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A Note on the Appearance of the Simplest Antilinear ODE in
Several Physical Contexts
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Abstract: We review several one-dimensional problems such as those involving linear Schrödinger
equation, variable-coefficient Helmholtz equation, Zakharov–Shabat system and Kubelka–Munk
equations. We show that they all can be reduced to solving one simple antilinear ordinary differential
equation u′(x) = f (x)u(x) or its nonhomogeneous version u′(x) = f (x)u(x) + g(x), x ∈ (0, x0) ⊂ R.
We point out some of the advantages of the proposed reformulation and call for further investigation
of the obtained ODE.
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1. Introduction

Many physical phenomena can be directly described by or reduced to systems of
differential equations having certain structural properties. Restricting ourselves here to
linear one-dimensional settings, we are concerned with a system of 2 first-order ODEs
whose matrix is antidiagonal with complex-conjugate elements. Namely, given x0 ∈ R and
complex-valued function f (x), we consider the equation

U′(x) =
(

0 f (x)
f (x) 0

)
U(x), x ∈ (0, x0), (1)

as well as its nonhomogeneous analog

U′(x) =
(

0 f (x)
f (x) 0

)
U(x) + G(x), x ∈ (0, x0), (2)

where U(x) ≡ (u1(x), u2(x))T ∈ C2 is an unknown solution-vector, G(x) ≡ (g1(x), g2(x))T

∈ C2 is a given vector-function, and each of Equations (1) and (2) is supplemented by the
initial condition U(0) = U0 ∈ C2.

Here and onwards, we employ the notation · to denote complex conjugation.
Similarly to Hamiltonian, Dirac and more general canonical systems (see, e.g., [1]),

Equations (1) and (2) constitute an important class of dynamical systems for two reasons.
On the one hand, as we shall further see, formulations of several important problems are
reducible to either (1) or (2). On the other hand, these systems are close to being exactly
solvable in the following sense. Let us focus on (1) and consider the more general system

U′(x) =
(

p(x) r(x)
s(x) q(x)

)
U(x), x ∈ (0, x0). (3)
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We note that the diagonal elements in the matrix of (3) can be removed by the expo-
nential multiplier transform. Namely, by setting

V(x) :=

(
e−
∫ x

0 p(τ)dτ 0
0 e−

∫ x
0 q(τ)dτ

)
U(x),

one can observe that V(x) satisfies, for x ∈ (0, x0),

V′(x) =
(

0 r(x) exp
(
−
∫ x

0 [p(τ)− q(τ)]dτ
)

s(x) exp
(∫ x

0 [p(τ)− q(τ)]dτ
)

0

)
V(x), (4)

with the initial condition V(0) = U0. Now, if the anti-diagonal elements of the matrix in
the right-hand side of (4) are equal, i.e.,

r(x) exp
(
−
∫ x

0
[p(τ)− q(τ)]dτ

)
= s(x) exp

(∫ x

0
[p(τ)− q(τ)]dτ

)
=: c1(x), (5)

then the solution can be written explicitly as

V(x) =
[

cosh
(∫ x

0
c1(τ)dτ

)
I + sinh

(∫ x

0
c1(τ)dτ

)
S
]

U0,

where

I :=
(

1 0
0 1

)
, S :=

(
0 1
1 0

)
. (6)

However, condition (5), which amounts to the assumption

s(x) = r(x) exp
(
−2

∫ x

0
[p(τ)− q(τ)]dτ

)
, (7)

may be too restrictive. Indeed, in view of multiple possible similarity transformations
allowing to rewrite (3) in different equivalent forms, we want to have a clearly identifiable
matrix structure which should be, on the one hand, immediately recognisable and, on
the other hand, leading to a solution simplification or even an explicit solution. Such
an identifiable structure may be, for example, a pairwise relation between some of the
elements of the matrix in (3). The explicit solvability condition, nevertheless, plays against
any visible structural property of the matrix: even though assumption (7) leads to a
closed-form solution, it implies a rather complicated relation between the matrix elements.
Condition (7) is very specific and thus unlikely to be satisfied for any easily describable class
of matrix elements unless, of course, p ≡ q, which would then also entail that r ≡ s. This
exactly solvable case with equal diagonal and anti-diagonal elements in (3) may sometimes
be valuable but it does not seem to be the one that covers too many applications.

It turns out that condition (7) has an analog which is less stringent to the form of the
matrix elements in (3), with more pertinence to important physical contexts, and, at the
same time, it still leads to a significant simplification of the solution procedure (and, at least
in some cases, also to closed-form solutions). This condition reads

s(x) = r(x) exp
(
−2 Re

∫ x

0
[p(τ)− q(τ)]dτ

)
. (8)

Despite the similarity to (7), condition (8) is easier to satisfy while preserving a visible
matrix structure. Indeed, if p(x)− q(x) is a purely imaginary function (e.g., in particular,
when p ≡ q), the complicated exponential factor in (8) disappears. In this case, the implied
condition s(x) = r(x) is clearly indentifiable but far from being trivial since, as we shall
see, it covers a variety of different practical applications. This reasoning motivates us to
consider (1) as well as its nonhogeneous analog (2).



AppliedMath 2022, 2 435

We note that, in context of second-order differential equations, the proposed reformu-
lation into the antilinear ODE falls somewhat between two classical approaches: reduction
to a linear dynamical system and reduction to a single nonlinear ODE such as Riccati
equation. Both of these approaches can be used to the practical advantage. In the first case,
perhaps the most meaningful way of vectorising the one-dimensional wave equation is
splitting the problem into consequetive contributions of transmitted and reflected waves
as given by Bremmer series and its analogs [2–4]. The computational advantage of the
second approach can be achieved when the phase of the solution satisfying nonlinear ODE
is non-oscillatory, see [5].

In our approach, instead of a system, only one first-order equation has to be dealt with,
whereas the antilinearity is perhaps the closest one can get to the linear realm in terms of
extension of methods such as integral transforms and series expansions.

The plan of this note is as follows. Section 2 is dedicated to the transformation
of (1) and (2) into the homogeneous antilinear ODE

u′(x) = f (x)u(x), x ∈ (0, x0), (9)

and its nonhomogeneous analog

u′(x) = f (x)u(x) + g(x), x ∈ (0, x0), (10)

respectively. Next, in Section 3, we outline some relevant physical applications, i.e., prob-
lems which, upon appropriate transformations, can be recast as (1) or (2) and are thus
reducible to formulations involving antilinear ODE (9), or, in one case, its nonhomogeneous
version (10). Section 4 illustrates what can be achieved, thanks to the new reformulation, in
one of the discussed physical contexts. Finally, in Section 5, we discuss some advantages
of the proposed reformulation and conclude with some remarks on how antilinear ODEs
can be constructively addressed further and hence bring advancements in the mentioned
applied contexts.

2. Transformation of an Antidiagonal Problem into an Antilinear ODE
2.1. Homogeneous Case: From (1) to (9)

We consider (1) supplemented with the initial data U(0) = U0 ≡
(
u0

1, u0
2
)T , where u0

1,
u0

2 ∈ C are arbitrary constants, and we devise a transformation that allows construction of
the solution of system (1) in terms of the solution of an antilinear ODE of the form (9).

Let us first motivate our approach to construction of such a transformation. To this
effect, given a complex-valued function f (x), it is instructive to consider the elementary
differential equation for v(x)

v′(x) = f (x)v(x), x ∈ (0, x0), (11)

with the initial condition v(0) = 1. On the one hand, (11) is in separable form and hence
can be integrated directly to yield the solution

v(x) = exp
(∫ x

0
f (τ)dτ

)
. (12)

On the other hand, rewriting (11) in the integral form

v(x) = 1 +
∫ x

0
f (τ)v(τ)dτ, x ∈ (0, x0),
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the Picard iterative process gives

v(x) =1 +
∫ x

0
f (τ)dτ +

∫ x

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2 (13)

+
∫ x

0
f (τ3)

∫ τ3

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2dτ3 + . . . .

Comparison of (12) with (13) results in important identities

exp
(∫ x

0
f (τ)dτ

)
=1 +

∫ x

0
f (τ)dτ +

∫ x

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2

+
∫ x

0
f (τ3)

∫ τ3

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2dτ3 + . . . ,

sinh
(∫ x

0
f (τ)dτ

)
=
∫ x

0
f (τ)dτ +

∫ x

0
f (τ3)

∫ τ3

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2dτ3 + . . . , (14)

cosh
(∫ x

0
f (τ)dτ

)
=1 +

∫ x

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2

+
∫ x

0
f (τ4)

∫ τ4

0
f (τ3)

∫ τ3

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2dτ3dτ4 + . . . , (15)

where we used the identity exp(z) = cosh(z) + sinh(z), z ∈ C, and the parity argument to
split the terms: sinh is an odd function and hence (14) may contain only odd number of
multiplicative instances of f , and similarly, (15) may contain only terms with even number
of multiplications by f due to cosh being an even function.

Now, similarly to (14) and (15), let us consider the following quantities

S f (x) :=
∫ x

0
f (τ1)dτ1 +

∫ x

0
f (τ3)

∫ τ3

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2dτ3 + . . . , (16)

C f (x) :=1 +
∫ x

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2 (17)

+
∫ x

0
f (τ4)

∫ τ4

0
f (τ3)

∫ τ3

0
f (τ2)

∫ τ2

0
f (τ1)dτ1dτ2dτ3dτ4 + . . . .

Let us show that (16) and (17) are inherent to an algebraic structure underlying (1). To
this effect, we rewrite (1) in the integral form

U(x) = U0 +
∫ x

0
A(τ)U(τ)dτ, x ∈ (0, x0), A(τ) :=

(
0 f (τ)

f (τ) 0

)
, (18)

and note that

A(τ2)A(τ1) =

(
f (τ2) f (τ1) 0

0 f (τ2) f (τ1)

)
,

A(τ3)A(τ2)A(τ1) =

(
0 f (τ3) f (τ2) f (τ1)

f (τ3) f (τ2) f (τ1) 0

)
,

A(τ4)A(τ3)A(τ2)A(τ1) =

(
f (τ4) f (τ3) f (τ2) f (τ1) 0

0 f (τ4) f (τ3) f (τ2) f (τ1)

)
, . . . .

Therefore, writing out Picard iterations for solving (18), we obtain

U(x) =

(
C f (x) S f (x)
S f (x) C f (x)

)
U0 =

(
C f (x) S f (x)
S f (x) C f (x)

)
U0. (19)
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Furthermore, it is easy to see from (16) and (17) that S f (x), C f (x) obey the following
intertwining relation

C′f (x) = f (x)S f (x), S′f (x) = f (x)C f (x), x ∈ (0, x0), (20)

and the conditions S f (0) = 0, C f (0) = 1. Introducing another pair of functions

Z+(x) := C f (x) + S f (x), Z−(x) := C f (x)− S f (x),

we decouple (20) as

Z′+(x) = f (x)Z+(x), x ∈ (0, x0), Z+(0) = 1, (21)

Z′−(x) = − f (x)Z−(x), x ∈ (0, x0), Z−(0) = 1. (22)

Equations (21) and (22) are two separate instances of the initial-value problem with the
antilinear ODE given by (9). Solution of this ODE would thus yields the solutions of (21)
and (22) and, consequently, also of (20), providing S f (x), C f (x) appearing in (19) which
furnishes the solution of (1).

2.2. Nonhomogeneous Case: From (2) to (10)

Let us now consider (2) with G(x) ≡ (g1(x), g2(x))T and subject to the initial condition
U(0) = U0 ≡

(
u0

1, u0
2
)T . We are going to show that, in particular case where

g2(x) = i g1(x), u0
2 = i u0

1, (23)

the solution of (2) can be constucted in terms of solutions of two instances of problem (10).
As we shall see in Section 3.2, assumption (23) will be satisfied in at least one important
practical context.

Similarly to (16) and (17), let us introduce

S f ,h(x) :=
∫ x

0
f (τ1)h(τ1)dτ1 +

∫ x

0
f (τ3)

∫ τ3

0
f (τ2)

∫ τ2

0
f (τ1)h(τ1)dτ1dτ2dτ3 + . . . , (24)

C f ,h(x) :=h(x) +
∫ x

0
f (τ2)

∫ τ2

0
f (τ1)h(τ1)dτ1dτ2 (25)

+
∫ x

0
f (τ4)

∫ τ4

0
f (τ3)

∫ τ3

0
f (τ2)

∫ τ2

0
f (τ1)h(τ1)dτ1dτ2dτ3dτ4 + . . . .

Rewriting (2) in the integral form

U(x) = U0 +
∫ x

0
G(τ)dτ +

∫ x

0
A(τ)U(τ)dτ, x ∈ (0, x0), A(τ) :=

(
0 f (τ)

f (τ) 0

)
, (26)

it is straightforward to see that Picard iterations give

U(x) =

(
S f ,h2(x) + C f ,h1(x)
S f ,h1

(x) + C f ,h2
(x)

)
,

where S f ,h(x), C f ,h(x) are as defined by (24) and (25), and

h1(x) := u0
1 +

∫ x

0
g1(τ)dτ, h2(x) := u0

2 +
∫ x

0
g2(τ)dτ. (27)
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By means of differentiation of S f ,h2(x) and C f ,h1(x), we obtain the following intertwin-
ing relation

C′f ,h1
(x) = h′1(x) + f (x)S f ,h1

(x), S′f ,h2
(x) = f (x)C f ,h2

(x), x ∈ (0, x0), (28)

which is to be supplemented by the conditions C f ,h1(0) = h1(0), S f ,h2(0) = 0.
Note that, from (24) and (25), S f ,h1

(x) = S f ,h1
(x) and C f ,h2

(x) = C f ,h2
(x). Moreover,

assumption (23) entails that h2(x) = i h1(x), and by linearity in h of S f ,h(x), C f ,h(x), we
have S f ,h2(x) = i S f ,h1

(x) and C f ,h2
(x) = i C f ,h1(x). Consequently, relation (28) becomes

C′f ,h1
(x) = h′1(x) + f (x)S f ,h1

(x), S′f ,h1
(x) = f (x)C f ,h1(x), x ∈ (0, x0). (29)

Setting

Z+(x) := C f ,h1(x) + S f ,h1
(x), Z−(x) := C f ,h1(x)− S f ,h1

(x), (30)

we obtain from (29) two decoupled ODE problems

Z′+(x) = f (x)Z+(x) + g1(x), Z+(0) = u0
1, (31)

Z′−(x) = − f (x)Z−(x) + g1(x), Z−(0) = u0
1, (32)

each of them are of the form (10).

3. Some Physical Contexts Leading to (1) and (2)
3.1. Linear Schrödinger Equation

Consider the stationary linear Schrödinger equation in 1D, with a potential a(x) > 0,

u′′(x) + a(x)u(x) = 0, x ∈ (0, x0). (33)

We focus here on the initial-value problem, i.e., we supplement (33) with the boundary
conditions u(0) = u0, u′(0) = u1, but boundary-value problems on (0, x0), with x0 being
finite or infinite, could also be treated. We assume a ∈ C1([0, x0]).

Introducing the vector-function

U(x) :=

(
u(x)

1
a1/2(x)

u′(x)

)
, (34)

we observe that U(x) satisfies

U′(x) =

(
u′(x)

− a′(x)
2a3/2(x)

u′(x) + 1
a1/2(x)

u′′(x)

)
= A(x)U(x), (35)

with

A(x) :=

(
0 a1/2(x)

−a1/2(x) − a′(x)
2a(x)

)
,

and U(0) =
(

u0, u1/a1/2(0)
)T

. Here, in the second inequality of (35), we used (33) to

eliminate u′′(x).
By writing,

A(x) = a1/2(x)
(

0 1
−1 0

)
+

a′(x)
2a(x)

(
0 0
0 −1

)
,

we note that the first matrix in the right-hand side is diagonalisable as follows
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P
(

0 1
−1 0

)
P−1 =

(
i 0
0 −i

)
, P :=

1
21/2

(
i 1
1 i

)
, P−1 =

1
21/2

(
−i 1
1 −i

)
. (36)

Consequently, introducing V(x) := PU(x), we multiply the both sides of (35) by P
and thus transform it into

V′(x) = PA(x)P−1V(x) = B(x)V(x), x ∈ (0, x0), (37)

with

B(x) := a1/2(x)
(

i 0
0 −i

)
− a′(x)

4a(x)

(
1 −i
i 1

)
=

(
b0(x) 0

0 b0(x)

)
− a′(x)

4a(x)

(
0 −i
i 0

)
,

b0(x) := ia1/2(x)− a′(x)
4a(x)

, (38)

and supplemented by the initial condition

V(0) = PU(0) =
1

21/2

(
iu0 + u1/a1/2(0)
u0 + iu1/a1/2(0)

)
.

Furthermore, introducing

W(x) :=

(
exp

(
−
∫ x

0 b0(τ)dτ
)

0
0 exp

(
−
∫ x

0 b0(τ)dτ
) )V(x),

we have
d

dx

(
exp

(
−
∫ x

0 b0(τ)dτ
)

0
0 exp

(
−
∫ x

0 b0(τ)dτ
) )

=

(
−b0(x) exp

(
−
∫ x

0 b0(τ)dτ
)

0
0 −b0(x) exp

(
−
∫ x

0 b0(τ)dτ
) ).

Therefore, (37) entails

W ′(x) = − a′(x)
4a(x)

 0 −i exp
(
−
∫ x

0

[
b0(τ)− b0(τ)

]
dτ
)

i exp
(∫ x

0

[
b0(τ)− b0(τ)

]
dτ
)

0

W(x),

which, recalling (38), we can rewrite as

W ′(x) = C(x)W(x), x ∈ (0, x0), (39)

with

C(x) :=
(

0 c0(x)
c0(x) 0

)
, c0(x) :=

ia′(x)
4a(x)

exp
(
−2i

∫ x

0
a1/2(τ)dτ

)
,

and the initial condition

W(0) = V(0) =
1

21/2

(
iu0 + u1/a1/2(0)
u0 + iu1/a1/2(0)

)
.

The steps described above draw from [6] (see also [7]) and provide one way to rewrite
the linear Schrödinger equation in the form (1), but this approach is not the only one.
Alternative reduction procedures may be more cumbersome but more beneficial in practice,
depending on a final goal. See Section 4, drawing from [8], where the initial vectorisation
of (33) is different from (34) while other steps of the transformation are ideologically similar.
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3.2. Helmholtz Equation

Stationary problems for the wave propagation in heterogeneous media are described
by the Helmholtz equation whose 1D version is given by(

α(x)u′(x)
)′
+ β(x)u(x) = f (x), x ∈ (0, x0). (40)

Here, α(x), β(x) > 0 are material parameters and f (x) is the source term. As in
Section 3.1, we suppose that (40) is supplemented by the initial conditions u(0) = u0,
u′(0) = u1. Furthermore, we assume that f (x), u0, u1 are all real-valued. This assumption
does not reduce generality since (40) is linear with real-valued α(x), β(x) and hence a
real-valued problem can be solved separately for real and imaginary parts of the solution
of the original equation.

Setting

U(x) :=
(

α1/2(x)β1/2(x)u(x)
α(x)u′(x)

)
,

we recast (40) in the vector form

U′(x) = A(x)U(x) + F0(x), x ∈ (0, x0), (41)

with

A(x) :=

 [α(x)β(x)]′

2α(x)β(x)

(
β(x)
α(x)

)1/2

−
(

β(x)
α(x)

)1/2
0

, F0(x) :=
(

0
f (x)

)
,

and the initial condition

U(0) =
(

α1/2(0)β1/2(0)u0
α(0)u1

)
.

We now follow the reduction steps similar to those in Section 3.1. We write

A(x) =
(

β(x)
α(x)

)1/2( 0 1
−1 0

)
+

[α(x)β(x)]′

2α(x)β(x)

(
1 0
0 0

)
,

and note that we can diagonalise the first matrix with the help of the auxiliary constant
matrix P introduced in (36). Denoting V(x) := PU(x), we hence have, from (41),

V′(x) = B(x)V(x) + F1(x), (42)

with

B(x) :=
(

b1(x) 0
0 b1(x)

)
+

[α(x)β(x)]′

4α(x)β(x)

(
0 i
−i 0

)
, F1(x) := PF(x) =

( f (x)
21/2

i f (x)
21/2

)
,

b1(x) := i
(

β(x)
α(x)

)1/2
+

[α(x)β(x)]′

4α(x)β(x)
,

and the initial condition

V(0) = PU(0) =
1

21/2

(
iα1/2(0)β1/2(0)u0 + α(0)u1
α1/2(0)β1/2(0)u0 + iα(0)u1

)
.

Introducing

W(x) :=

(
exp

(
−
∫ x

0 b1(τ)dτ
)

0
0 exp

(
−
∫ x

0 b1(τ)dτ
) )V(x),
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Equation (42) transforms into

W ′(x) = C(x)W(x) + G(x), (43)

where

C(x) :=
(

0 c1(x)
c1(x) 0

)
, c1(x) :=

i[α(x)β(x)]′

4α(x)β(x)
exp

(
−2i

∫ x

0

(
β(τ)

α(τ)

)1/2
dτ

)
,

G(x) :=
(

g1(x)
ig1(x)

)
, g1(x) :=

f (x)
21/2 exp

(
−
∫ x

0

[
i
(

β(τ)

α(τ)

)1/2
+

[α(x)β(x)]′

4α(x)β(x)

]
dτ

)
,

and the initial condition

W(0) =

(
w0

1
iw0

1

)
, w0

1 :=
1

21/2

(
iα1/2(0)β1/2(0)u0 + α(0)u1

)
.

Here, in relating the first and the second components of the vector G(x), and similarly
W(0), we employed the real-valuedness of α(x), β(x), u0, u1 that was discussed in the
beginning of this Subsection.

It remains to observe that system (43) is such that the matrix C(x) and the vectors
G(x), W(0) fit the assumptions discussed in Section 2.2.

3.3. Zakharov–Shabat System

It is well-known that solution of a spectral problem with the linear Schrödinger
equation appears as an intermediate step in solving the Korteweg–de Vries (KdV) equation
by using the inverse scattering transform. Zakharov–Shabat systems play the same role in
the integrability of other nonlinear equations, see ([9] p. 10). In particular, the Zakharov–
Shabat system

∂x

(
v1(x, t)
v2(x, t)

)
=

(
−iξ q(x, t)

q(x, t) iξ

)(
v1(x, t)
v2(x, t)

)
, (44)

with ξ ∈ R being a spectral parameter, is a linear problem pertinent to the integration of
the defocusing cubic nonlinear Schrödinger (NLS) equation

i∂tq(x, t) = ∂2
xq(x, t)− 2|q(x, t)|2q(x, t)

subject to the initial data q(x, 0) = q0(x). We refer to [10] for more details on this matter.
We observe that by setting

W(x, t) :=
(

eiξx 0
0 e−iξx

)(
v1(x, t)
v2(x, t)

)
,

Zakharov–Shabat system (44) immediately reduces to

∂xW(x, t) =
(

0 q(x)e2iξx

q(x)e−2iξx 0

)
W(x, t),

which is a system of the form (1).

3.4. Kubelka–Munk Equations

Kubelka–Munk equations is a simple phenomenological model [11] for computing
reflection and transmission optical fluxes without solution of significantly more complicated
radiative transfer equations. Due to their simplicity, Kubelka–Munk equations have been
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popular in practice (in paper paint visibility contexts), they have been extensively studied
from modelling viewpoint and several generalisations have been proposed: [12–15].

We consider the following model equations

d
dx

(
F+(x)
F−(x)

)
=

(
−K(x)− S(x) S(x)
−S(x) K(x) + S(x)

)(
F+(x)
F−(x)

)
, (45)

where F+, F− are fluxes in positive and negative directions, and K and S are related to
absorption and scattering, respectively. Note that, unlike in the classical model, we take
here K, S to be dependent on the optical depth x rather than simply being constants. This
generalisation is expected to be useful since constant scattering and absorption coefficients
are known to be a considerable limitation of the Kubelka–Munk model, see ([16] Sect. 4.5).

The procedure of reduction of (45) to (1) is similar to that performed in Section 3.1.
Therefore, we shall omit any detailed calculation.

Let us write

A(x) :=
(
−K(x)− S(x) S(x)
−S(x) K(x) + S(x)

)
= S(x)

(
0 1
−1 0

)
− [K(x) + S(x)]

(
1 0
0 −1

)
,

and compute

B(x) := PA(x)P−1 = S(x)
(

i 0
0 −i

)
− [K(x) + S(x)]

(
0 i
−i 0

)
with P defined as in (36). Multiplying the both sides of (45) by P and introducing

V(x) := P
(

F+(x)
F−(x)

)
,

we obtain
V′(x) = B(x)V(x). (46)

Furthermore, setting

W(x) :=
(

exp
(
−i
∫ x

0 S(τ)dτ
)

0
0 exp

(
i
∫ x

0 S(τ)dτ
) )V(x),

C(x) :=
(

0 c2(x)
c2(x) 0

)
, c2(x) := −i[K(x) + S(x)] exp

(
−2i

∫ x

0
S(τ)dτ

)
,

we arrive at
W ′(x) = C(x)W(x), (47)

which is a system of the form (1).

4. An Example of Application

Let us show a concrete application of the proposed reduction to the antilinear ODE.
Namely, we consider a scattering problem for the stationary Schrödinger equation in the
semiclassical regime:

ε2ψ′′(x) + a0(x)ψ(x) = 0, (48)

where ε � 1 is a small parameter related to the Planck’s constant, a0(x) := E− q(x), E
is the prescribed energy, q is a potential. We assume that q ∈ C2(R) and q(x) ≡ const
for x ∈ R\(0, x0) with some x0 > 0. Moreover, suppose that a0(x) > 0. Boundary con-
ditions supplementing (48) are ψ′(0) + i/ε

√
a0(0)ψ(0) = 0, ψ′(x0)− i/ε

√
a0(x0)ψ(x0) =

−2i/ε
√

a0(x0). The second of these conditions describes the particle incident on the poten-
tial from right, whereas the first condition is an open boundary condition representing the
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absence of the influx from left of the interval (0, x0). Due to the linearity, it suffices to solve
the initial-value problem [8]

ε2φ′′(x) + a0(x)φ(x) = 0, (49)

subject to the initial conditions φ(0) = 1, φ′(0) = −i/ε
√

a0(0). The solution to (48) with
the above mentioned boundary conditions can be reconstructed as

ψ(x) = − 2i
√

a0(x0)

φ′(x0)− i
√

a0(x0)φ(x0)
φ(x).

Setting

U(x) :=

 a1/4
0 (x)
ε1/2 φ(x)

ε1/2

a1/4
0 (x)

φ′(x) + ε1/2a′0(x)
4a5/4

0 (x)
φ(x)

,

we have to solve
U′(x) = A0(x)U(x),

with

A0(x) :=
1
ε

a1/2
0 (x)

(
0 1
−1 0

)
+

ε

4a1/4
0 (x)

(
a′0(x)

a5/4
0 (x)

)′(
0 0
1 0

)
,

U(0) =

 a1/4
0 (0)
ε1/2

− ia1/4
0 (0)
ε1/2 + ε1/2 a′0(0)

4a5/4
0 (0)

.

Proceeding as in Section 3.1, we arrive at

W ′(x) = C0(x)W(x), (50)

with

C0(x) :=
(

0 f0(x)
f0(x) 0

)
, f0(x) :=

iε
8a1/4

0 (x)

(
a′0(x)

a5/4
0 (x)

)′
exp

(
−2i

ε

∫ x

0
a1/2

0 (τ)dτ

)
, (51)

W(0) = PU(0) =
1

21/2

 ε1/2 a′0(0)
4a5/4

0 (0)
2a1/4

0 (0)
ε1/2 + iε1/2 a′0(0)

4a5/4
0 (0)

.

This formulation was a basis of asymptotic-numerical methods in [8,17]. Reformula-
tion towards the antilinear ODE provides simplification of the asymptotic part in that it
allows dealing only with scalar quantities. Indeed, according to the results of Section 2.1, in
order to solve (50), it suffices to deal with

u′(x) = f0(x)u(x), x ∈ (0, x0),

subject to u(0) = 1. Picard iterations yield

u(x) =1 +
∫ x

0
f0(τ)dτ +

∫ x

0
f0(τ2)

∫ τ2

0
f0(τ1)dτ1dτ2

+
∫ x

0
f0(τ3)

∫ τ3

0
f0(τ2)

∫ τ2

0
f0(τ1)dτ1dτ2dτ3 + . . . , x ∈ (0, x0),

which, due to the form of f0, is an expansion in powers of ε. Note that, even though ε is
still present in phase factors, the magnitude of each term is proportional to a power of ε.
Moreover, this series is not only asymptotic, but a convergent expansion on [0, x0] similar
to Bremmer series, see [2].
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This illustrates how the achieved structural simplification can make tedious higher-
order expansions more tractable in practice.

5. Discussion and Conclusions

We have introduced a new scalar differential equation of the first order which is
curious for two principal reasons. First, it is, in some sense, the simplest nonlinear ODE
(either with or without a non-homogeneous term), with the nonlinearity being merely the
complex conjugation. Second, this equation emerges, after appropriate reduction steps, in
rather different physical contexts. Certainly, much more application areas can be identified
(e.g., telegrapher’s equations or Goldstein-Taylor model, see [18]), but already the context
of the linear Schrödinger equation alone is a good enough motivation to further study the
antilinear ODE u′(x) = f (x)u(x). For instance, as demonstrated in Section 4, reduction
of matrix-vector manipulations to those involving only scalar quantities already provides
a simplification in tedious asymptotic constructions which could allow advancement of
asymptotic-numerical methods such as those in [8,17]. Therefore, this new reformulation
yields concrete practical advantages. We believe that theoretical aspects of the mentioned
models could benefit from it, too. This might be achievable, for instance, through newly
produced forms of the Prüfer transformation which is typically used for studying Sturm-
Liouville problems, see, e.g., ([19] Sect. 5.2). Furthermore, it is important to identify classes
of functions f for which the antilinear ODE can be solved in a closed form. This would, in
particular, yield new solvable quantum mechanical potentials and sound-speed profiles
important for generating reference solutions for verification of numerical methods for the
wave propagation. Exploring this direction, we note that the Kubelka–Munk model context
hints on the elementary exponential class of function f (x) since system (45) with constant K
and S is solvable explicitly. This can be generalised further since the form of the antilinear
ODE is amenable to a treatment by integral transform methods (unlike other nonlinearities)
typically compatible with an exponential function and combinations thereof. Finally, the
form of the antilinear ODE calls for study of the possible connection with d-bar problems,
see, e.g., [20]. In this case, an appropriate extension of the equation to the complex plane
may yield a formulation that eventually produces a closed-form solution due to numerous
constructive results on Hilbert and Riemann-Hilbert problems.
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