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Article

Solution of Inhomogeneous Differential Equations with
Polynomial Coefficients in Terms of the Green’s Function,
in Nonstandard Analysis

Tohru Morita

Graduate School of Information Sciences, Tohoku University, Sendai 980-8577, Japan; senmm@jcom.zaq.ne.jp;
Tel.: +81-22-278-6186

Abstract: Discussions are presented by Morita and Sato on the problem of obtaining the particular
solution of an inhomogeneous differential equation with polynomial coefficients in terms of the
Green’s function. In a paper, the problem is treated in distribution theory, and in another paper, the
formulation is given on the basis of nonstandard analysis, where fractional derivative of degree,
which is a complex number added by an infinitesimal number, is used. In the present paper, a simple
recipe based on nonstandard analysis, which is closely related with distribution theory, is presented,
where in place of Heaviside’s step function H(t) and Dirac’s delta function δ(t) in distribution theory,
functions Hε(t) := 1

Γ(1+ε)
tε H(t) and δε(t) := d

dt Hε(t) = 1
Γ(ε) tε−1H(t) for a positive infinitesimal

number ε, are used. As an example, it is applied to Kummer’s differential equation.

Keywords: Green’s function; differential equations with polynomial coefficients; nonstandard analysis;
distribution theory

1. Introduction

In the present paper, we treat the problem of obtaining the particular solutions of a
differential equation with polynomial coefficients in terms of the Green’s function.

In a preceding paper [1], this problem is studied in the framework of distribution
theory, where the method is applied to Kummer’s and the hypergeometric differential
equation. In another paper [2], this problem is studied in the framework of nonstandard
analysis, where a recipe of solution of the present problem is presented, and it is applied to
a simple fractional and a first-order ordinary differential equation.

In the present paper, we present a compact recipe based on nonstandard analysis,
which is obtained by revising the one given in [2]. As an example, it is applied to Kummer’s
differential equation.

The presentation in this paper follows those in [1,2], in Introduction and in many
descriptions in the following sections.

We consider a fractional differential equation, which takes the form:

pn(t, RDt)u(t) :=
n

∑
l=0

al(t)RDρl
t u(t) = f (t), (1)

where n ∈ Z>−1, t ∈ R, al(t) for l ∈ Z[0,n] are polynomials of t, ρl ∈ C for l ∈ Z[0,n] satisfy
Re ρ0 > Re ρ1 ≥ · · · ≥ Re ρn and Re ρ0 > 0. We use Heaviside’s step function H(t), which
is equal to 1 if t > 0, and to 0 if t ≤ 0. Here RDρl

t are the Riemann–Liouville fractional
integrals and derivatives defined by the following definition; see [3].

AppliedMath 2022, 2, 379–392. https://doi.org/10.3390/appliedmath2030022 https://www.mdpi.com/journal/appliedmath

https://doi.org/10.3390/appliedmath2030022
https://doi.org/10.3390/appliedmath2030022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com
https://doi.org/10.3390/appliedmath2030022
https://www.mdpi.com/journal/appliedmath
https://www.mdpi.com/article/10.3390/appliedmath2030022?type=check_update&version=1


AppliedMath 2022, 2 380

Definition 1. Let t ∈ R, τ ∈ R, u0(t) be locally integrable on R>τ , u(t) = u0(t)H(t − τ),
λ ∈ C+, n ∈ Z>−1 and ρ = n− λ. Then RD−λ

t u(t) is the Riemann–Liouville fractional integral
defined by

RD−λ
t u(t)=

1
Γ(λ)

∫ t

−∞
(t− x)λ−1u0(x)H(x− τ)dx

=
1

Γ(λ)

∫ t

τ
(t− x)λ−1u0(x)dx · H(t− τ), (2)

and RD−λ
t u(t) = 0 for t ≤ τ, where Γ(λ) is the gamma function, RDρ

t u(t) = RDn−λ
t u(t) is the

Riemann–Liouville fractional derivative defined by

RDρ
t u(t) = RDn−λ

t u(t) =
dn

dtn [RD−λ
t u0(t)] · H(t− τ), (3)

when n ≥ Re λ, and RDn
t u(t) = dn

dtn u0(t) · H(t− τ) when ρ = n ∈ Z>−1.

Here Z, R and C are the sets of all integers, all real numbers and all complex numbers,
respectively, and Z>a = {n ∈ Z | n > a}, Z<b = {n ∈ Z | n < b} and Z[a,b] = {n ∈ Z |
a ≤ n ≤ b} for a, b ∈ Z satisfying a < b. We also use R>a = {x ∈ R | x > a} for a ∈ R, and
C+ = {z ∈ C | Re z > 0}.

In accordance with Definition 1, when u0(t) = 1
Γ(ν) (t− τ)ν−1, we adopt

RDρ
t
(t− τ)ν−1

Γ(ν)
H(t− τ) =

{
(t−τ)ν−ρ−1

Γ(ν−ρ)
H(t− τ), ν− ρ ∈ C\Z<1,

0, ν− ρ ∈ Z<1,
(4)

for ν ∈ C\Z<1 and τ ∈ R. Here RDt is used in place of usually used notation τ DR, in order
to show that the variable is t.

Remark 1. Let gν(t) := 1
Γ(ν) tν−1H(t) for ν ∈ C. Then gν(t) = 0 if ν ∈ Z<1, and Equation (4)

shows that if ν /∈ Z<1, RDρ
t gν(t) = gν−ρ(t). As a consequence, we have RDν+n

t gν(t) = g−n(t) = 0
for n ∈ Z>−1.

Remark 2. Let ρ1 ∈ C, ρ2 ∈ C, ν ∈ C\Z<1 and gν(t) := 1
Γ(ν) tν−1H(t). Then, the index law:

RDρ1
t RDρ2

t gν(t) = RDρ2
t RDρ1

t gν(t) does not always hold. An example is given in the book [4]
(p. 108); see also [5] (p. 48).

In [1,6], discussions are made of an ordinary differential equation, which is expressed
by (1) for ρl = n − l, in terms of distribution theory, and with the aid of the analytic
continuation of Laplace transform, respectively. In those papers, solutions are given
of differential equations with an inhomogeneous term f (t), which satisfies one of the
following three conditions.

Condition 1. (i) f (t) = f0(t)H(t), where f0(t) is locally integrable on R>0.

(ii) f (t) = RDβ
t [ fβ(t)H(t)], where β ∈ C\Z>−1, and fβ(t) is locally integrable on R>0.

(iii) f (t) = RDβ+1
t H(t) = 1

Γ(−β)
t−β−1H(t), where β ∈ C\Z>−1.

1.1. Green’s Function in Distribution Theory

In a recent paper [5], the solution of Euler’s differential equation in distribution theory
is compared with the solution in nonstandard analysis. In distribution theory [1,7–9], we
use distribution H̃(t), which corresponds to function H(t), differential operator D and
distribution δ(t) = DH̃(t), which is called Dirac’s delta function.
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When ν ∈ C+ and n ∈ Z>0, g̃ν(t) := 1
Γ(ν) tν−1H̃(t) = D−ν+1H̃(t) = D−νδ(t) is a

regular distribution, and Dn g̃ν(t) = Dn−ν+1H̃(t) = Dn−νδ(t) is a distribution but is not a
regular one, if ν− n ∈ C\C+.

As a consequence, when ρ = −ν ∈ C and n ∈ Z>0, we have

Dρ+1H̃(t) = Dρδ(t) = D−νδ(t) =
{

g̃ν(t), ν = −ρ ∈ C+,
Dn g̃−ρ+n(t), −ρ + n ∈ C+.

(5)

In place of (4), for ρ1 ∈ C and ρ ∈ C, we now have Dρ1 Dρδ(t) = Dρ1+ρδ(t).

Remark 3. Let ρ1 ∈ C, ρ2 ∈ C and ρ ∈ C. Then, the index law:

Dρ1 Dρ2 Dρδ(t) = Dρ1+ρ2 Dρδ(t) = Dρ1+ρ2+ρδ(t), (6)

always holds.

Remark 4. In solving (1) in [1], the Green’s function G̃(t, τ) in distribution theory is introduced by

pn(t, D)G̃(t, τ) = δ(t− τ). (7)

Lemma 1. Let uc(t, τ) be a complementary solution of Equation (1) for t > τ, and G0(t, τ), which
is given by

G0(t, τ) = uc(t, τ)H(t− τ), (8)

satisfy

∫ t

−∞
[pn(x, RDx)G0(x, τ)]dx = H(t− τ) =

{
1, t > τ,
0, t ≤ τ.

(9)

Then G̃(t, τ) = G0(t, τ)H̃(t− τ) is the Green’s function defined in Remark 4.

In [1], the following theorem is given.

Theorem 1. Let f (t) satisfy Condition 1 (i) and G0(t, τ) be the one given in Lemma 1. Then u f (t)
given by

u f (t) =
∫ t

−∞
G0(t, τ) f (τ)dτ =

∫ ∞

−∞
G0(t, τ) f (τ)dτ, (10)

is a particular solution of Equation (1).

Proof. By using Equations and (9), we have∫ t

0
pn(x, RDx)u f (x)dx=

∫ t

0
dx[pn(x, RDx)

∫ x

0
G0(x, τ) f (τ)H(τ)dτ]

=
∫ t

0
[
∫ t

τ
pn(x, RDx)G0(x, τ)dx] f (τ)H(τ)dτ (11)

=
∫ t

0
H(t− τ) f (τ)H(τ)dτ =

∫ t

0
f (τ)H(τ)dτ.

By taking the derivative of the first and the last member in this equation with respect to t,
we confirm that Equation (1) is satisfied by u(t) = u f (t).

1.2. Preliminaries on Nonstandard Analysis

In the present paper, we use nonstandard analysis [10], where infinitesimal num-
bers are used. We denote the set of all infinitesimal real numbers by R0. We also use
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R0
>0 = {ε ∈ R0 | ε > 0}, which is such that if ε ∈ R0

>0 and N ∈ Z>0, then ε < 1
N . We use

Rns, which has subsets R and R0. If x ∈ Rns and x /∈ R, x is expressed as x1 + ε by x1 ∈ R
and ε ∈ R0, where x1 may be 0 ∈ R. Equation x ' y for x ∈ Rns and y ∈ Rns, is used, when
x− y ∈ R0. We denote the set of all infinitesimal complex numbers by C0, which is the set
of complex numbers z which satisfy |Re z| + |Im z|∈ R0. We use Cns, which has subsets C
and C0. If z ∈ Cns and z /∈ C, z is expressed as z1 + ε by z1 ∈ C and ε ∈ C0, where z1 may
be 0 ∈ C.

Remark 5. In nonstandard analysis [10], in addition to infinitesimal numbers, we use unlimited
numbers, which are often called infinite numbers. In the present paper, we do not use them, but if we
use them, we have to consider sets R∞ and C∞ such that if ω ∈ R∞, there exists ε ∈ R0 satisfying
ω = 1

ε , and if ω ∈ C∞, there exists ε ∈ C0 satisfying ω = 1
ε , and then Rns = R∪R0 ∪R∞ and

Cns = C∪C0 ∪C∞.

In place of (4), we now use

RDρ
t

1
Γ(ν + ε)

tν−1+εH(t) =
1

Γ(ν− ρ + ε)
tν−ρ−1+ε H(t), (12)

for all ρ ∈ C and ν ∈ C, where ε ∈ R0
>0.

Lemma 2. Let ρ1 ∈ C, ρ2 ∈ C, ν ∈ C, ε ∈ R0
>0 and gν+ε(t) := 1

Γ(ν+ε)
tν+ε−1H(t). Then, the

index law:

RDρ1
t RDρ2

t gν+ε(t) = RDρ1+ρ2
t gν+ε(t) = gν−ρ1−ρ2+ε(t), (13)

always holds.

Remark 6. When ε ∈ R0 or ε ∈ C0, we often ignore terms of O(ε) compared with a term of O(ε0).
For instance, when ν ∈ R>0 and ν− ρ ∈ R>0, we adopt 1

Γ(ν+ε)
tν−1+εH(t) ' 1

Γ(ν) tν−1+εH(t),
and also

RDρ
t

1
Γ(ν)

tν−1+εH(t) ' 1
Γ(ν− ρ)

tν−ρ−1+εH(t), (14)

in place of (12). In the following, we often use “=” in place of “'”.

In the present study in nonstandard analysis, ε ∈ R0
>0 is used, and H(t) and

δ(t) = DH̃(t), respectively, are replaced by

Hε(t) := RD−ε
t H(t) =

1
Γ(ε + 1)

tεH(t) ' tεH(t), (15)

which tends to H(t) in the limit ε→ 0, and by

δε(t) :=
d
dt

Hε(t) =
d
dt

1
Γ(ε + 1)

tεH(t) =
1

Γ(ε)
tε−1H(t) ' εtε−1H(t). (16)

Lemma 3. In the notation in Remark 1, Hε(t) = g1+ε(t), δε(t) = gε(t), and we have

RDε
t Hε(t) = RDε

t g1+ε(t) = g1(t) = H(t), RDε
t δε(t) = RDε

t gε(t) = g0(t) = 0. (17)

Lemma 4. Let ε ∈ R0
>0, τ ∈ R, and f (t) be locally integrable on R>τ . Then∫ ∞

−∞
δε(t− x) f (x)H(x− τ)dx = RD−ε

t [ f (t)H(t− τ)]. (18)
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Proof. Since δε(t− x) = RD−ε+1
t H(t− x), we have∫ ∞

−∞
δε(t− x) f (x)H(x− τ)dx = RD−ε+1

t

∫ ∞

−∞
H(t− x) f (x)H(x− τ)dx

= RD−ε+1
t

∫ t

τ
f (x)H(x− τ)dx = RD−ε

t [ f (t)H(t− τ)]. (19)

1.3. Summary of the Following Sections

In Section 2, a recipe of solution of Equation (1), in nonstandard analysis, is presented.
We there consider the solution of the following equation for ũ(t):

p̃n,ε(t, RDt)ũ(t) = f̃ (t), (20)

where ε ∈ R0
>0 and

p̃n,ε(t, RDt) := RD−ε
t pn(t, RDt)RDε

t . (21)

Here, the inhomogeneous terms f (t) and f̃ (t) are assumed to satisfy one of the
following four conditions.

Condition 2. Let ε ∈ R0
>0 and β ∈ C.

(i) f (t) = f0(t)H(t) and f̃ (t) = RD−ε
t f (t) + cεδε(t), where f0(t) is locally integrable on R>0

and cε is a constant.
(ii) f (t) = RDβ

t fβ(t) and f̃ (t) = RDβ
t f̃β(t), where

f̃β(t) = RD−ε
t fβ(t) + cβ,εδε(t), fβ(t) = fβ,0(t)H(t), (22)

fβ,0(t) is locally integrable on R>0, and cβ,ε is a constant.

(iii) f̃ (t) = RDβ
t f̃β(t), where f̃β(t) = RDtHε(t) = δε(t). When β ∈ Z>−1, f (t) = 0, and

when β /∈ Z>−1, f (t) = RDβ+1
t H(t).

(iv) f̃ (t) and f (t) are expressed as follows:

f̃ (t)=
∞

∑
l=1

cl · RDβl
t δε(t) =

∞

∑
l=1

cl ·
tε−1−βl

Γ(ε− βl)
H(t), f (t) =

∞

∑
l=1

dl · RDβl+1
t H(t),(23)

respectively, where cl ∈ C are constants, βl ∈ C satisfy −Re βl ≥ −Re β1 ∈ R, for all
l ∈ Z>0, and dl = cl if βl /∈ Z>−1, and dl = 0 if βl ∈ Z>−1.

Remark 7. Lemma 3 shows that when Condition 2 (i) is satisfied, RDε
t f̃ (t) = f (t), and

f̃ (t) = RD−ε
t f (t) does not always hold, and when Condition 2 (iii) is satisfied, RDε

t f̃β(t) = 0.

In Sections 3 and 4, full expressions of the Green’s functions and the solutions, are
derived along the recipe given in Section 2, for Kummer’s differential equation:

pK(t, RDt)u(t) := [t
d2

dt2 + (c− bt)
d
dt
− ab]u(t) = f (t), (24)

where a, b and c are constants satifying a 6= 0 and b 6= 0.
Section 5 is for Conclusion. In Section 6, a concluding remark is given.

2. Recipe of Solution of Differential Equation, in Nonstandard Analysis

In obtaining a particular solution of Equation (1) for f̃ (t) satisfying Condition 2 (i), in
place of the Green’s function defined in Remark 4, we use it defined in the following definition.
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Definition 2. Let p̃n,ε(t, RDt) be given by Equation (21). Then for ε ∈ R0
>0 and τ ∈ R, the

Green’s function Gε(t, τ) for Equation (1) satisfies

p̃n,ε(t, RDt)Gε(t, τ) = δε(t− τ). (25)

Lemma 5. Let Gε(t, τ) be defined as in Definition 2, and G0(t, τ) := RDε
t Gε(t, τ). Then G0(t, τ)

is a complementary solution of Equation (1) on R>τ , and RD−1
t pn(t, RDt)G0(t, τ) = 1 at any

value of t satisfying t > τ.

Proof. These are confirmed by applying RDε
t and RD−1+ε

t to Equation (25), by noting
Lemma 3.

Lemma 6. Let ũc(t) be a complementary solution of Equation (20) on R>0, and uc(t) := RDε
t ũc(t).

Then uc(t) is a complementary solution of Equation (1) on R>0.

Proof. This is confirmed by replacing ũ(t) and f̃ (t) by ũc(t) and 0 in Equation (20), and
then applying RDε

t to the equation.

Theorem 2. Let Condition 2 (i) be satisfied, Gε(t, τ) and G0(t, τ) be given as in Lemma 5. Then
ũ f (t) given by

ũ f (t)=
∫ ∞

−∞
Gε(t, τ) f (τ)dτ + cεGε(t, 0), (26)

is the particular solution of Equation (20) for the term f̃ (t), and u f (t) given by

u f (t)= RDε
t ũ f (t) =

∫ ∞

−∞
G0(t, τ) f (τ)dτ + cεG0(t, 0), (27)

consists of the particular solution for the term f (t) and a complementary solution of Equation (1).

Proof. By using Equations (27), (25) and (18), we obtain

p̃n,ε(t, RDt)ũ f (t)= p̃n,ε(t, RDt)[
∫ ∞

−∞
Gε(t, τ) f (τ)dτ + cεGε(t, 0)]

=
∫ ∞

−∞
δε(t− τ) f (τ)dτ + cεδε(t) = RD−ε

t f (t) + cεδε(t) = f̃ (t), (28)

which is a proof for ũ f (t).

When Condition 2 (ii) is satisfied, we introduce the transformed differential equations
for w(t) = RD−β

t u(t) and w̃(t) = RD−ε
t w(t) from Equations (1) and (20), respectively, by

p̃n,β(t, RDt)w(t)= fβ(t), (29)

p̃n,β+ε(t, RDt)w̃(t)= f̃β(t), (30)

where

p̃n,β(t, RDt) := RD−β
t pn(t, RDt)RDβ

t , (31)

p̃n,β+ε(t, RDt) := RD−β−ε
t pn(t, RDt)RDβ+ε

t . (32)

Lemma 7. Let Equation (30) and f̃ (t) = RDβ
t f̃β(t) hold. Then by using (32), we confirm that

Equation (20) for ũ(t) = RDβ
t w̃(t) holds.

Remark 8. Let ũc(t) and w̃c(t) be complementary solutions of Equation (20) and (30), respectively,
on R>0. Then by using (32), we confirm that they are related by ũc(t) = RDβ

t w̃c(t).
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Definition 3. For ε ∈ R0
>0 and τ ∈ R, the Green’s function Gβ,ε(t, τ) for Equation (29) satisfies

p̃n,β+ε(t, RDt)Gβ,ε(t, τ) = δε(t− τ). (33)

Lemma 8. Let Gβ,ε(t, τ) be defined as in Definition 3, and Gβ,0(t, τ) := RDε
t Gβ,ε(t, τ). Then

Gβ,0(t, τ) is a complementary solution of Equation (29) on R>τ .

Proof. A proof of this lemma is obtained from that of Lemma 5, by replacing (25) by (33),
p̃n,ε by p̃n,β+ε, Gε by Gβ,ε, pn by p̃n,β, G0 by Gβ,0, and (1) by (29).

Theorem 3. Let Condition 2 (ii) be satisfied, and Gβ,ε(t, τ) satisfy Equation (33). Then w̃ f (t) and
ũ f (t) given by

w̃ f (t) :=
∫ ∞

−∞
Gβ,ε(t, τ) fβ(τ)dτ + cβ.εGβ,ε(t, 0), ũ f (t) := RDβ

t w̃ f (t), (34)

are particular solutions of Equations (30) and (20), respectively.

Proof. Theorem 2 states that when f̃ (t) satisfies Condition 2 (i) and Gε(t, τ) satisfies (30),
the solution ũ f (t) of (20) is expressed as (26). This shows that when f̃β(t) satisfies
Condition 2 (ii) and Gβ,ε(t, τ) satisfies (33), the solution w̃ f (t) of (30) is given by the first
equation in (34). The second equation in it is due to Lemma 7.

When Condition 2 (iii) is satisfied, Equation (20) is expressed as

p̃n,ε(t, RDt)ũ(t) = RDβ
t δε(t) =

1
Γ(ε− β)

tε−β−1H(t). (35)

Since Condition 2 (iii) is a special case of Condition 2 (ii) in which fβ(t) = 0 and
cβ,ε = 1, we obtain the following theorem from Theorem 3.

Theorem 4. Let Condition 2 (iii) be satisfied, and Gβ,ε(t, 0) satisfy Equation (33) for τ = 0. Then
w̃ f (t) and ũ f (t) given by

w̃ f (t) = Gβ,ε(t, 0), ũ f (t) = RDβ
t Gβ,ε(t, 0), (36)

are particular solutions of Equations (30) and (20), respectively.

Theorem 4 shows that if f̃ (t) = RDβ
t δε(t), the particular solution of (20) is given by

ũ f (t) = RDβ
t Gβ,ε(t, 0). As a consequence, we have

Theorem 5. Let f̃ (t) satisfy Condition 2 (iv), so that it is given by Equation (23). Then the
particular solution of Equation (20) is given by

ũ f (t) =
∞

∑
l=1

cl · RDβl
t Gβl ,ε(t, 0). (37)

3. Solution of Kummer’s Differential Equation, I

We construct the transformed differential equation of Equation (24), which corresponds
to Equation (20). For this purpose, we use the following lemma.

Lemma 9. Let λ ∈ C+, m ∈ Z>−1 and ρ = m− λ. Then

RDρ
t [tu(t)] = t · RDρ

t u(t) + ρ · RDρ−1
t u(t). (38)
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Proof. When m = 0 and ρ = −λ, this is confirmed with the aid of Formula (2), as follows:

RD−λ
t [tu(t)] =

1
Γ(λ)

∫ t

−∞
(t− ξ)λ−1ξu(ξ)dξ

=
1

Γ(λ)

∫ t

−∞
(t− ξ)λ−1(t− (t− ξ))u(ξ)dξ = t · RD−λ

t u(t)− λ · RD−λ−1
t u(t).

We prove (38) by mathematical induction. In fact, when (38) holds for a value n ∈ Z>−1 of
m, we confirm it to hold even for m = n + 1, by applying d

dt to (38).

Remark 9. When u(t) = tν+ε

Γ(ν+ε+1) H(t), by using (12), we confirm (38) as follows:

RDρ
t [tu(t)]= RDρ

t [t
tν+ε

Γ(ν + ε + 1)
H(t)] = (ν + ε + 1)RDρ

t [
tν+ε+1

Γ(ν + ε + 2)
H(t)]

= ((ν + ε + 1− ρ) + ρ)
tν+ε−ρ+1

Γ(ν + ε− ρ + 2)
H(t) = t · RDρ

t u(t) + ρ · RDρ−1
t u(t).

With the aid of Formula (38) for ρ = −ε, we construct the following transformation of
Equation (24) for ũ(t) = RD−ε

t u(t), which corresponds to Equation (20):

p̃K,ε(t, RDt)ũ(t) := RD−ε
t pK(t, RDt)RDε

t ũ(t) = RD−ε
t [t

d2

dt2 + (c− bt)
d
dt
− ab]RDε

t ũ(t)

= [t
d2

dt2 + (c− ε− bt)
d
dt
− (a− ε)b]ũ(t) = f̃ (t). (39)

When Condition 2 (i) is satisfied, in accordance with Definition 2, we define the Green’s
function GK,ε(t, τ), which satisfies

p̃K,ε(t, RDt)GK,ε(t, τ) = δε(t− τ), (40)

for τ ∈ R. The solutions of Equations (39) and (24) are then given with the aid of Theorem 2
and the following lemma.

Lemma 10. Let c /∈ Z<1. Then there exist two complementary solutions of Equation (24), which
are given by

K1(t)= 1F1(a; c; bt) :=
∞

∑
k=0

(a)kbk

k!(c)k
tk, t > 0, (41)

K2(t)=
1

Γ(2− c)
t1−c · 1F1(a− c + 1; 2− c; bt) =

∞

∑
k=0

(a− c + 1)kbk

k!Γ(2− c + k)
t1−c+k, t > 0, (42)

where (a)k for k ∈ Z>0 and k = 0, denote (a)k = ∏k−1
l=0 (a + l) = Γ(a+k)

Γ(a) and (a)0 = 1,
respectively.

In the present paper, these equations are proved in Lemmas 11 and 12 given below.

Lemma 11. Let K1(t) be given by (41). Then GK,ε(t, 0) and GK,0(t, 0), given by

GK,ε(t, 0)=
1

−1 + c

∞

∑
k=0

(a)kbk

(c)kΓ(k + ε + 1)
tk+εH(t), (43)

GK,0(t, 0)= RDε
t GK,ε(t, 0) =

1
−1 + c

K1(t)H(t), (44)
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are a particular solution of Equation (40) for τ = 0, and a complementary solution of Equation (24),
respectively.

A proof of the statement for GK,ε(t, 0) is given in Section 3.1, and the statement for
GK,0(t, 0) is due to Lemma 5.

Lemma 12. Let K2(t) be given by (42). Then ũc(t) and uc(t), given by

ũc(t)=
∞

∑
k=0

(a− c + 1)kbk

k!Γ(2− c + k + ε)
t1−c+ε+k H(t), (45)

uc(t)= RDε
t ũc(t) = K2(t)H(t), (46)

are complementary solutions of Equations (39) and (24), respectively.

A proof of the statement for ũc(t) is given in Section 3.1, and the statement for uc(t) is
due to Lemma 6.

The differential equation satisfied by the Green’s function GK,ε(t, τ) for Equation (24)
is given by Equation (40).

Lemma 13. Let 0 < τ < t, K1(t) and K2(t) be those in Lemma 10, and GK,0(t, τ) be given by

GK,0(t, τ) =
1

τKψ′τ(τ)
ψτ(t)H(t− τ) =

1
τKψ′τ(τ)

∞

∑
k=1

1
k!

ψ
(k)
τ (τ)(t− τ)k H(t− τ), (47)

where τK = τ and ψτ(t) = K1(τ)K2(t)− K2(τ)K1(t).
Then GK,ε(t, τ), given by GK,ε(t, τ) = RD−ε

t GK,0(t, τ), satisfies Equation (40).

Proof. Taking account of Lemma 5, we choose the complementary solution of Equation (24)
on R>τ , given by G̃K,0(t, τ) = C1 · GK,0(t, τ), where C1 is a constant, and then confirm that
G̃K,ε(t, τ) = C1 · RD−ε

t GK,0(t, τ) satisfies (40), when C1 = 1, as follows.
We put x = t− τ, and we express G̃K,ε(t, τ) by

ṽ(x) := G̃K,ε(τ + x, τ) =
∞

∑
k=1

ak
xk+ε

Γ(k + ε + 1)
H(x), (48)

where ak are constants, and a1 6= 0. Then (40) is expressed as

p̃K,ε(τ + x, RDx)ṽ(x) = [τKa1
xε−1

Γ(ε)
+ O(xε)]H(x) =

xε−1

Γ(ε)
H(x). (49)

This is satisfied when a1 = 1
τK

.

Theorem 6. Let f̃ (t) satisfy Condition 2 (i), GK,ε(t, τ) satisfy Equation (40), GK,ε(t, τ) and
GK,0(t, τ) for τ > 0 be given in Lemma 13, and GK,ε(t, 0) and GK,0(t, 0) be given in Lemma 11.
Then Theorem 2 shows that we have the solutions ũ f (t) and u f (t) of Equations (39) and (24),
respectively, which are given by

ũ f (t) :=
∫ ∞

−∞
GK,ε(t, τ) f (τ)dτ + cεGK,ε(t, 0), (50)

u f (t) := RDε
t ũ f (t) =

∫ ∞

−∞
GK,0(t, τ) f (τ)dτ + cεGK,0(t, 0). (51)

See Lemma 12 for the complementary solutions ũc(t) and uc(t).
This result is derived with the aid of the complementary solutions given by

Equations (41) and (42), and hence by assuming c /∈ Z<1.
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3.1. Derivations of Equations for GK,ε(t, 0) and ũc(t) by Using Frobenius’ Method

Equation (40) shows that ũ(t) = GK,ε(t, 0), given by Equation (43), is the particular
solution of Equation (39) in which f̃ (t) = δε(t), and ũ(t) = ũc(t), given by Equation (45), is
the complementary solution of Equation (39) in which f̃ (t) = 0.

We assume that the solution ũ(t) of Equation (39) is expressed by

ũ(t) =
∞

∑
k=0

pk
1

Γ(α + k + 1)
tα+k H(t), (52)

where α and pk are constants, and p0 6= 0. Then Equation (39) is expressed as

p̃K,ε(t, RDt)ũ(t)=
∞

∑
k=0

pk[(α + k− 1 + c− ε)
tα+k−1

Γ(α + k)

−b(α + k + a− ε)
tα+k

Γ(α + k + 1)
]H(t)

= p0(α− 1 + c− ε)
tα−1

Γ(α)
H(t) +

∞

∑
k=1

[pk(α + k− 1 + c− ε)

−bpk−1(α + k− 1 + a− ε)]
tα+k−1

Γ(α + k)
H(t) = f̃ (t). (53)

When f̃ (t) = δε(t) = tε−1

Γ(ε) H(t), Equation (53) is satisfied, if

α= ε, p0 =
1

−1 + c
; pk = bpk−1

k− 1 + a
k− 1 + c

= bk p0
(a)k
(c)k

, k ∈ Z>0. (54)

By using these in Equation (52) and putting ũ(t) = GK,ε(t, 0), we obtain Equation (43).
When f̃ (t) = 0, Equation (53) is satisfied, if

α= 1− c + ε; pk = bpk−1
k + a− c

k
= bk p0

(a− c + 1)k
k!

, k ∈ Z>0. (55)

By using these in Equation (52) and putting ũ(t) = p0ũc(t), we obtain Equation (45).

4. Solution of Kummer’s Differential Equation, II

We construct the transformed differential equations of Equation (24), which appear in
Theorems 3–5. Corresponding to Equations (29) and (30), we have the following equations
for w(t) = RD−β

t u(t) and w̃(t) = RD−ε
t w(t) from Equation (24) satisfying Condition 2 (ii),

as follows:

p̃K,β(t, RDt)w(t) := RD−β
t pK(t, RDt)RDβ

t w(t)

= [t
d2

dt2 + (c− β− bt)
d
dt
− (a− β)b]w(t) = fβ(t), (56)

p̃K,β+ε(t, RDt)w̃(t) := RD−β−ε
t pK(t, RDt)RDβ+ε

t w̃(t)

= [t
d2

dt2 + (c− β− ε− bt)
d
dt
− (a− β− ε)b]w̃(t) = f̃β(t). (57)

Remark 10. In this section, we consider Equations (56) and (57) in place of Equations (24) and (39),
respectively, and hence the equations in this section are obtained from the corresponding equations
in Section 3, by replacing c by c− β, a by a− β, f by fβ, f̃ by f̃β, u by w, and ũ by w̃. They will be
given without derivation.
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Lemma 14. Lemma 10 and Remark 10 show that if c− β /∈ Z<1, there exist two complementary
solutions of Equation (56), which are given by

Kβ,1(t)= 1F1(a− β; c− β; bt) =
∞

∑
k=0

(a− β)kbk

k!(c− β)k
tk, t > 0, (58)

Kβ,2(t)=
1

Γ(2− c + β)
t1−c+β · 1F1(a− c + 1; 2− c + β; bt)

=
∞

∑
k=0

(a− c + 1)kbk

k!Γ(2− c + β + k)
t1−c+β+k = RD−β

t K2(t)H(t), t > 0. (59)

In accordance with Definition 3, we define the Green’s function GK,β,ε(t, τ),
which satisfies

p̃K,β+ε(t, RDt)GK,β,ε(t, τ) = δε(t− τ), (60)

for τ ∈ R. The solutions of Equations (57), (56), (39) and (24) are then given with the aid of
Theorems 3, 4 and 5, and Lemma 14.

Remark 11. Equation (60) is obtained from Equation (40), by replacing c by c− β, a by a− β,
and GK,ε by GK,β,ε.

In Section 4, formulas are derived with the aid of two complementary solutions given
by (58) and (59), and hence they hold when c− β /∈ Z<1.

Lemma 15. Let Kβ,1(t) be given by Equation (58). Then Lemma 11, Remark 10 and Lemmas 14 and 5
show that GK,β,ε(t, 0) and GK,β,0(t, 0), given by

GK,β,ε(t, 0) = RD−ε
t GK,β,0(t, 0), GK,β,0(t, 0) =

1
−1 + c− β

Kβ,1(t)H(t), (61)

are a particular solution of Equation (60) for τ = 0, and a complementary solution of Equation (56),
respectively.

With the aid of Remark 11, we have the following lemma for GK,β,ε(t, τ) for τ > 0.

Lemma 16. The lemma, which is obtained from Lemma 13 by replacing K1 by Kβ,1, Lemma 10 by
Lemma 14, K2 by Kβ,2, GK,ε by GK,β,ε, and GK,0 by GK,β,0, holds.

Theorem 7. Let Condition 2 (iii) be satisfied, and GK,β,ε(t, 0) be given in Equation (61). Then,
Theorem 4 shows that w̃ f (t) := GK,β,ε(t, 0) and ũ f (t), given by

ũ f (t) := RDβ
t w̃ f (t) =

1
−1 + c− β

∞

∑
k=0

(a− β)kbk

(c− β)kΓ(k− β + 1 + ε)
tk−β+εH(t), (62)

are particular solutions of Equations (57) and (39), respectively.

Corollary 1. Let β = n ∈ Z>−1, and ũ f (t) be the solution of (39), given by Equation (62). Then
u f (t) = RDε

t ũ f (t) and ũ f (t) are expressed by

u f (t)=
∞

∑
k=n

(a− n)kbk

(−1 + c− n)k+1

1
(k− n)!

tk−nH(t), (63)

ũ f (t)' RD−ε
t u f (t) + ε

n−1

∑
k=0

(a− n)kbk(−1)n−k−1

(−1 + c− n)k+1
(n− k− 1)!tk−n+ε H(t), (64)
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where u f (t) is a complementary solution of Equation (24), for n ∈ Z>−1.

In obtaining the last term in Equation (64), we use the following formulas:

1
Γ(z)

=
sin(πz)Γ(1− z)

π
;

1
Γ(−m + ε)

' (−1)mε ·m!, m ∈ Z>−1. (65)

Theorem 7 shows that if f̃ (t) = RDβ
t δε(t), the particular solution of Equation (39) is

given by Equation (62). As a consequence, we have the following theorem.

Theorem 8. Let f̃ (t) satisfy Condition 2 (iv), so that it is given by Equation (23). Then the
particular solution of Equation (39) is given by

ũ f (t) =
∞

∑
l=1

cl ·
1

−1 + c− βl

∞

∑
k=0

(a− βl)kbk

(c− βl)kΓ(k− βl + 1 + ε)
tk−βl+εH(t). (66)

Condition c− β /∈ Z<1 in Lemma 14 requires the condition c− βl /∈ Z<1 for all l ∈ Z>0, in
the present case.

Lemma 17. Lemma 12, Remark 10 and Lemma 6 show that w̃c(t) and wc(t), given by

w̃c(t) = RD−ε
t wc(t), wc(t) :=Kβ,2(t)H(t) = RD−β

t K2(t)H(t), (67)

are complementary solutions of Equations (57) and (56), respectively, and then Remark 8 shows
that ũc(t) and uc(t), given by ũc(t) = RDβ

t w̃c(t) and uc(t) = RDε
t ũc(t), respectively, are the

complementary solutions of Equations (39) and (24), which are given in Lemma 12.

Theorem 9. Let fβ(t) satisfy Condition 2 (ii), GK,β,ε(t, τ) for τ > 0, satisfy Equation (60), and
be determined by Lemma 16, and GK,β,ε(t, 0) be given in Equation (61). Then Theorem 3 shows
that the particular solutions of Equations (57) and (39), respectively, are given by

w̃ f (t)=
∫ ∞

−∞
GK,β,ε(t, τ) fβ(τ)dτ + cβ,εGK,β,ε(t, 0), ũ f (t) = RDβ

t w̃ f (t). (68)

Their complementary solutions w̃c(t) and ũc(t) are given in Lemma 17.

5. Conclusions

In [1], the problem of obtaining the particular solution of an inhomogeneous ordinary
differential equation with polynomial coefficients is discussed in terms of the Green’s
function, in the framework of distribution theory. It is applied to Kummer’s and the
hypergeometric differential equation.

In [2], a compact recipe is presented, which is applicable to the case of an inhomoge-
neous fractional differential equation, which is expressed by Equation (1). In the recipe, the
particular solution is given by Theorems 2, 3 or 4, according as the inhomogeneous part
satisfies Condition 2 (i), (ii) or (iii), in the framework of nonstandard analysis. It is applied
to a simple fractional and an ordinary differential equation.

In Section 2, in the present paper, a compact revised recipe in nonstandard analysis
is presented, which is more closely related with distribution theory. In this case, the
particular solution is given by Theorems 2, 3, 4 or 5, according as the inhomogeneous part
satisfies Condition 2 (i), (ii), (iii) or (iv). In Sections 3 and 4, it is applied to inhomogeneous
Kummer’s differential Equation (24). In solving Equation (24) in nonstandard analysis,
we construct transformed Equation (39) from it. In Section 3, we obtain the solution of
Equation (39) by using the Green’s function, and obtain the solution of Equation (24) from it.
In Section 4, we construct further transformed Equation (57) from Equation (39), obtain the
solutions of Equation (57) by using the Green’s function, and then obtain the solutions of
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Equations (39) and (24) from them. In Corollary 1, a nonstandard solution, which involves
infinitestimal terms, is presented.

In [11], an ordinary differential equation is expressed in terms of blocks of classified
terms. When the equation is expressed by two blocks of classified terms, the complementary
solutions are obtained by using Frobenius’ method. In Section 3.1, the Green’s function and
a complementary solution for Equation (39) are presented by using Frobenius’ method.

One of reviewers of this paper asked the author to cite papers [12–14], which discuss
the solutions of fractional differential equations. When the solutions of the differential
equations, which are obtained with the aid of distribution theory, are of interest, the solution
by using nonstandard analysis will be useful.

6. Concluding Remark

In the book of [9], Dirac’s delta function δ(t) is introduced as a limit of zero width, of
a function which has a single peak at t = 0 and unit area, and is defined as a functional. In
the present paper, we study problems in nonstandard analysis, by using a function δε(t)
which has an infinitesimal width ε and unit area.

In a preceding paper [1], the problem of obtaining the particular solution of an in-
homogeneous ordinary differential equation, is discussed in terms of distribution theory.
In another paper [2], we discussed solution of a fractional and a simple ordinary differ-
ential equation, in terms of nonstandard analysis by using two functions δε1(t) and δε(t)
expressed by two infinitesimal numbers ε1 and ε. In the present paper, we proposed a
revised recipe in terms of nonstandard analysis, by using the function δε(t) in place of
distribution δ(t) in distribution theory. In the present paper, the recipe is applied only to
Kummer’s differential equation. The application of the present recipe to other differential
equations studied in [1,2], will be given in a separate paper in preparation.

The author desires to have a day when we discuss the merit of using two functions
δε1(t) and δε(t).

Funding: This research received no external funding.

Acknowledgments: The author is indebted to Ken-ichi Sato, who collaborated in writing preceding
papers and an early stage of the present paper, but left from mathematics because of his illness.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Morita, T.; Sato, K. Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s

Function. Mathematics 2017, 5, 62. [CrossRef]
2. Morita, T.; Sato, K. Solution of Inhomogeneous Fractional Differential Equations with Polynomial Coefficients in Terms of the

Green’s Function, in Nonstandard Analysis. Mathematics 2021, 9, 1944. [CrossRef]
3. Morita, T.; Sato, K. Liouville and Riemann–Liouville Fractional Derivatives via Contour Integrals. Frac. Calc. Appl. Anal. 2013, 16,

630–653. [CrossRef]
4. Miller, K.S.; Ross, B. An Introduction to the Frational Calculus and Fractional Differential Equations; Wiley and Sons, Inc.: New York,

NY, USA, 1993.
5. Morita, T. Solution of Euler’s Differential Equation and AC-Laplace Transform of Inverse Power Functions and Their Pseudofunc-

tions, in Nonstandard Analysis. J. Adv. Math. Comput. Sci. 2021, 36, 47–60. [CrossRef]
6. Morita, T.; Sato, K. Solution of Inhomogeneous Differential Equations with Polynomial Coefficients in Terms of the Green’s

Function and AC-Laplace Transform. J. Adv. Math. Comput. Sci. 2018, 28, 1–22. [CrossRef]
7. Schwartz, L. Théorie des Distributions; Hermann: Paris, France, 1966.
8. Gelfand, I.M.; Silov, G.E. Generalized Functions; Academic Press Inc.: New York, NY, USA, 1964; Volume 1.
9. Zemanian, A.H. Distribution Theory and Transform Analysis; Dover Publ. Inc.: New York, NY, USA, 1965.
10. Diener, F.; Diener, M. Tutorial. In Nonstandard Analysis in Practice; Springer: Berlin/Heidelberg, Germany, 1995; pp. 1–21.
11. Morita, T.; Sato, K. A Study on the Solution of Linear Differential Equations with Polynomial Coefficients. J. Adv. Math. Comput.

Sci. 2018, 28, 1–15. [CrossRef]

http://doi.org/10.3390/math5040062
http://dx.doi.org/10.3390/math9161944
http://dx.doi.org/10.2478/s13540-013-0040-9
http://dx.doi.org/10.9734/jamcs/2021/v36i130329
http://dx.doi.org/10.9734/JAMCS/2018/43059
http://dx.doi.org/10.9734/JAMCS/2018/43000


AppliedMath 2022, 2 392

12. Khan, A.; Alshehri, H.M.; Gómez-Aguilar, J.F.; Khan, Z.A.; Fernández-Anaya, G. A Predator-prey Model Involving Variable-order
Fractional Differential Equations with Mittag-Leffler Kernel. Adv. Differ. Equ. 2021, 183. [CrossRef]

13. Sher, M.; Shah, K.; Khan, Z.A.; Khan, H.; Kahn, A. Computational and Theoretical Modeling of the Transmission Dynamics of
Novel COVID-19 under Mittag-Leffler Power Law. Alex. Eng. J. 2020, 59, 3133–3147. [CrossRef]

14. Khan, A.; Alshehri, H.M.; Abdeljawad, T.; Al-Mdallal, Q.M. Stability Analysis of Fractional Nabla Difference COVID-19 Model.
Results Phys. 2021, 22, 103888. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/s13662-021-03340-w
http://dx.doi.org/10.1016/j.aej.2020.07.014
http://dx.doi.org/10.1016/j.rinp.2021.103888
http://www.ncbi.nlm.nih.gov/pubmed/33558842

	Introduction
	Green's Function in Distribution Theory
	Preliminaries on Nonstandard Analysis
	Summary of the Following Sections

	Recipe of Solution of Differential Equation, in Nonstandard Analysis
	Solution of Kummer's Differential Equation, I
	Derivations of Equations for GK,(t,0) and c(t) by Using Frobenius' Method

	Solution of Kummer's Differential Equation, II
	Conclusions
	 Concluding Remark
	References

