liminf < limsu
=S ) T et Ti(®)

Since ¢ is arbitrary, limy 00 [1(x)/J1(x) = 1, i.e., [1(x) ~ J1(x) as x — co. Moreover,
Li(x) > a(x— A)Ug([0,x — A]) — co as x — oo by the elementary renewal theorem for the
measure Ug: Ug([0,x]) ~ x/ug as x — oo (see Section 1.2 of [9]). According to Blackwell’s
theorem (Section XI.1, Theorem 1 of [1]),

<1l+e.

L(x) <a(A)Ug((x — A, x]) —» a(A)A/ug as x — oo.

Hence, I(x) ~ I;(x) as x — co. A similar relation also holds for J(x), which completes
the proof of the lemma. O

Lemma 4. Let ¢(x), x € Ry, be a submultiplicative function, such that there exists v(y) =
limy 0 (x +y)/@(x) foreachy € R. Then v(y) = exp(r4+y), y € R.

Proof. By the Corollary of Theorem 4.17.3 in Section 4.17 of [2], v(y) = exp(ay) for some

a € R. Given ¢ > 0, there exists 19 = ny(¢), such that log (P((Z(;:l) < wa+eforn > ng.
Hence, ¢(ng + m) < ¢(ng)e™“+) and
I 1
ry = lim 08200 tm) o loge(no) oy omlate) L
m—o0 m m—00 m m—o0

Similarly, ¥1 > a —e. Since ¢ > 0 is arbitrary, « = r;. The proof of the lemma is
complete. [

3. Main Results

Theorem 2. Let F be a nonarithmetic probability distribution, such that

§= /Ié{xF(dx) € (0,00)

and let ¢(x), x € Ry, be a nondecreasing continuous submultiplicative function tending to infinity
as x — oo, such that ro = 0 and there exists limy_,0o ¢(x +y)/@(x) for each y € R. Suppose
that the inhomogeneous term g(x), x € Ry, is bounded on finite intervals and satisfies the relation
g(x) ~ cp(x) as x — oo, where ¢ € C. Assume that

/_Ooo (x| E((—c0,x]) dx < co,

Then, the function z(x), x € R, defined by (5) is a solution to Equation (1) and satisfies the
asymptotic relation

Z(x)wf/ox(p(y)dy as x — oo.

Proof. Put M(x) = [; ¢(y) dy. By Lemma 4, limy_c ¢(x +y)/(x) = 1 foreachy € R.
Extend the function ¢(x) onto the whole line R by setting ¢(x) = ¢(|x|) for x € R_.
The extended function retains the submultiplicative property and r4 = 0. To prove the
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Uy + (12, 9)(x) = [ glx—y) Usdy) ~ = [

first statement of the theorem, it suffices to assume ¢ > 0. Choose C > 0, such that
g(x) < Ce(x), x € Ry. The function z(x) defined by (5) is finite, since

0+
U #g(x) < CU % 9(x) = C [ glx—y) U-(dy) < Co()|U-],,
X
z2(x) < CIIU—H(p/O ¢(x —y) Uy (dy) < CIU-[lpp(x)U+ ([0, x]) < o0
forall x € Ry. Let n be a natural number. Denote by 1y ,) the indicator of [0, n]. Consider

Equation (1) with the inhomogeneous term g, (x) = g(x)1jy ) (x). Let z, be the solution to
the equation

zn(x) = /_xoo zn(x —y) F(dy) + gn(x), x € Ry, 9)
defined by formula (5):
zn(x) = Uy * (U= * gn)1g, ) (x), x € Ry. (10)

The integral in (9) can be written as

[ 7 =)0 () E(dy) < 20(x) < 2(x) < .

The last two inequalities are consequences of (5). Obviously, z,(x) 1 as n 1. By
Section 27, Theorem B of [10], the integral tends to [~ z(x — y) F(dy) as n 1 0. Letting
n 1 oo in (9) and (10), we get that z is a solution to (1). Let us prove the assertion of the
theorem for the solution z,, to (1) for ¢ = ¢. Let us show that

U-_*¢(x) aS ¥ -5 00
20) — U_(R-U{0}) X — oo. (11)
We have U () 0 o )
—re(x) _ px—y
el Ml C (12

By Lemma 4, the integrand tends to 1 as x — co and it is majorized by the U_-
integrable function ¢(y), since

and U_ € S(¢) by Lemma 1. Applying Lebesgue’s bounded convergence theorem (Sec-
tion 26, Theorem D of [10]), we can pass to the limit under the integral sign in (12), which
proves (11). Apply Lemma 3 with the following choice of G, a(x) and b(x):

G:=F4, a(x) :=1g, (x)U_ * ¢(x), b(x) := U_(R_U{0})1r, (x)¢(x).

We get

2(0) = [ U s p(x =) Ur(dy) ~ U-(R-U{0)) [ plx =) Us(dy)  asx e

Recalling (6), we see that in order to prove the theorem for z,, it suffices to establish

: e(y)dy = LM(x) as x — oo. (13)
0 Kt
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Integrating by parts, we get

/Ox (x —y) Uy (dy) = p(x = YU (0] [}, — /Ox U+ ([0, y]) dyp(x —y)
— U (04]) — o) - [ U (0D dgx—y). (4
The following three estimates hold:
¢(x), x, U+([0,x]) = o(M(x)) as x — oo. (15)
The first estimate follows from Lemma 2 with a(x) = ¢(x). The second one follows

from the assumption ¢(y) — co as y — 0. The third estimate follows from the second one
and the elementary renewal theorem for the measure U,: U ([0,x]) ~ x/p4 as x — oo.

Show that
X 1 X
- [ dgc—y) ~ —— [ydex—y) asxoo, (16
JO H+ Jo
—i/x dyo(x—y) ~ —M(x) asx— oo (17)
B+ Jo Yo Y M+ '

We prove first (17). This follows from the second estimate in (15) and the equality

- /Oxydyfp(x—y) = —yex = )|, + /Ox p(x —y)dy = —x + M(x).

Let € > 0 be arbitrary. Use the elementary renewal theorem and choose yo = yo(€),
such that y
A=eUe(0y]) = o= < A+ U0y, vy 2o

Write the left-hand side of (16) in the form

Yo x
(1 )0 gt =) = Ka() + ol
0
and let M;(x) + M (x) be a similar decomposition for the right-hand side. Obviously,
(1—e)Mp(x) < Kx(x) < (1+¢)Mp(x). (18)

Let us prove that, as x — oo, both sides in (16) are asymptotically equivalent to Kp(x)
and M (x), respectively. We have

1 X y X 1 x
My(x) = _FZ/y ydyp(x —y) = —VTGD(X—V) . + ]/:/y p(x—y)dy
0 - 0
Yo

X 1 X=Yo
S L +7/ dy.
m y+¢( Yo) o Jo ¢(y) dy

Let us show that
X=Yo
M;s(x) := / ¢(y)dy ~ M(x) as x — oo.
0

Using the first estimate in (15), we get

X X
/x , p(y)dy < <P(x)/ p(y —x)dy
—Y0

X7y0

= ¢(x) /Oyo e(y)dy < ¢(x)9(yo)yo = o(M(x))  asx — oo
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Finally,
Mg(x) o 1 x x
MX) M(x)(/o p(y)dy — /x_yo ¢(y) dy)
_A/&JC)/chyO¢(y)dy:1—o(l)—>l as x — oo,

which establishes the desired equivalence M3(x) ~ M(x) as x — oo. Taking into account
the estimates in (15), we see that M (x) ~ M(x)/pu+ as x — co. Moreover,

—Yop(x—yo) , 1 /¥
My(x) = ——20— 22— du.
1) H+ * H+ -/x—yo o(u) du

The integral is estimated by yo@(x)/p+. Thus, Mj(x) = o(M(x)) as x — oo (see (15)).
Relation (17) is proven. Now, divide all parts of (18) by M;(x) and let x tend to infinity.

We obtain K,
1—¢e < liminf Ka(x) < limsup (x)

<l+e
x—e00 Mp(x) roo0 Ma(x)

Hence, Ky (x) ~ My(x) ~ M(x) as x — oo. Relation (16) is proven, since, as x — oo,

Ki(x) < ~Us (o)) [ dyglx—)
= Uy (0, 0)l9(x) = 9l = y0)] < U (0,10 p(x) = o(M(x).

The equivalence (13) now follows from (14)—(17), which proves the theorem in the
particular case § = ¢. Let g satisfy the hypotheses of the theorem. If, for some C > 0,
lg(x)] < Co(x), x € Ry, then

x C
li z(x dy < —
imsup =(x)| / [ g(y)dy <

It follows that if ¢ = 0, then z(x) = 0(zy(x)) as x — co. To see this, choose a small
¢ > 0 and a natural number 7, such that |g(x)| < ep(x), x > n. Write

§=Tjon8 +(§—Ljon8) =81+ &2

Let z1 and z; be the solutions to (1) corresponding to g1 and g», respectively. Then,
z =z1 +zpand |z3(x)| < ezy(x), x € ]R+ By Theorem62in [3], z1(x) = o(x) as x — oo.
Since ¢(x) > 1, x € Ry, it follows that z1 (x) = o( ; ¢(y) dy) as x — co. Therefore,

lim su |z(x)|//x (y)dy < £
msup | ey < .

Since € > 0 is arbitrary, the assertion of the theorem is true for ¢ = 0. Let ¢ # 0. Write
g in the form ¢ = c¢ + g1. Then, g1(x) = o(¢(x)) as x — oo, and we have z = czy + z1,
where z; is the solution to Equation (1) with the inhomogeneous term g;. The proof of the
theorem is complete. [

Theorem 3. Let F be a nonarithmetic probability distribution, such that

y:/RxF(dx) € (0,00),

and let ¢(x), x € Ry, be a nondecreasing submultiplicative function, such that ry. > 0, and
there exists limy o @(x + )/ @(x) for each y € R. Suppose that the inhomogeneous term g(x),
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x € Ry, is bounded on finite intervals and satisfies the relation g(x) ~ cp(x) as x — oo, where
c € C. Assume that

[ oxF((—oo, ) dx < o

and F(—ry) < 1. Then, the function z(x), x € R, defined by (5) is a solution to Equation (1)
and satisfies the asymptotic relation

c

)~ TR G

¢(x) as x — oo.

Proof. As in the proof of the preceding theorem, we verify that z(x) is a solution to (1).
First, let us prove the assertion of the theorem for the solution z, to (1) corresponding to
g = ¢, i.e., let us prove that, as x — oo,

zp(x)  [*U_x¢(x—y) 5o IV T
qD(X)_/O oGy U @) 2 O (r)le(or) = g = (9)

Write the integrand in the form

U_*p(x —y) p(x —y)
¢(x—y) @(x)

I(x,y) = 1jg .4 (y)
Notice that

L)Yy ) e

In fact, p(x —y)/¢(x) — e~ "+¥ as x — oo by Lemma 4 and, according to Lemma 1,
this ratio is majorized by the U_-integrable function ¢(y), y € R_:

et [* 2Dy < [ gl UGy = Uy <o

Relation (20) now follows from Lebesgue’s bounded convergence theorem. Our further
actions are as follows. We will pick out a majorant for the function I(x,y), y € R4, in the
form MePY with B € (—r.,0). Then, by Lebesgue’s theorem, we pass to the limit under the
integral sign in the left-side integral in (19) as x — oo, and thus prove relation (19). Put
f(x) =log ¢(x) — ryx. By hypothesis, we have

flx—y) = f(x) =logp(x —y) —logp(x) +7r+x =0  asx — oo (21)

for each y € R. According to Lemma 1.1 in [11], relation (21) is fulfilled uniformly in
y € [0,1]. Hence,
¢(x — y) exp(riy)
(%)
uniformly in y € [0,1]. Choose a small ¢ > 0 such that g := log(1 +¢) —r; < 0. Let
N = N(¢) > 0be an integer such that

—1 as x — oo

@(x —y)exp(r+y)
@(x)

<l+g, x> N, yelo1].
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Denote by [x] the integral part of a real number x; i.e., [x] is the maximal integer not
exceeding x: x = [x] + 8,8 € [0,1). Fory € [, +1],1 =0,...,[x] — N —1, we have

px—y) _ ex—I-(y—1)ex—1I)
¢(x) p(x—1) ¢(x)
px ;(lx__(%_l)) < (1+¢)exp(—r+(y—1)),
p(x—1) px—1) px—1+1) qv(x—l)S

7

(14 &) exp(~Ir.).

o(x)  olx—I+1)g(x—1+2)"" o¢x)
Ultimately,
(p(;c(;)y) <1+ £)1+1 exp(—r1(y—1))exp(=Iry) = (1+ s)l+1 exp(—r+y)

< (1+¢)exp(By), yel[,l+1], 1=0,...,[x] —-N—-1.
Now, lety € ([x] — N —1, x]. We have

p(x—y) _¢(N+2) _@(N+2) _ ¢(N+2)
0@ = 9 " exp(rin)  expl(riy)

< ¢(N +2) exp(By).

Thus, the U -integrable majorant sought for the function I(x,y), y € R, which does
not depend on x, is of the form

[U-[lpmax{(1+e¢), p(N +2)}exp(By),  y€Ry.

Now, in order to prove relation (19), it suffices, by Lebesgue’s theorem, to pass to the
limit under the integral sign in (19). The last equality in (19) is a consequence of (8) for
Rs = —ry:

~ 1 1 1 ~ ~
Us) = —= == = = U-(s)U+(s),
1—F(s) 1—F_(s)1—Fi(s)

which is admissible, since

|E(s)| < F(-ry) <1, |Fi(s)| < Fe(—ry) <1, Rs = —rg.

In the general case, it suffices to repeat the concluding reasoning of the previous proof
using the estimate
lim sup |2(x)] < AC
X—00 (P(x) 1- F(_r-‘r)
for |g(x)| < Ce(x), x € Ry, and, considering the case ¢ = 0, take into account the relation
z1(x) = o(x) as x — oo and all the more z;(x) = o(¢(x)) as x — oo, since x < "+ < @(x),
X € R+. O]

4. Conclusions

We have established the asymptotic behavior of the solution z of the generalized
Wiener-Hopf Equation (1), where the inhomogeneous term g behaves like an unbounded
submultiplicative function, up to a constant factor, i.e., g(x) ~ c¢(x) as x — oo. Depending
on whether ry = 0 or 7, > 0, there are two different types of asymptotics for z (Theorems 2
and 3): either z(x) ~ 1 fox ¢(y)dy or z(x) ~ cp(x) as x — oo, where ¢ and ¢, are specific
constants. Here are two simple examples (¢ = 1):

@) If o(x) = (x+1)", 7 >0, then

xr+l

20~ D

as x — oo;
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(i) If (x) = exp(yx), v > 0, then
erx

z(x) ~ ————  asx — oo.
1—F(=ry)
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