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Abstract: Alzheimer’s disease is one of the leading causes of death globally, significantly impacting
countless families and communities. In parallel, recent advancements in molecular biology and
network approaches, guided by the Network Medicine perspective, offer promising outcomes for
Alzheimer’s disease research and treatment. In this study, we aim to discover candidate therapies
for AD through drug repurposing. We combined a protein-protein interaction (PPI) network with
drug-target interactions. Experimentally validated PPI data were collected from the PICKLE meta-
database, while drugs and their protein targets were sourced from the DrugBank database. Then,
based on RNA-Seq data, we first assigned weights to edges to indicate co-expression, and secondly,
estimated differential gene expression to select a subset of genes potentially related to the disease.
Finally, small subgraphs (modules) were extracted from the graph, centered on the genes of interest.
The analysis revealed that even if there is no drug targeting several genes of interest directly, an
existing drug might target a neighboring node, thus indirectly affecting the aforementioned genes.
Our approach offers a promising method for treating various diseases by repurposing existing drugs,
thereby reducing the cost and time of experimental procedures and paving the way for more precise
Network Medicine strategies.

Keywords: Alzheimer’s disease; network medicine; drug repurposing; RNA-sequencing; protein-protein
interaction

1. Introduction

Alzheimer’s Disease (AD) stands as one of the most daunting challenges in modern
medicine [1]. As the most common form of dementia, AD affects millions worldwide,
with numbers projected to rise as the global population ages. The complexity of AD’s
etiology, combined with the limited efficacy of current treatments, underscores the urgent
need for innovative therapeutic strategies. Traditional drug discovery methods, while
invaluable, often entail prolonged timelines and exorbitant costs [2]. In light of these
challenges, there’s a growing consensus in the scientific community about the potential
of alternative approaches, such as systems biology and network medicine, to offer fresh
insights into the disease’s intricacies [3].

In parallel, the concept of drug repurposing also known as drug repurposing, has
gained traction [4]. Instead of designing new molecules from scratch, drug repurposing
seeks to identify new therapeutic applications for existing drugs. While this endeavor is
complex, it holds immense promise in decreasing drug development costs and enhancing
safety [5]. The foundation of drug repositioning lies in the understanding that a single drug
can influence multiple targets, that distinct diseases might share cellular and molecular
traits, and that a single target can have varied effects. Modern high-throughput technolo-
gies are producing data at an unprecedented rate, promoting the use of computational
methods to discern links between drugs, diseases, and targets, thereby enhancing the drug
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repurposing journey [6]. Current data analysis techniques encompass statistical methods,
machine learning, and notably, models based on biological networks. These digital tools
are bridging the gap between data production and its interpretation in the biomedical
domain [7].

In the implementation of search strategies for drug repurposing, drug-protein interac-
tion networks, which map the relationships between drugs and their protein targets, play a
pivotal role [8]. For AD, these networks can unveil potential drug candidates that might
modulate key pathways implicated in the disease [9]. This approach not only accelerates
the drug development process but also reduces associated risks and costs. Researchers can
save time using already-approved drugs, as they can perform direct phase II clinical trials.
Several promising compounds are reported that are prioritized to be used in clinical trials
with AD patients [10]. For example, several interesting studies in the field of metallodrugs
consider anticancer cisplatin derivative as a modulator of amyloid aggregation [11,12].
Yet, as with network medicine, the expanding pool of data underscores the need for more
advanced tools to harness the full potential of drug-protein networks.

Emerging strategies, like network-based drug-disease proximity, illuminate the con-
nections between drugs and their disease-related molecular targets. These methods offer a
streamlined way to identify new uses for approved drugs known for their safety, efficacy,
and potential side effects [13]. However, to rank these repurposed drug candidates or
propose new treatments, thorough validation is crucial. Since these strategies focus on
already-approved drugs, it’s feasible to test hypotheses using extensive patient data from
regular healthcare practices. This real-world data complements evidence from randomized
controlled trials, which, despite leading to drug approval, often have limitations due to
their smaller sample sizes, shorter durations, and lack of diverse patient representation.

In this work, our aim is to detect potential drug targets for AD based on known drug-
proteins and protein-protein interactions (PPIs). Focusing on proteins that play a significant
role in AD but without known drugs, the key idea is to detect drugable neighbors of these
proteins. Towards this aim, we created a drug-protein graph from high-confidence PPI and
drug-protein interaction data. Then, a scRNASeq dataset on AD was used as input to a
classification method in order to detect genes whose expression presents different patterns
between AD and control conditions. Then, for the corresponding proteins of the top-ranked
genes, we searched in the graph if they were targeted by a drug or not. In the latter case,
we searched for drugs targeting another protein that is linked with a direct PPI. Further
analyzing these drugs, we found that in several cases, although their primary aim is not
AD, they have the potential to be repurposed for this disease.

2. Materials and Methods

In summary, we collect high-fidelity data for protein-protein interactions as well as
drug-protein interactions to construct a single graph containing both types of interactions.
Then, a recent scRNASeq dataset on AD is used in conjunction with machine learning
algorithms to detect genes that differentiate between disease and control conditions. En-
richment analysis confirmed that these genes are involved in processes related to AD or
other neurodegenerative diseases. Finally, for the genes/proteins of interest, we search if
they are drug targets or if some neighbor of them has known drug targets and we further
analyze some indicative cases.

2.1. Graph Data

The PPI interaction network of the human was meticulously downloaded from the
Protein InteraCtion KnowLedgebasE (PICKLE, www.pickle.gr, (accessed on 5 August 2023)
meta-database [14]. Serving as a remarkable resource, PICKLE functions as a meta-database
by meticulously accumulating direct protein-protein interactions from renowned primary
databases such as BioGRID, Intact, and HPRD. What sets PICKLE apart is its unique
approach of integrating these interactions with an ingenious ontological scheme. This
scheme, deeply rooted in genetic information, revolves around the UniProtKB/Swiss-Prot-
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reviewed complete proteome of the human (RHCP). The beauty of this approach lies in its
ability to seamlessly amalgamate data across various levels without succumbing to any
loss stemming from conversions to specific genetic levels like genes, mRNA, or proteins.

In this endeavor, the prevailing version of PICKLE, namely version 3.3, stood as the
cornerstone. The network it harbored was acquired through the “cross-checked” filtering
mode at the UniProt level, ensuring a meticulously refined dataset. Within the intricate
fabric of this PPI network, a staggering count of 218,025 interactions gracefully intertwined
among a constellation of 16,420 nodes.

On a parallel front, the drug-protein network took its form within the realm of UniProt
(www.uniprot.org, accessed on 5 August 2023), bearing origins traceable back to the compre-
hensive DrugBank (https://go.drugbank.com/, accessed on 5 August 2023). This bipartite
marvel elegantly encompasses 25,707 interactions that seamlessly bridge 6304 distinct
drugs with a web of 3137 protein targets. This intricate interplay of molecular relationships
casts a profound light on the complexity that underpins biological systems, inviting us to
unravel more layers of this fascinating tapestry.

2.2. Gene Expression Data

Two single-cell datasets (with codes AD00801 and AD8003) on AD were obtained
from the scREAD database [15], which is a publicly available repository collecting scRNA-
seq and snRNA-seq datasets. The datasets originated from postmortem human brain
tissues demonstrating AD pathology as well as healthy, non-AD samples (GEO accession
code: GSE147528 [16]). The procured datasets encompass human brain cells from the
superior frontal gyrus region, with one dataset representing healthy control cells and the
other representing cells from AD cases, collectively accounting for a total of 66,612 cells
(32,901 disease cells and 33,711 control cells).

The two datasets were integrated using SCANORAMA [17], which is a state-of-the-art
algorithm for integration/batch effect correction. Developed to address the challenges
arising from the amalgamation of disparate datasets, SCANORAMA offers an advanced
framework that harmonizes information from multiple sources while effectively mitigating
the influences of batch effects—systematic variations introduced during data acquisition
across different experimental runs or conditions. These variations can often obscure mean-
ingful biological signals, making robust correction methods like SCANORAMA essential
for accurate and reliable analyses. At its core, SCANORAMA employs sophisticated math-
ematical and statistical techniques to transform and align the datasets, ensuring that data
points from distinct sources are placed on a common reference system. This transformation
enables meaningful comparisons and analyses, enhancing the utility of the integrated data.
One of the key strengths of SCANORAMA lies in its ability to deal with the intricacies of
biological data, where each dataset might present unique characteristics and challenges.

The algorithm leverages a variety of techniques, potentially including dimensionality
reduction methods, manifold alignment, and other data-driven approaches, to uncover
shared patterns and structures among the datasets. These techniques allow SCANORAMA
to identify sources of variation that arise not only from biological differences but also
from the technical variations introduced by different experimental setups or conditions.
Ultimately, SCANORAMA'’s goal is to provide a unified view of the integrated data that
effectively captures the underlying biological information while mitigating the confounding
effects of batch variations. By doing so, researchers can confidently perform analyses, such
as identifying commonalities, differences, and correlations across the integrated datasets,
leading to more accurate and comprehensive biological insights. Taking advantage of these
identified anchors, this methodology efficiently rectifies batch effects, providing a cohesive
integration of the datasets. Finally, the top 2000 genes displaying highest variability were
selected. This was performed by the “Scanpy” Python package [18], which is a toolkit for
analyzing single-cell gene expression data capable of efficiently dealing with large data.
The corresponding protein of each gene was obtained via the PICKLE ontological scheme.
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2.3. Drug Repurposing via the Drug-Protein Network

The scRNASeq dataset was used to detect the most significant nodes related to AD
and obtain a ranking of their ability to distinguish health and disease conditions. In detail,
the Random Forest method was employed to classify the cells as control or disease, based
on gene expression, i.e., the genes were considered as features and the cell samples as
observations. Random Forest [19] is an ensemble algorithm consisting of a large number
of classification trees (here, 100 trees were used). To avoid overfitting to training data,
each tree is given a random subset of samples, while at each node, a random subset of
variables is tested to define the best split. Then, the variable importance measurement was
extracted, a critical aspect of understanding the behavior and predictive power of machine
learning models, including Random Forest. Random Forest is an ensemble learning method
that constructs multiple decision trees during training and combines their predictions for
more accurate and robust results. Results of Random Forest are considered more robust,
especially compared to single tree classification due to randomness: (a) each tree receives a
random subsample of data and (b) in each node some variables are selected randomly to
define the best split. Variable importance measurement in the context of Random Forest
refers to assessing the significance of individual input features (here genes) in contributing
to the model’s overall predictive performance. We used the normalized Gini Importance,
which calculates the total reduction in the Gini impurity (a measure of node impurity in
decision trees) achieved by a particular feature over all trees in the Random Forest. Higher
values of the variable importance show a higher reduction, indicating that the feature is
considered more important.

It is important to note that the calculated variable importance values are relative
within the context of the model and dataset used. High variable importance suggests that
the feature is influential for the model’s predictions, but it does not necessarily imply a
causal relationship. Variable importance should be interpreted with caution and ideally
cross-validated to ensure its robustness. Specifically, at each node, the difference in class
impurity is computed before and after the data split. An important variable would lead to
a high reduction of impurity, with this having large variable importance values. For this
estimation, the out-of-bag samples were used (the samples that were randomly not selected
for each tree training).

We aggregated the PPI and the drug-protein data into a single network with two types
of nodes. For each important gene, we search on the graph if any drug exists in the
direct neighbors. We noted that for several of them, there is no known drug targeting
them. However, considering the second degree of neighbors (i.e., the neighbors of direct
neighbors), we aim to detect some drugs, which by affecting the neighbor, might affect
the gene of interest, diminishing the effect of the disease. A summary of our method
is presented in Figure 1. All processing steps were implemented in Python 3.9.3 using
in-house custom scripts.

Input
Protein-Protein . .
Interactions :> Create Find drugs in
Drug-Protein =5 neighborhood of
Drug-Protein Interaction graph important nodes
Interactions :::

scRNASeq gene me;)rtanlzce via
expression (control : andom Forest

and disease) Classification

Figure 1. Workflow of our methodology.
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3. Results
3.1. Important Genes

The importance score obtained by Random Forest is depicted in Figure 2. The shape
of the score curve is “exponential”, i.e., few nodes have a large score and most nodes have
a low score. Thus, our data-driven approach is able to isolate a small number of genes that
are potentially relevant to AD for further examination. Based on the top 20 most important
nodes, we performed enrichment analysis using DAVID [20] to ensure that the detected
genes are involved in relevant biological processes. Table 1 summarizes the Gene Ontology
terms of Biological Processes that were detected, with the majority of them related to
neurodegenerative diseases.

0.030 A

0.025 A

0.020 A

0.015 A

0.010 A

Variable Importance

0.005 A

0.000 A

0 200 400 600 800 1000 1200 1400
Proteins

Figure 2. Importance of each gene/protein to according to Random Forest classification.

Table 1. Gene Ontology Biological Process terms detected in the most important genes.

Code Term p-Value
GO:0014002 astrocyte development 1.23 x 1074
GO:2001244 positive regulation of intrinsic apoptotic signaling pathway 5.30 x 104
GO:0070488 neutrophil aggregation 0.0019
GO:0032119 sequestering of zinc ion 0.0037
GO:0018119 peptidyl-cysteine S-nitrosylation 0.0046
GO:0035425 autocrine signaling 0.0065
GO:0002544 chronic inflammatory response 0.0092
GO0:0002523 leukocyte migration involved in inflammatory response 0.0120
GO:0045087 innate immune response 0.0191
GO:0002526 acute inflammatory response 0.0193
GO:0051493 regulation of cytoskeleton organization 0.0229

positive regulation of cytosolic calcium ion concentration
GO:0051482 involved in phospholipase C-activating G-protein coupled 0.0293
signaling pathway
GO:0048144 fibroblast proliferation 0.0311
GO0:0035924 cellular response to vascular endothelial growth factor stimulus 0.0311
GO:0050832 defense response to fungus 0.0320

3.2. Drug Repurposing for AD

Searching for the position of the AD-related genes in the combined drug-protein graph,
we detected several cases not targeted by any drug. This is expected to some extent since the
list of known drug-protein interactions covers a small set of proteins. However, by expanding
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our search to second-degree neighbors, we are able to detect several drugs among them. In
more detail, for the top 20 most important genes, only seven of them are targeted directly
by a drug (Table 2). Including the second-order neighbors, we are able to find a drug in the
subgraph for 17 of them. Some characteristic examples of proteins related to AD are shown in
Figure 3. In Figure 3a, protein Q9H2W1 (encoded by gene Membrane-spanning 4-domains
subfamily A member 6A (MS4A6A)) has no drugs among the neighbors, but it is connected
with P13637 (ATP1A3), which is the target of two drugs, Ouabain (DB01092) and Rubidium
chloride Rb-82 (DB09479). Similarly, in Figure 3b, protein Q13304 (Uracil nucleotide/cysteinyl
leukotriene receptor (GPR17)) could be regulated by ATP (DB00171), which targets its neighbor
P25098 (GRK?2). Similarly, P02651 (Apolipoprotein C-1 (APOC1)) could be potentially regu-
lated via 14 drugs (Phenindione—DB00498, Dicoumarol—DB00266, Menadione—DB00170,
Kappadione—DB09332, Navitoclax—DB12340, Zinc—DB01593, Phenprocoumon—DB00946,
Acenocoumarol—DB01418, Warfarin—DB00682, Zinc acetate—DB14487, Copper—DB(09130,
Biotin—DB00121, Zinc chloride—DB14533, Zinc sulfate, unspecified form—DB14548) target-
ing five of its neighbors (P02647, Q9BQB6, 092843, P02652, Q13085) as shown in Figure 3c.

Table 2. Important proteins and drugs targeting them.

Protein Gene Importance Drugs—Direct Interaction Drugs—Immediate Interaction
P06702 S100A9 0.030 5 103
QIUBX3 SLC25A10 0.027 1 8
P33552 CKs2 0.026 0 202
P02654 APOC1 0.025 0 14
Q9Y6R7 FCGBP 0.022 0 0
Q9H2W1 MS4A6A 0.020 0 2
095183 VAMP5 0.020 0 58
P30408 TM4SF1 0.020 0 18
P28562 DUSP1 0.020 0 119
QI9NY25 CLEC5A 0.019 0 0
P13640 MTIG 0.018 2 72
P01920 HLA-DQBI1 0.017 1 10
Q93091 RNASEG6 0.017 0 0
P61952 GNG11 0.017 0 2
Q13304 GPR17 0.016 0 1
060356 NUPR1 0.016 0 18
P05109 S100A8 0.016 6 213
P08670 VIM 0.014 2 388
P04792 HSPB1 0.014 3 538

(@)

(b)

Figure 3. Drug-Protein interaction network around proteins of interest (green). (a) For Q9H2W1
(MS4A6A) (green), its neighbor P13637 (ATP1A3) is the target of two drugs, DB01092 and DB09479
(red). (b) Protein Q13304 interacts with P25098, which in turn is targeted by DB00171. (c) Protein
P02651 is connected with five proteins targeted by 14 drugs.
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4. Discussion

In this work, we created a static graph from drug-protein and protein-protein inter-
actions, which can be used for any disease. Then, using scRNASeq data, we selected the
most important genes with the help of machine learning methods. The Biological Process
enrichment analysis (Table 1) confirmed that these genes play a role in neurodegenera-
tive diseases. In detail, the most significant term “astrocyte development” is related to
astrocytes, a sub-type of glial cells located in the brain and spinal cord, which have been
linked with AD, since genes involved in AD are mainly expressed in glial cells [21,22]. The
second most significant term, “positive regulation of intrinsic apoptotic signaling path-
way”, is related to cell death and has been suggested to play a role in neurodegenerative
disease mechanisms [23]. In addition, it has been reported that in the early stages of AD,
neutrophils accumulate in the blood [24], thus justifying the presence of the “neutrophil
aggregation” term. “Sequestering of a zinc ion” is a process that takes place in neurons
and it has been observed that related genes are under-expressed in AD patients [25]. Inter-
estingly, “Peptidyl-cysteine S-nitrosylation” appears in the top terms, which is a chemical
modification that involves the attachment of a nitric oxide (NO) group to the sulfur atom of
a cysteine residue in a protein [26]. This modification, known as S-nitrosylation, can have
significant effects on protein function and signaling pathways. Nitric oxide is a molecule
with diverse roles in the body, including cellular signaling and regulation of blood ves-
sels. Dysregulation refers to an abnormal or disrupted state of regulation. In this context,
dysregulated protein S-nitrosylation suggests that the process of attaching nitric oxide to
cysteine residues on proteins is not functioning properly. This dysregulation could lead to
aberrant signaling and contribute to disease pathogenesis. Furthermore, the observation of
dysregulated protein S-nitrosylation in AD implies that this chemical modification might
play a role in the disease’s pathophysiology [27,28]. It could potentially contribute to ab-
normal protein aggregation, neuroinflammation, oxidative stress, and synaptic dysfunction
which are characteristic features of AD. Dysregulated S-nitrosylation could disrupt normal
protein-protein interactions and cellular signaling processes, contributing to the cascade of
events that drive disease progression.

Next, we investigated the role of the genes detected with high variable importance
scores by the classification algorithm. Although these genes were selected solely in a data-
driven way, they are indeed involved with neurodegenerative diseases. In the examples
given in Figure 3, we focused only on some genes having no direct drug interaction,
considering them as candidate therapeutic targets if they have a druggable interacting
protein. In detail, the protein produced by the MS4A6A gene may be involved in signal
transduction as a component of a multimeric receptor complex. Notably, it has been
associated with aging and the onset of neurodegenerative diseases, with higher expression
detected in AD tissues [29]. Additionally, according to the GWAS Catalog database (https:
//www.ebi.ac.uk/gwas, accessed on 5 August 2023), it is associated with an SNP related to
the late onset of AD. The protein encoded by gene GPR17 is a dual specificity receptor for
uracil nucleotides and cysteinyl leukotrienes (CysLTs), as well as signaling through G(i)
and inhibiting adenylyl cyclase [30]. The GPR17 gene encodes a specific protein, and the
statement provides insight into the protein’s functional characteristics. The protein acts as a
dual specificity receptor, meaning it has the capability to recognize and bind to two distinct
types of molecules: uracil nucleotides and cysteinyl leukotrienes (CysLTs). This dual role
suggests that the protein may play a role in signaling pathways associated with both
types of molecules. Adenylyl cyclase is an enzyme responsible for producing cyclic AMP
(cAMP), a secondary messenger molecule that participates in various cellular signaling
pathways. The protein encoded by GPR17 inhibits adenylyl cyclase, which implies that it
downregulates cAMP levels and consequently influences downstream cellular responses.
This protein serves as a dual specificity receptor, recognizing both uracil nucleotides and
CysLTs, and it exerts its effects by signaling through G(i) proteins to inhibit adenylyl
cyclase. The protein’s capacity to interact with multiple molecules and its involvement
in inhibitory signaling pathways suggest its role in intricate cellular processes, which
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could have implications for various physiological and pathological conditions. It has been
supported that GPR17 is a sensor of brain damage and may play a role in both inducing
neuronal death at early stages of injury and enabling repair response in later stages [31],
while it has been shown that inhibition of it improves cognitive impairment [32]. Finally,
the APOC1 protein plays a key role in high-density lipoprotein (HDL) and very low-density
lipoprotein (VLDL) metabolism. Several polymorphisms in this gene have been associated
with AD [33,34], while in the GWAS Catalog, APOC1 is related to a family history of AD.

The basis of network-based approaches is that proteins interact with each other to
perform a function. Hence, both proteins of a PPI might have the same biological role, thus
inhibiting one of them possibly can eliminate an undesired effect. Regarding the drugable
neighbors of the selected proteins, all have been associated with AD. In detail, for MS4A6A,
the drugable neighbor ATP1A3 is involved in various neurodegenerative diseases [35];
GPR17 interacts with GRK2 which has been found to be overexpressed in AD [36], while
all five neighbors of APOC1 have been associated with AD (APOAL1 [37], APOAZ2 [37],
VKORC1 [38], BCL2L2 [39], and ACACA [40]).

Furthermore, regarding the drugs detected by our framework, several of them have
been used in studies for the treatment of neurodegenerative diseases, although this is not the
primary use for any of them, highlighting the significance of drug repurposing. Importantly,
these drugs were selected indirectly based only on top-ranked genes/proteins identified by
the classifier. Specifically, ATP (DB00171) is primarily used as nutritional supplementation
and for treating dietary shortage or imbalance; however, it has been already used in a
phase 2 study for AD (https:/ /classic.clinicaltrials.gov/ct2 /show /NCT02279511, accessed
on 5 August 2023). Regarding the two drugs targeting a neighbor of the MS4A6A gene,
both are related to heart condition treatments. Nonetheless, a study mentions Ouabain
(DB01092) as a candidate for neurodegenerative diseases [41]. For APOC1, several drugs
were found in its neighborhood, with the most promising case being Warfarin (DB00682),
which is an anticoagulant drug normally used to prevent blood clot formation as well as
migration. However, it has also been used in a phase 4 clinical trial for Cognitive Dys-
function and Dementia [42]. Other interesting cases include Biotin (DB00121) and Copper
(DB09130), which have been used in clinical research for Amyotrophic Lateral Sclerosis
(ALS). Biotin, also known as vitamin B7, is a water-soluble vitamin that plays a crucial
role in various metabolic processes in the body. Biotin is involved in energy production,
fatty acid synthesis, and the metabolism of amino acids and glucose. In the context of the
statement, Biotin has been used in clinical research for ALS. This suggests that researchers
are exploring the potential therapeutic effects of biotin supplementation in individuals
with ALS. The rationale behind this research could be related to biotin’s involvement in
energy metabolism and its potential neuroprotective properties. Copper is an essential
trace element that is vital for several physiological processes, including the formation of
connective tissues, energy production, and the functioning of the nervous and immune
systems. The statement indicates that copper has also been used in clinical research for
ALS. This suggests that researchers are investigating whether copper supplementation or
modulation could have beneficial effects in individuals with ALS. The potential connection
between copper and ALS might stem from copper’s role in various cellular processes and its
influence on oxidative stress, which is implicated in neurodegenerative disorders like ALS.

However, there are some limitations in this work which can be the object of future
research. First, the genes/proteins of interest are selected in a data-driven fashion from
experimental data via Random Forest variable importance. Several other statistical and
machine learning methods can be used to provide a ranking of genes with regard to
their relationship with the disease or the user could even focus only on some genes of
interest from the literature, which are confirmed to be related to a disease. Additionally,
alternative sources can be used for drug-protein interactions, such as the the Therapeutic
Target Database [43]. Finally, we note that some of the drugs with promising results have
already been tested, but trials did not confirm their efficacy. Several reasons for this failure
have been suggested [10], including the fact the AD mechanisms are not fully known,
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thus reducing amyloid deposition might not be adequate. Additionally, some drugs might
not be effective in the later stages of the disease. Furthermore, the small sample size
and the neuropsychology metrics employed in Phase II trials might not be able to detect
significant differences.

5. Conclusions

In the present study, we provide a framework, taking as input data of confirmed
biological validity, such as refined PPIs and drug-protein interactions, as well as state-of-
the-art gene expression data, i.e., sScRNASeq. Then, using a machine learning approach,
we select a subset of highly variable genes and extract an importance score. Combined
with the graph, we are able to detect proteins of high importance without direct drug
interactions, but with interacting proteins that are targets of known drugs. Based on
the observations that interacting proteins usually show similar patterns in expression,
it is possible to use these existing drugs to alleviate the effects of a different disease.
Indeed, while further experimental studies remain imperative, it is worth emphasizing that
the scope of our exploratory findings is confined to the recommendations furnished by
Network Medicine, thereby leading to a concomitant reduction in the requisite temporal
and financial commitments.

Author Contributions: Conceptualization, G.N.D., A.G.V,, TP.E. and M.G.K.; methodology, G.N.D.,
A.G.V, TPE, M.GK. and PV, validation, P.V,; formal analysis, G.N.D. and P.V.; data curation, G.N.D.,
A.G.V, TPE. and M.G.K,; writing—original draft preparation, G.N.D., A.G.V,, TPE. and M.G.K;;
writing—review and editing, G.N.D., A.G.V,, TPE., M.G.K. and P.V,; funding acquisition, T.P.E. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the European Union and Greece (Partnership Agreement for
the Development Framework 2014-2020) under the Regional Operational Programme Ionian Islands
2014-2020, project title: “Study of drug protocols with biomarkers that define the evolution of
non-genetic neurodegenerative diseases—NEUROPHARMA”, project number: 5016117.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Deng, Y.; Wang, H.; Gu, K,; Song, P. Alzheimer’s disease with frailty: Prevalence, screening, assessment, intervention strategies
and challenges. BioSci. Trends 2023, 17, 283-292. [CrossRef] [PubMed]

2. Tahami Monfared, A.A.; Byrnes, M.].; White, L.A.; Zhang, Q. The humanistic and economic burden of Alzheimer’s disease.
Neurol. Ther. 2022, 11, 525-551. [CrossRef] [PubMed]

3. Vrahatis, A.G.; Skolariki, K.; Krokidis, M.G.; Lazaros, K.; Exarchos, T.P.; Vlamos, P. Revolutionizing the Early Detection of
Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. Sensors 2023,
23, 4184. [CrossRef] [PubMed]

4. Rodriguez, S.; Hug, C.; Todorov, P.; Moret, N.; Boswell, S.A.; Evans, K.; Sokolov, A. Machine learning identifies candidates for
drug repurposing in Alzheimer’s disease. Nat. Commun. 2021, 12, 1033. [CrossRef] [PubMed]

5. Somolinos, EJ.; Leén, C.; Guerrero-Aspizua, S. Drug repurposing using biological networks. Processes 2021, 9, 1057. [CrossRef]

6.  Polamreddy, P.; Gattu, N. The drug repurposing landscape from 2012 to 2017: Evolution, challenges, and possible solutions. Drug
Discov. Today 2019, 24, 789-795. [CrossRef] [PubMed]

7. Gligorijevi¢, V.; Malod-Dognin, N.; Przulj, N. Integrative methods for analyzing big data in precision medicine. Proteomics 2016,
16, 741-758. [CrossRef] [PubMed]

8. Wu, X;; Li, Z; Chen, G,; Yin, Y.; Chen, C.Y.C. Hybrid neural network approaches to predict drug-target binding affinity for drug
repurposing: Screening for potential leads for Alzheimer’s disease. Front. Mol. Biosci. 2023, 10, 1227371. [CrossRef]

9. Aslanis, I.; Krokidis, M.G.; Dimitrakopoulos, G.N.; Vrahatis, A.G. Identifying Network Biomarkers for Alzheimer’s Disease Using

Single-Cell RNA Sequencing Data. In Proceedings of the Worldwide Congress on “Genetics, Geriatrics and Neurodegenerative
Diseases Research”, Zakinthos, Greece, 20-22 October 2022; Springer International Publishing: New York, NY, USA, 2022;
pp- 207-214.


https://doi.org/10.5582/bst.2023.01211
https://www.ncbi.nlm.nih.gov/pubmed/37612122
https://doi.org/10.1007/s40120-022-00335-x
https://www.ncbi.nlm.nih.gov/pubmed/35192176
https://doi.org/10.3390/s23094184
https://www.ncbi.nlm.nih.gov/pubmed/37177386
https://doi.org/10.1038/s41467-021-21330-0
https://www.ncbi.nlm.nih.gov/pubmed/33589615
https://doi.org/10.3390/pr9061057
https://doi.org/10.1016/j.drudis.2018.11.022
https://www.ncbi.nlm.nih.gov/pubmed/30513339
https://doi.org/10.1002/pmic.201500396
https://www.ncbi.nlm.nih.gov/pubmed/26677817
https://doi.org/10.3389/fmolb.2023.1227371

Future Pharmacol. 2023, 3 740

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Ballard, C.; Aarsland, D.; Cummings, J.; O’Brien, J.; Mills, R.; Molinuevo, J.L.; Fladby, T.; Williams, G.; Doherty, P.; Corbett, A.;
et al. Drug Repositioning and Repurposing for Alzheimer. Nat. Rev. Neurol. 2020, 16, 661. [CrossRef]

La Manna, S.; Leone, M.; Iacobucdi, I.; Annuziata, A.; Di Natale, C.; Lagreca, E.; Malfitano, A.M.; Ruffo, F.; Merlino, A.; Monti, M.;
et al. Glucosyl Platinum(II) Complexes Inhibit Aggregation of the C-Terminal Region of the Ap Peptide. Inorg. Chem. 2022, 61,
3540-3552. [CrossRef]

Florio, D.; Malfitano, A.M.; Di Somma, S.; Miigge, C.; Weigand, W.; Ferraro, G.; Iacobucci, I.; Monti, M.; Morelli, G.; Merlino, A;
et al. Platinum(II) O,S Complexes Inhibit the Aggregation of Amyloid Model Systems. Int. J. Mol. Sci. 2019, 20, 829. [CrossRef]
[PubMed]

Cheng, F; Desai, R.J.; Handy, D.E.; Wang, R.; Schneeweiss, S.; Barabasi, A.L.; Loscalzo, ]. Network-based approach to prediction
and population-based validation of in silico drug repurposing. Nat. Commun. 2018, 9, 2691. [CrossRef] [PubMed]
Dimitrakopoulos, G.N.; Klapa, M.I.; Moschonas, N.K. How far are we from the completion of the human protein interactome
reconstruction? Biomolecules 2022, 12, 140. [CrossRef] [PubMed]

Jiang, J.;, Wang, C.; Qi, R.; Fu, H.; Ma, Q. scREAD: A single-cell RNA-Seq database for Alzheimer’s disease. Iscience 2020, 23, 11.
[CrossRef] [PubMed]

Leng, K.; Li, E.; Eser, R.; Piergies, A.; Sit, R.; Tan, M.; Kampmann, M. Molecular characterization of selectively vulnerable neurons
in Alzheimer’s disease. Nat. Neurosci. 2021, 24, 276-287. [CrossRef] [PubMed]

Hie, B.; Bryson, B.; Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol.
2019, 37, 685-691. [CrossRef] [PubMed]

Wolf, FA.; Angerer, P.; Theis, F.J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018, 19, 1-5.
[CrossRef]

Qi, Y. Random forest for bioinformatics. In Ensemble Machine Learning: Methods and Applications; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 307-323.

Sherman, B.T.; Hao, M.; Qiu, J; Jiao, X.; Baseler, M.W.; Lane, H.C.; Chang, W. DAVID: A web server for functional enrichment
analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216-W221. [CrossRef]

Verkhratsky, A.; Olabarria, M.; Noristani, H.N.; Yeh, C.Y.; Rodriguez, J.J. Astrocytes in Alzheimer’s disease. Neurotherapeutics
2010, 7, 399-412. [CrossRef]

Preman, P.; Alfonso-Triguero, M.; Alberdi, E.; Verkhratsky, A.; Arranz, A.M. Astrocytes in Alzheimer’s disease: Pathological
significance and molecular pathways. Cells 2021, 10, 540. [CrossRef]

Jope, R.S.; Mines, M. A ; Beurel, E. Regulation of Cell Survival Mechanisms in Alzheimer’s Disease by Glycogen Synthase Kinase-3.
Int. J. Alzheimer’s Dis. 2011, 2011, 861072. [CrossRef]

Duan, K.; Ma, Y; Tan, J.; Miao, Y.; Zhang, Q. Identification of genetic molecular markers and immune infiltration characteristics of
Alzheimer’s disease through weighted gene co-expression network analysis. Front. Neurol. 2022, 13, 947781. [CrossRef] [PubMed]
Bousleiman, J.; Pinsky, A.; Ki, S.; Su, A.; Morozova, I.; Kalachikov, S.; Austin, R.N. Function of metallothionein-3 in neuronal cells:
Do metal ions alter expression levels of MT3? Int. J. Mol. Sci. 2017, 18, 1133. [CrossRef] [PubMed]

Nathan, C. The Moving Frontier in Nitric Oxide-Dependent Signaling. Sci. STKE 2004, 2004, pe52. [CrossRef] [PubMed]
Chatziantoniou, A.; Zaravinos, A. Signatures of Co-Deregulated Genes and Their Transcriptional Regulators in Lung Cancer. Int.
J. Mol. Sci. 2022, 23, 10933. [CrossRef] [PubMed]

Foster, M.W.; Hess, D.T.; Stamler, ].S. Protein S-Nitrosylation in Health and Disease: A Current Perspective. Trends Mol. Med.
2009, 15, 391. [CrossRef] [PubMed]

Karch, C.M,; Jeng, A.T.; Nowotny, P; Cady, J.; Cruchaga, C.; Goate, A.M. Expression of novel Alzheimer’s disease risk genes in
control and Alzheimer’s disease brains. PLoS ONE 2012, 7, €50976. [CrossRef] [PubMed]

Ciana, P.; Fumagalli, M.; Trincavelli, M.L.; Verderio, C.; Rosa, P,; Lecca, D.; Ferrario, S.; Parravicini, C.; Capra, V.; Gelosa, P; et al.
The Orphan Receptor GPR17 Identified as a New Dual Uracil Nucleotides/Cysteinyl-Leukotrienes Receptor. EMBO ]. 2006,
25,4615. [CrossRef]

Lecca, D.; Trincavelli, M.L.; Gelosa, P; Sironi, L.; Ciana, P.; Fumagalli, M.; Villa, G.; Verderio, C.; Grumelli, C.; Guerrini, U.; et al.
The Recently Identified P2Y-Like Receptor GPR17 Is a Sensor of Brain Damage and a New Target for Brain Repair. PLoS ONE
2008, 3, €3579. [CrossRef]

Jin, S.Y,; Wang, X.; Xiang, X.T.; Wu, YM.; Hu, J.; Li, Y.Y;; Lin Dong, Y.; Tan, Y.Q.; Wu, X. Inhibition of GPR17 with Cangrelor
Improves Cognitive Impairment and Synaptic Deficits Induced by A31-42 through Nrf2/HO-1 and NF-KB Signaling Pathway in
Mice. Int. Immunopharmacol. 2021, 101, 108335. [CrossRef]

Zhou, Q.; Zhao, F,; Lv, Z.P; Zheng, C.G.; Zheng, W.D.; Sun, L.; Yang, Z. Association between APOC1 polymorphism and
Alzheimer’s disease: A case-control study and meta-analysis. PLoS ONE 2014, 9, e87017. [CrossRef] [PubMed]

Kulminski, A.M.; Philipp, I.; Shu, L.; Culminskaya, I. Definitive roles of TOMM40-APOE-APOCI1 variants in the Alzheimer’s risk.
Neurobiol. Aging 2022, 110, 122-131. [CrossRef] [PubMed]

Carecchio, M.; Zorzi, G.; Ragona, F,; Zibordji, F.; Nardocci, N. ATP1A3-Related Disorders: An Update. Eur. |. Paediatr. Neurol.
2018, 22, 257-263. [CrossRef] [PubMed]

Obrenovich, M.E.; Smith, M.A ; Siedlak, S.L.; Chen, S.G.; Torre, ].C.; Perry, G.; Aliev, G. Overexpression of GRK2 in Alzheimer
Disease and in a Chronic Hypoperfusion Rat Model Is an Early Marker of Brain Mitochondrial Lesions. Neurotox. Res. 2006, 10,
43-56. [CrossRef] [PubMed]


https://doi.org/10.1038/s41582-020-0397-4
https://doi.org/10.1021/acs.inorgchem.1c03540
https://doi.org/10.3390/ijms20040829
https://www.ncbi.nlm.nih.gov/pubmed/30769904
https://doi.org/10.1038/s41467-018-05116-5
https://www.ncbi.nlm.nih.gov/pubmed/30002366
https://doi.org/10.3390/biom12010140
https://www.ncbi.nlm.nih.gov/pubmed/35053288
https://doi.org/10.1016/j.isci.2020.101769
https://www.ncbi.nlm.nih.gov/pubmed/33241205
https://doi.org/10.1038/s41593-020-00764-7
https://www.ncbi.nlm.nih.gov/pubmed/33432193
https://doi.org/10.1038/s41587-019-0113-3
https://www.ncbi.nlm.nih.gov/pubmed/31061482
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.1016/j.nurt.2010.05.017
https://doi.org/10.3390/cells10030540
https://doi.org/10.4061/2011/861072
https://doi.org/10.3389/fneur.2022.947781
https://www.ncbi.nlm.nih.gov/pubmed/36071897
https://doi.org/10.3390/ijms18061133
https://www.ncbi.nlm.nih.gov/pubmed/28587098
https://doi.org/10.1126/stke.2572004pe52
https://www.ncbi.nlm.nih.gov/pubmed/15523044
https://doi.org/10.3390/ijms231810933
https://www.ncbi.nlm.nih.gov/pubmed/36142846
https://doi.org/10.1016/j.molmed.2009.06.007
https://www.ncbi.nlm.nih.gov/pubmed/19726230
https://doi.org/10.1371/journal.pone.0050976
https://www.ncbi.nlm.nih.gov/pubmed/23226438
https://doi.org/10.1038/sj.emboj.7601341
https://doi.org/10.1371/journal.pone.0003579
https://doi.org/10.1016/j.intimp.2021.108335
https://doi.org/10.1371/journal.pone.0087017
https://www.ncbi.nlm.nih.gov/pubmed/24498013
https://doi.org/10.1016/j.neurobiolaging.2021.09.009
https://www.ncbi.nlm.nih.gov/pubmed/34625307
https://doi.org/10.1016/j.ejpn.2017.12.009
https://www.ncbi.nlm.nih.gov/pubmed/29291920
https://doi.org/10.1007/BF03033333
https://www.ncbi.nlm.nih.gov/pubmed/17000469

Future Pharmacol. 2023, 3 741

37.

38.

39.

40.

41.

42.

43.

Ma, C.; Li, ].; Bao, Z.; Ruan, Q.; Yu, Z. Serum Levels of ApoAl and ApoA2 Are Associated with Cognitive Status in Older Men.
BioMed Res. Int. 2015, 2015, 481621. [CrossRef]

Mur, J.; McCartney, D.L.; Chasman, D.I.; Visscher, PM.; Muniz-Terrera, G.; Cox, S.R.; Russ, T.C.; Marioni, R.E. Variation in
VKORC1 Is Associated with Vascular Dementia. J. Alzheimer’s Dis. 2021, 80, 1329. [CrossRef] [PubMed]

Zhu, X.; Wang, Y.; Ogawa, O.; Lee, H.G.; Raina, A K; Siedlak, S.L.; Harris, PL.R.; Fujioka, H.; Shimohama, S.; Tabaton, M.; et al.
Neuroprotective Properties of Bcl-w in Alzheimer Disease. J. Neurochem. 2004, 89, 1233-1240. [CrossRef] [PubMed]

Currais, A.; Huang, L.; Goldberg, J.; Petrascheck, M.; Ates, G.; Pinto-Duarte, A.; Shokhirev, M.N.; Schubert, D.; Maher, P. Elevating
Acetyl-CoA Levels Reduces Aspects of Brain Aging. eLife 2019, 8, e47866. [CrossRef]

Li, W.X,; Li, G.H,; Tong, X.; Yang, PP; Huang, ].E; Xu, L.; Dai, S.X. Systematic metabolic analysis of potential target, therapeutic
drug, diagnostic method and animal model applicability in three neurodegenerative diseases. Aging 2020, 12, 9882. [CrossRef]
Bunch, T.J.; May, H.; Cutler, M.; Woller, S.C.; Jacobs, V.; Stevens, S.M.; Anderson, J.L. Impact of anticoagulation therapy on the
cognitive decline and dementia in patients with non-valvular atrial fibrillation (cognitive decline and dementia in patients with
non-valvular atrial fibrillation [CAF] trial). |. Arrhythmia 2022, 38, 997-1008. [CrossRef]

Zhou, Y.; Zhang, Y.; Lian, X; Li, E; Wang, C.; Zhu, F,; Chen, Y. Therapeutic target database update 2022: Facilitating drug
discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022, 50, D1398-D1407. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1155/2015/481621
https://doi.org/10.3233/JAD-201256
https://www.ncbi.nlm.nih.gov/pubmed/33682710
https://doi.org/10.1111/j.1471-4159.2004.02416.x
https://www.ncbi.nlm.nih.gov/pubmed/15147516
https://doi.org/10.7554/eLife.47866
https://doi.org/10.18632/aging.103253
https://doi.org/10.1002/joa3.12781
https://doi.org/10.1093/nar/gkab953

	Introduction 
	Materials and Methods 
	Graph Data 
	Gene Expression Data 
	Drug Repurposing via the Drug-Protein Network 

	Results 
	Important Genes 
	Drug Repurposing for AD 

	Discussion 
	Conclusions 
	References

