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Abstract: We consider the inhomogeneous Wiener–Hopf equation whose kernel is a nonarithmetic
probability distribution with positive mean. The inhomogeneous term behaves like a submultiplica-
tive function. We establish asymptotic properties of the solution to which the successive approxima-
tions converge. These properties depend on the asymptotics of the submultiplicative function.
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1. Introduction

The classical Wiener–Hopf equation has the form

z(x) =
∫ ∞

0
k(x− y)z(y) dy + g(x), x ≥ 0,

or, equivalently,

z(x) =
∫ x

−∞
z(x− y)k(y) dy + g(x), x ≥ 0.

We shall consider the inhomogeneous generalized Wiener–Hopf equation

z(x) =
∫ x

−∞
z(x− y) F(dy) + g(x), x ≥ 0, (1)

where z is the function sought, F is a given probability distribution on R, and the inho-
mogeneous term g is a known complex function. A probability distribution G on R is
called nonarithmetic if it is not concentrated on the set of points of the form 0, ±λ, ±2λ,
. . . (see Section V.2, Definition 3 of [1]). Let R+ be the set of all nonnegative numbers and
R− := R \R+ be the set of all negative numbers. For c ∈ C, we assume that c/∞ is equal
to zero. The relation a(x) ∼ cb(x) as x → ∞ means that a(x)/b(x)→ c as x → ∞; if c = 0,
then a(x) = o(b(x)).

Definition 1. A positive function ϕ(x), x ∈ R, is called submultiplicative if it is finite, Borel
measurable, and satisfies the conditions: ϕ(0) = 1, ϕ(x + y) ≤ ϕ(x) ϕ(y), x, y ∈ R.

The following properties are valid for submultiplicative functions defined on the
whole line (Theorem 7.6.2) of [2]:

−∞ < r− := lim
x→−∞

log ϕ(x)
x

= sup
x<0

log ϕ(x)
x

≤ inf
x>0

log ϕ(x)
x

= lim
x→∞

log ϕ(x)
x

=: r+ < ∞. (2)
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Here are some examples of submultiplicative function on R+: (i) ϕ(x) = (x + 1)r,
r > 0; (ii) ϕ(x) = exp(cxβ), where c > 0 and 0 < β < 1; and (iii) ϕ(x) = exp(γx), where
γ ∈ R. In (i) and (ii), r+ = 0, while in (iii), r+ = γ. The product of a finite number of
submultiplicative function is again a submultiplicative function.

In the present paper, we investigate the asymptotic behavior of the solution to
Equation (1), where F is a nonarithmetic probability distribution with finite positive mean
µ :=

∫
R x F(dx) and the function g(x) is asymptotically equivalent (up to a constant fac-

tor) to a nondecreasing submultiplicative function ϕ(x) tending to infinity as x → ∞:
g(x) ∼ cϕ(x) as x → ∞. In the main theorems (Theorems 2 and 3), ϕ(x), x ∈ R+, is a
nondecreasing submultiplicative function for which there exists limx→∞ ϕ(x + y)/ϕ(x) for
each y ∈ R. If such a limit exists, then it is equal to exp(r+y).

Earlier [3], the asymptotic behavior of z was studied in detail under the following
assumptions: (i) µ ∈ (0,+∞] and (ii) g belong to either g ∈ L1(0, ∞) or g ∈ L∞(0, ∞).
Roughly speaking, if g ∈ L1(0, ∞), then z(x) tends to a specific finite limit as x → ∞.
Moreover, under appropriate conditions, a submultiplicative rate of convergence was given
in the form o(1/ϕ(x)). If g ∈ L∞(0, ∞), then z(x) = O(x) or even z(x) = f (∞)x/µ as
x → ∞, provided f (∞) := limx→∞ f (x) exists.

The existence of the solution to Equation (1) and its explicit form (5) were established
in [4] for g ∈ L∞(0, ∞) and arbitrary probability distributions F, regardless of whether F is
of oscillating or drifting type. If µ = 0 and if some other hypotheses are fulfilled, then z(x)
tends to a specific finite limit as x → ∞ (Theorem 4 of [4]).

The stability of an integro-differential equation with a convolution type kernel was
studied in [5,6].

2. Preliminaries

Consider the collection S(ϕ) of all complex-valued measures κ, such that

‖κ‖ϕ :=
∫
R

ϕ(x) |κ|(dx) < ∞;

here, |κ| stands for the total variation of κ. The collection S(ϕ) is a Banach algebra with
norm ‖ · ‖ϕ by the usual operations of addition and scalar multiplication of measures; the
product of two elements ν and κ of S(ϕ) is defined as their convolution ν ∗κ (Section 4.16)
of [2]. The unit element of S(ϕ) is the measure δ0 of unit mass concentrated at zero. Define
the Laplace transform of a measure κ as κ̂(s) :=

∫
R exp(sx)κ(dx). It follows from (2) that

the Laplace transform of any κ ∈ S(ϕ) converges absolutely with respect to |κ| for all s
in the strip Π(r−, r+) := {s ∈ C : r− ≤ <s ≤ r+}. Let ν and κ be two complex-valued
measures on the σ-algebra B of Borel sets in R. Their convolution is the measure

ν ∗κ(A) :=
∫∫

{x+y∈A}

ν(dx)κ(dy) =
∫
R

ν(A− x)κ(dx), A ∈ B,

provided the integrals make sense; here, A− x := {y ∈ R : x + y ∈ A}. Denote by Fn∗ the
n-th convolution power of F:

F0∗ := δ0, F1∗ := F, F(n+1)∗ := Fn∗ ∗ F, n ≥ 1.

Let U be the renewal measure generated by F: U := ∑∞
n=0 Fn∗.

Let Xk, k ≥ 1, be independent random variables with the same distribution F not
concentrated at zero. These variables generate the random walk S0 = 0, Sn = X1 + . . .+ Xn,
n ≥ 1. Put T + := min

{
n ≥ 1 : Sn ≥ 0

}
. The random variable H + := ST +

is called the

first weak ascending ladder height. Similarly, T − := min
{

n ≥ 1 : Sn < 0
}

and H − := ST −
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is the first strong descending ladder height. We have the factorization identity (the symbol E
stands for “expectation”).

1− ξE(esX1) =
(

1− E
(
ξT − esH −

))(
1− E

(
ξT + esH +

))
, |ξ| ≤ 1, <s = 0. (3)

This can easily be deduced from an analogous identity in Section XVIII.3 of [1] for
another collection of ladder variables. Denote by F± the distributions of the random
variables H ±, respectively. It follows from the identity (3) that

δ0 − F = (δ0 − F−) ∗ (δ0 − F+). (4)

Let U± := ∑∞
k=0 Fk∗

± be the renewal measures generated by the distributions F±,
respectively. Denote by 1R+

the indicator of the subset R+ in R: 1R+
(x) = 1 for x ∈ R+ and

1R+
(x) = 0 for x ∈ R−. Extend the function g onto the whole line: g(x) := 0, x < 0. This

convention will be valid throughout. Let ν be a measure defined on B, and a(x), x ∈ R,
a function. Define the convolution ν ∗ a(x) as the function

∫
R a(x− y) ν(dy), x ∈ R. The

following theorem has been proven in [4].

Theorem 1. Let F be a probability distribution and g ∈ L1(R+). Then, the function

z(x) = U+ ∗
(
(U− ∗ g)1R+

)
(x), x ∈ R+, (5)

is the solution to Equation (1), which coincides with the solution obtained by successive approxima-
tions.

If µ is finite and positive, then µ+ :=
∫
R x F+(dx) is also finite and positive (Sec-

tion XII.2, Theorem 2 of [1]). We have

µ = µ+(1− F−(R−)), U−(R− ∪ {0}) =
1

1− F−(R−)
. (6)

In fact, pass in (4) to Laplace transforms and divide both sides by s. We get

1− F̂(s)
s

=
(
1− F̂−(s)

)1− F̂+(s)
s

, s 6= 0, <s = 0.

Let s tend to zero. Then, the fractions on both sides will tend to µ and µ+, respectively.
The second equality in (6) is a consequence of the fact that the distribution F− is defective,
i.e., F−(R−) < 1.

Lemma 1. Let F be a nonarithmetic probability distribution, such that

µ =
∫
R

x F(dx) ∈ (0, ∞)

and let ϕ(x), x ∈ R, be a submultiplicative function with r− ≤ 0 ≤ r+. Assume that∫ 0

−∞
ϕ(x)F((−∞, x]) dx < ∞.

Suppose additionally that F̂(r−) < 1 if r− < 0. Then U− ∈ S(ϕ).

Proof. By Theorem 4 in [7] with n = 1 and Remark 5 therein, we have∫ 0

−∞
ϕ(x) F−(dx) < ∞,
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i.e., F− ∈ S(ϕ). Let us prove that the element ν := δ0 − F− is invertible in S(ϕ). Let
ν = νc + νd + νs be the decomposition of ν into absolutely continuous, discrete, and
singular components. By Theorem 1 of [8], the element ν ∈ S(ϕ) has an inverse if ν̂(s) 6= 0
for all s ∈ Π(r1, r2), and if

inf
s∈Π(r− ,r+)

∣∣ν̂d(s)∣∣ > max
{
|̂νs|(r−), |̂νs|(r+)

}
. (7)

Let F− = Fc
−+ Fd

−+ Fs
− be the decomposition of F− ∈ S(ϕ) into absolutely continuous,

discrete, and singular components. Then, νd = δ0 − Fd
− and νs = −Fs

−. We have

inf
s∈Π(r− ,r+)

∣∣ν̂d(s)∣∣ ≥ 1− sup
s∈Π(r− ,r+)

∣∣F̂d
−(s)

∣∣ = 1− F̂d
−(r−).

On the other hand, max
{
|̂νs|(r−), |̂νs|(r+)

}
= F̂s

−(r−). Hence, in order to prove (7), it
suffices to show that

1− F̂d
−(r−)− F̂s

−(r−) ≥ 1− F̂−(r−) > 0.

If r− = 0, this follows from the fact that the distribution F− is defective. Let r− < 0.
By assumption, F̂(r−) < 1 and, obviously, F̂+(r−) < 1. Relation (4) implies

1− F̂(s) =
(
1− F̂−(s)

)(
1− F̂+(s)

)
, s ∈ Π(r−, r+), (8)

whence 1− F̂−(r−) > 0 and (7) follows. Finally,

|ν̂(s)| ≥ 1− |F̂−(s)| ≥ 1− F̂−(|s|) ≥ 1− F̂−(r−) > 0, s ∈ Π(r−, r+).

Therefore, by Theorem 1 in [8], the measure δ0 − F− is invertible in the Banach algebra
S(ϕ) and U− = (δ0 − F−)−1 ∈ S(ϕ). The proof of the lemma is complete.

Lemma 2. Let a(x), x ∈ R+, be a monotone nondecreasing positive function. Suppose that
limx→∞ a(x + y)/a(x) = 1 for each y ∈ R. Then,

a(x) = o
(∫ x

0
a(y) dy

)
as x → ∞.

Proof. Let M > 0 be arbitrary. We have∫ x

0

a(y)
a(x)

dy ≥
∫ x

x−M

a(y)
a(x)

dy ≥
∫ x

x−M

a(x−M)

a(x)
dy = M

a(x−M)

a(x)
.

It follows that lim infx→∞
∫ x

0 a(y) dy/a(x) = ∞. The proof of the lemma is com-
plete.

Lemma 3. Let G be a nonarithmetic probability distribution on R+, such that

µG :=
∫
R

x G(dx) ∈ (0, ∞)

and let UG be the corresponding renewal measure: UG := ∑∞
n=0 Gn∗. Suppose that a(x) and b(x),

x ∈ R+, are nonnegative functions such that a(x) ∼ b(x) as x→ ∞.Then,

I(x) := UG ∗ a(x) ∼ UG ∗ b(x) =: J(x) as x→ ∞.

Proof. Given ε > 0, choose A > 0, such that

(1− ε)b(x) ≤ a(x) ≤ (1 + ε)b(x), x ≥ A.
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Let

I(x) =
(∫ x−A

0
+
∫ x

x−A

)
a(x− y)UG(dy) =: I1(x) + I2(x).

Similarly, let J(x) = J1(x) + J2(x). Obviously,

1− ε ≤ lim inf
x→∞

I1(x)
J1(x)

≤ lim sup
x→∞

I1(x)
J1(x)

≤ 1 + ε.

Since ε is arbitrary, limx→∞ I1(x)/J1(x) = 1, i.e., I1(x) ∼ J1(x) as x → ∞. Moreover,
I1(x) ≥ a(x− A)UG([0, x− A])→ ∞ as x → ∞ by the elementary renewal theorem for the
measure UG: UG([0, x]) ∼ x/µG as x → ∞ (see Section 1.2 of [9]). According to Blackwell’s
theorem (Section XI.1, Theorem 1 of [1]),

I2(x) ≤ a(A)UG((x− A, x])→ a(A)A/µG as x → ∞.

Hence, I(x) ∼ I1(x) as x → ∞. A similar relation also holds for J(x), which completes
the proof of the lemma.

Lemma 4. Let ϕ(x), x ∈ R+, be a submultiplicative function, such that there exists ν(y) :=
limx→∞ ϕ(x + y)/ϕ(x) for each y ∈ R. Then ν(y) = exp(r+y), y ∈ R.

Proof. By the Corollary of Theorem 4.17.3 in Section 4.17 of [2], ν(y) = exp(αy) for some

α ∈ R. Given ε > 0, there exists n0 = n0(ε), such that log
ϕ(n + 1)

ϕ(n)
≤ α + ε for n ≥ n0.

Hence, ϕ(n0 + m) ≤ ϕ(n0)em(α+ε) and

r+ = lim
m→∞

log ϕ(n0 + m)

m
≤ lim

m→∞

log ϕ(n0)

m
+ lim

m→∞

m(α + ε)

m
= α + ε.

Similarly, r+ ≥ α − ε. Since ε > 0 is arbitrary, α = r+. The proof of the lemma is
complete.

3. Main Results

Theorem 2. Let F be a nonarithmetic probability distribution, such that

µ =
∫
R

x F(dx) ∈ (0, ∞)

and let ϕ(x), x ∈ R+, be a nondecreasing continuous submultiplicative function tending to infinity
as x → ∞, such that r+ = 0 and there exists limx→∞ ϕ(x + y)/ϕ(x) for each y ∈ R. Suppose
that the inhomogeneous term g(x), x ∈ R+, is bounded on finite intervals and satisfies the relation
g(x) ∼ cϕ(x) as x→ ∞, where c ∈ C. Assume that∫ 0

−∞
ϕ(|x|)F((−∞, x]) dx < ∞.

Then, the function z(x), x ∈ R+, defined by (5) is a solution to Equation (1) and satisfies the
asymptotic relation

z(x) ∼ c
µ

∫ x

0
ϕ(y) dy as x → ∞.

Proof. Put M(x) =
∫ x

0 ϕ(y) dy. By Lemma 4, limx→∞ ϕ(x + y)/ϕ(x) = 1 for each y ∈ R.
Extend the function ϕ(x) onto the whole line R by setting ϕ(x) = ϕ(|x|) for x ∈ R−.
The extended function retains the submultiplicative property and r± = 0. To prove the
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first statement of the theorem, it suffices to assume g ≥ 0. Choose C > 0, such that
g(x) ≤ Cϕ(x), x ∈ R+. The function z(x) defined by (5) is finite, since

U− ∗ g(x) ≤ CU− ∗ ϕ(x) = C
∫ 0+

−∞
ϕ(x− y)U−(dy) ≤ Cϕ(x)‖U−‖ϕ,

z(x) ≤ C‖U−‖ϕ

∫ x

0
ϕ(x− y)U+(dy) ≤ C‖U−‖ϕ ϕ(x)U+([0, x]) < ∞

for all x ∈ R+. Let n be a natural number. Denote by 1[0,n] the indicator of [0, n]. Consider
Equation (1) with the inhomogeneous term gn(x) = g(x)1[0,n](x). Let zn be the solution to
the equation

zn(x) =
∫ x

−∞
zn(x− y) F(dy) + gn(x), x ∈ R+, (9)

defined by formula (5):

zn(x) = U+ ∗
(
(U− ∗ gn)1R+

)
(x), x ∈ R+. (10)

The integral in (9) can be written as∫
R

zn(x− y)1[0,x](y) F(dy) ≤ zn(x) ≤ z(x) < ∞.

The last two inequalities are consequences of (5). Obviously, zn(x) ↑ as n ↑. By
Section 27, Theorem B of [10], the integral tends to

∫ x
−∞ z(x− y) F(dy) as n ↑ ∞. Letting

n ↑ ∞ in (9) and (10), we get that z is a solution to (1). Let us prove the assertion of the
theorem for the solution zϕ to (1) for g = ϕ. Let us show that

U− ∗ ϕ(x)
ϕ(x)

→ U−(R− ∪ {0}) as x → ∞. (11)

We have
U− ∗ ϕ(x)

ϕ(x)
=
∫ 0

−∞

ϕ(x− y)
ϕ(x)

U−(dy). (12)

By Lemma 4, the integrand tends to 1 as x → ∞ and it is majorized by the U−-
integrable function ϕ(y), since

ϕ(x− y)
ϕ(x)

≤ ϕ(−y) = ϕ(y)

and U− ∈ S(ϕ) by Lemma 1. Applying Lebesgue’s bounded convergence theorem (Sec-
tion 26, Theorem D of [10]), we can pass to the limit under the integral sign in (12), which
proves (11). Apply Lemma 3 with the following choice of G, a(x) and b(x):

G := F+, a(x) := 1R+
(x)U− ∗ ϕ(x), b(x) := U−(R− ∪ {0})1R+

(x)ϕ(x).

We get

zϕ(x) =
∫ x

0
U− ∗ ϕ(x− y)U+(dy) ∼ U−(R− ∪ {0})

∫ x

0
ϕ(x− y)U+(dy) as x → ∞.

Recalling (6), we see that in order to prove the theorem for zϕ, it suffices to establish

U+ ∗ (1R+
ϕ)(x) =

∫ x

0
ϕ(x− y)U+(dy) ∼ 1

µ+

∫ x

0
ϕ(y) dy =

1
µ+

M(x) as x → ∞. (13)
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Integrating by parts, we get∫ x

0
ϕ(x− y)U+(dy) = ϕ(x− y)U+([0, y])

∣∣x
y=0 −

∫ x

0
U+([0, y]) dy ϕ(x− y)

= U+([0, x])− ϕ(x)−
∫ x

0
U+([0, y]) dy ϕ(x− y). (14)

The following three estimates hold:

ϕ(x), x, U+([0, x]) = o(M(x)) as x → ∞. (15)

The first estimate follows from Lemma 2 with a(x) = ϕ(x). The second one follows
from the assumption ϕ(y)→ ∞ as y→ ∞. The third estimate follows from the second one
and the elementary renewal theorem for the measure U+: U+([0, x]) ∼ x/µ+ as x → ∞.

Show that

−
∫ x

0
U+([0, y]) dy ϕ(x− y) ∼ − 1

µ+

∫ x

0
y dy ϕ(x− y) as x → ∞, (16)

− 1
µ+

∫ x

0
y dy ϕ(x− y) ∼ 1

µ+
M(x) as x → ∞. (17)

We prove first (17). This follows from the second estimate in (15) and the equality

−
∫ x

0
y dy ϕ(x− y) = −yϕ(x− y)

∣∣x
y=0 +

∫ x

0
ϕ(x− y) dy = −x + M(x).

Let ε > 0 be arbitrary. Use the elementary renewal theorem and choose y0 = y0(ε),
such that

(1− ε)U+([0, y]) ≤ y
µ+
≤ (1 + ε)U+([0, y]), y ≥ y0.

Write the left-hand side of (16) in the form

−
(∫ y0

0
+
∫ x

y0

)
U+([0, y]) dy ϕ(x− y) =: K1(x) + K2(x),

and let M1(x) + M2(x) be a similar decomposition for the right-hand side. Obviously,

(1− ε)M2(x) ≤ K2(x) ≤ (1 + ε)M2(x). (18)

Let us prove that, as x → ∞, both sides in (16) are asymptotically equivalent to K2(x)
and M2(x), respectively. We have

M2(x) = − 1
µ+

∫ x

y0

y dy ϕ(x− y) = − y
µ+

ϕ(x− y)
∣∣∣x
y=y0

+
1

µ+

∫ x

y0

ϕ(x− y) dy

= − x
µ+

+
y0

µ+
ϕ(x− y0) +

1
µ+

∫ x−y0

0
ϕ(y) dy.

Let us show that

M3(x) :=
∫ x−y0

0
ϕ(y) dy ∼ M(x) as x → ∞.

Using the first estimate in (15), we get∫ x

x−y0

ϕ(y) dy ≤ ϕ(x)
∫ x

x−y0

ϕ(y− x) dy

= ϕ(x)
∫ y0

0
ϕ(y) dy ≤ ϕ(x)ϕ(y0)y0 = o(M(x)) as x → ∞.
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Finally,

M3(x)
M(X)

=
1

M(x)

(∫ x

0
ϕ(y) dy−

∫ x

x−y0

ϕ(y) dy
)

= 1− 1
M(x)

∫ x

x−y0

ϕ(y) dy = 1− o(1)→ 1 as x → ∞,

which establishes the desired equivalence M3(x) ∼ M(x) as x → ∞. Taking into account
the estimates in (15), we see that M2(x) ∼ M(x)/µ+ as x → ∞. Moreover,

M1(x) = −−y0 ϕ(x− y0)

µ+
+

1
µ+

∫ x

x−y0

ϕ(u) du.

The integral is estimated by y0 ϕ(x)/µ+. Thus, M1(x) = o(M(x)) as x → ∞ (see (15)).
Relation (17) is proven. Now, divide all parts of (18) by M2(x) and let x tend to infinity.
We obtain

1− ε ≤ lim inf
x→∞

K2(x)
M2(x)

≤ lim sup
x→∞

K2(x)
M2(x)

≤ 1 + ε.

Hence, K2(x) ∼ M2(x) ∼ M(x) as x → ∞. Relation (16) is proven, since, as x → ∞,

K1(x) ≤ −U+([0, y0])
∫ y0

0
dy ϕ(x− y)

= U+([0, y0])[ϕ(x)− ϕ(x− y0)] ≤ U+([0, y0])ϕ(x) = o(M(x)).

The equivalence (13) now follows from (14)–(17), which proves the theorem in the
particular case g = ϕ. Let g satisfy the hypotheses of the theorem. If, for some C > 0,
|g(x)| ≤ Cϕ(x), x ∈ R+, then

lim sup
x→∞

|z(x)|
/ ∫ x

0
ϕ(y) dy ≤ C

µ
.

It follows that if c = 0, then z(x) = o(zϕ(x)) as x → ∞. To see this, choose a small
ε > 0 and a natural number n, such that |g(x)| ≤ εϕ(x), x ≥ n. Write

g = 1[0,n]g + (g− 1[0,n]g) =: g1 + g2.

Let z1 and z2 be the solutions to (1) corresponding to g1 and g2, respectively. Then,
z = z1 + z2 and |z2(x)| ≤ εzϕ(x), x ∈ R+. By Theorem 6.2 in [3], z1(x) = o(x) as x → ∞.
Since ϕ(x) ≥ 1, x ∈ R+, it follows that z1(x) = o

(∫ x
0 ϕ(y) dy

)
as x → ∞. Therefore,

lim sup
x→∞

|z(x)|
/ ∫ x

0
ϕ(y) dy ≤ ε

µ
.

Since ε > 0 is arbitrary, the assertion of the theorem is true for c = 0. Let c 6= 0. Write
g in the form g = cϕ + g1. Then, g1(x) = o(ϕ(x)) as x → ∞, and we have z = czϕ + z1,
where z1 is the solution to Equation (1) with the inhomogeneous term g1. The proof of the
theorem is complete.

Theorem 3. Let F be a nonarithmetic probability distribution, such that

µ =
∫
R

x F(dx) ∈ (0, ∞),

and let ϕ(x), x ∈ R+, be a nondecreasing submultiplicative function, such that r+ > 0, and
there exists limx→∞ ϕ(x + y)/ϕ(x) for each y ∈ R. Suppose that the inhomogeneous term g(x),
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x ∈ R+, is bounded on finite intervals and satisfies the relation g(x) ∼ cϕ(x) as x → ∞, where
c ∈ C. Assume that ∫ 0

−∞
ϕ(|x|)F((−∞, x]) dx < ∞

and F̂(−r+) < 1. Then, the function z(x), x ∈ R+, defined by (5) is a solution to Equation (1)
and satisfies the asymptotic relation

z(x) ∼ c
1− F̂(−r+)

ϕ(x) as x→ ∞.

Proof. As in the proof of the preceding theorem, we verify that z(x) is a solution to (1).
First, let us prove the assertion of the theorem for the solution zϕ to (1) corresponding to
g = ϕ, i.e., let us prove that, as x → ∞,

zϕ(x)
ϕ(x)

=
∫ x

0

U− ∗ ϕ(x− y)
ϕ(x)

U+(dy)→ Û−(−r+)Û+(−r+) =
1

1− F̂(−r+)
. (19)

Write the integrand in the form

I(x, y) := 1[0,x](y)
U− ∗ ϕ(x− y)

ϕ(x− y)
ϕ(x− y)

ϕ(x)
, y ∈ R+.

Notice that

U− ∗ ϕ(x)
ϕ(x)

=
∫ 0

−∞

ϕ(x− y)
ϕ(x)

U−(dy)→ Û−(−r+) as x → ∞. (20)

In fact, ϕ(x− y)/ϕ(x) → e−r+y as x → ∞ by Lemma 4 and, according to Lemma 1,
this ratio is majorized by the U−-integrable function ϕ(y), y ∈ R−:

U− ∗ ϕ(x)
ϕ(x)

=
∫ 0

−∞

ϕ(x− y)
ϕ(x)

U−(dy) ≤
∫ 0

−∞
ϕ(|y|)U−(dy) = ‖U−‖ϕ < ∞.

Relation (20) now follows from Lebesgue’s bounded convergence theorem. Our further
actions are as follows. We will pick out a majorant for the function I(x, y), y ∈ R+, in the
form Meβy with β ∈ (−r+, 0). Then, by Lebesgue’s theorem, we pass to the limit under the
integral sign in the left-side integral in (19) as x → ∞, and thus prove relation (19). Put
f (x) = log ϕ(x)− r+x. By hypothesis, we have

f (x− y)− f (x) = log ϕ(x− y)− log ϕ(x) + r+x → 0 as x → ∞ (21)

for each y ∈ R. According to Lemma 1.1 in [11], relation (21) is fulfilled uniformly in
y ∈ [0, 1]. Hence,

ϕ(x− y) exp(r+y)
ϕ(x)

→ 1 as x → ∞

uniformly in y ∈ [0, 1]. Choose a small ε > 0 such that β := log(1 + ε) − r+ < 0. Let
N = N(ε) > 0 be an integer such that

ϕ(x− y) exp(r+y)
ϕ(x)

≤ 1 + ε, x ≥ N, y ∈ [0, 1].
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Denote by [x] the integral part of a real number x; i.e., [x] is the maximal integer not
exceeding x: x = [x] + ϑ, ϑ ∈ [0, 1). For y ∈ [l, l + 1], l = 0, . . . , [x]− N − 1, we have

ϕ(x− y)
ϕ(x)

=
ϕ(x− l − (y− l))

ϕ(x− l)
ϕ(x− l)

ϕ(x)
,

ϕ(x− l − (y− l))
ϕ(x− l)

≤ (1 + ε) exp(−r+(y− l)),

ϕ(x− l)
ϕ(x)

=
ϕ(x− l)

ϕ(x− l + 1)
ϕ(x− l + 1)
ϕ(x− l + 2)

. . .
ϕ(x− 1)

ϕ(x)
≤ (1 + ε)l exp(−lr+).

Ultimately,

ϕ(x− y)
ϕ(x)

≤ (1 + ε)l+1 exp(−r+(y− l)) exp(−lr+) = (1 + ε)l+1 exp(−r+y)

≤ (1 + ε) exp(βy), y ∈ [l, l + 1], l = 0, . . . , [x]− N − 1.

Now, let y ∈ ([x]− N − 1, x]. We have

ϕ(x− y)
ϕ(x)

≤ ϕ(N + 2)
ϕ(x)

≤ ϕ(N + 2)
exp(r+x)

≤ ϕ(N + 2)
exp(r+y)

≤ ϕ(N + 2) exp(βy).

Thus, the U+-integrable majorant sought for the function I(x, y), y ∈ R+, which does
not depend on x, is of the form

‖U−‖ϕ max{(1 + ε), ϕ(N + 2)} exp(βy), y ∈ R+.

Now, in order to prove relation (19), it suffices, by Lebesgue’s theorem, to pass to the
limit under the integral sign in (19). The last equality in (19) is a consequence of (8) for
<s = −r+:

Û(s) =
1

1− F̂(s)
=

1
1− F̂−(s)

1
1− F̂+(s)

= Û−(s)Û+(s),

which is admissible, since

|F̂(s)| ≤ F̂(−r+) < 1, |F̂±(s)| ≤ F̂±(−r+) < 1, <s = −r+.

In the general case, it suffices to repeat the concluding reasoning of the previous proof
using the estimate

lim sup
x→∞

|z(x)|
ϕ(x)

≤ C
1− F̂(−r+)

for |g(x)| ≤ Cϕ(x), x ∈ R+, and, considering the case c = 0, take into account the relation
z1(x) = o(x) as x → ∞ and all the more z1(x) = o(ϕ(x)) as x → ∞, since x ≤ er+x ≤ ϕ(x),
x ∈ R+.

4. Conclusions

We have established the asymptotic behavior of the solution z of the generalized
Wiener–Hopf Equation (1), where the inhomogeneous term g behaves like an unbounded
submultiplicative function, up to a constant factor, i.e., g(x) ∼ cϕ(x) as x → ∞. Depending
on whether r+ = 0 or r+ > 0, there are two different types of asymptotics for z (Theorems 2
and 3): either z(x) ∼ c1

∫ x
0 ϕ(y) dy or z(x) ∼ c2 ϕ(x) as x → ∞, where c1 and c2 are specific

constants. Here are two simple examples (c = 1):
(i) If ϕ(x) = (x + 1)r, r > 0, then

z(x) ∼ xr+1

µ(r + 1)
as x → ∞;
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(ii) If ϕ(x) = exp(γx), γ > 0, then

z(x) ∼ eγx

1− F̂(−r+)
as x → ∞.
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