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Abstract: While the COVID-19 pandemic seems to be on its decline, the unclear impacts of long-
COVID cases, breakthrough infections in immunocompromised individuals, vaccine hesitancy, and
inhomogeneous health-care accessibility constitute a not to be underestimated threat. These cases,
along with pandemic preparedness, ask for an alert identification of new drugs and the optimization
of existing drugs as therapeutic treatment options for this and potential future diseases. Mpro

inhibitors were identified early on as potent drug candidates against coronaviruses, since they target
viable processing machinery within the virus, i.e., the main protease that cleaves the polyproteins
encoded by the viral RNA into functional proteins. Different strategies, including reversible and
irreversible inhibition as well as allosteric inhibitors, mostly from drug repurposing endeavors, have
been explored in the design of potent SARS-CoV-2 Mpro antivirals. Ambitious screening efforts
have uttered an outstanding chemical and structural diversity, which has led to half a dozen lead
compounds being currently in clinical trials and the emergency FDA approval of ritonavir-boosted
nirmatrelvir as a COVID-19 therapeutic. This comprehensive analysis of the achieved inhibitor
diversity sorted into irreversible, reversible, and allosteric Mpro binders, along with a discussion of
emerging resistance reports and possible evasion strategies, is aimed at stimulating continuing Mpro

drug design efforts.
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1. Introduction

With the current COVID-19 pandemic slowly transitioning to its endemic state, we are
confronted with a devastating reality: over 6.6 million deaths worldwide between January
2020 and December 2022, persistent long-COVID cases, and ~3 million confirmed weekly
infections (as of December 2022) continue to dramatically impact the socioeconomical motor
of society [1]. The vaccination campaign, along with persistent viral exposure, is thought to
result in herd immunity; however, the highly adaptive nature of the vaccine targeted spike
protein [2,3], campaign fatigue, and globally inhomogeneous vaccine access constitute viral
escape routes that fuel a continuous endemic. Mutational analysis of the current SARS-
CoV-2 and genomic comparison with previous coronaviruses suggest alternate targets with
significantly lower mutation rates and higher structural conservation [4,5]. These include
functional proteins that can be targeted with small-molecule inhibitors, which, compared to
vaccines, have generally accepted advantages of easier formulation and production, storage,
and administration. Among these, two viable main proteases, namely, PLpro and Mpro,
show a high sequence identity of 86% [6] and 96% [7] between SARS-CoV and SARS-CoV-2,
thus reflecting druggable molecular targets. Of the two main proteases, Mpro seems the
more beneficial target for small-molecule inhibitor development for the following reasons:

• The smaller, spatially more defined active site of Mpro, allowing the synthesis of
smaller and stiffer inhibitors, whereas efficient binding to PLpro usually relies on tight
distal inhibitors [8].
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• Dimerization of Mpro for activity and close proximity of active site and dimerization
interface, suggesting inhibitor design that additionally prevents dimerization [9].

• The lower mutation rates of Mpro (nsp5) compared to PLpro (nps3), mitigating the risk
of mutation-mediated drug resistance [4].

• Less off-target effects expected, since Mpro’s glutamine (Gln) cleavage site recognition
is unique and has not been not observed for any human protease. PLpro inhibitors
might interfere with human ubiquitin binding motives [10].

Coronavirus replication relies on the expression of two overlapping polyproteins (pp1a
and pp1b) as well as four structural proteins encoded by the viral RNA. Both polyproteins
liberate vital proteins needed for replication by the action of the main proteases. Mpro, a
3-chymotrypsin-like protease (3CL), performs 11 cleavages, whereas PLpro performs only
three cleavages, and Mpro uniquely recognizes a glutamine in P1 and small, nonpolar
residues in P1′ and P2.

This review aims to highlight the current landscape of SARS-CoV-2 Mpro inhibitors
with emphasis on the mechanistic differences in inhibition and achieved efficacies. There-
fore, Pubmed and SciFinder databases were cross-searched using the search term string
“SARS-CoV-2 Mpro inhibitor” OR “SARS-CoV-2 3CL inhibitor”, excluding in silico studies
using the NOT “in-silico” term. The ~900 research articles found dating January 2020–
November 2022 were sorted manually into three groups: irreversible competitive, reversible
competitive, and noncompetitive/allosteric inhibition strategies, and reflect on structure
optimization efforts as well as pitfalls. Only chemically synthesized or repurposed drugs
that have been biochemically tested and ideally verified by co-crystallization are considered
here. Their efficacy, potency, and toxicological data along with available pharmacokinetic
profiles are compared. As there is growing evidence for potential viral resistance of some
of these inhibitors, including the FDA-approved paxlovid Mpro inhibitor nirmatrelvir, we
summarize recent reports and point to potential extended therapy solutions.

2. Competitive Inhibitor Design Strategies

Mpro is a homodimeric cysteine protease, and effective inhibition of the active site relies
on the covalent interaction with the catalytic dyad consisting of cysteine residue 145 (Cys145)
located on domain II and histidine 41 (His41) located on domain I (Zhang 2020, [7,11]
(Figure 1). Nucleophilic attack of the inhibitor by the cysteine thiolate is preceded by
His41-moderated thiol deprotonation, increasing sulfur nucleophilicity [12]. This reflects
a generally accepted two-step mechanism that is different from the mechanism of serine
proteases such as chymotrypsin that have a catalytic triad that supports a concerted mech-
anism. Tight binding of the inhibitor causes a slight conformational change that brings
both catalytic residues into proximity, thus initiating covalent interaction with the inhibitor
warhead. Promiscuity in Mpro seems to follow the general trend of being somewhat higher
than that in serine proteases [13], as indicated by the longer distance between the dyad
residues, giving rise to various peptide and nonpeptide inhibitor geometries and differ-
ent warhead chemistries. The PDB currently hosts 294 structures of covalently bound
competitive Mpro inhibitors, which serve as a basis for the structural and mechanistic
analysis in this chapter. Chemoinformatic analysis indicates that the vast majority of crystal-
lized inhibitors follow Lipinski design rules, including a molecular weight below 500 Da
(Mw,aver = 449.5 ± 144.9 g/mol). Aside from covalently bound inhibitors, which are covered
in the first part of this chapter, an increasing number of inhibitors that are noncovalently
bound in the active site can be found in the recent literature, and these are described in a
third subsection. These generally tend to be smaller in size (Mw,aver = 346.8 ± 122 g/mol), as
is obvious from the comparative structural analysis of their PDB entries (123 PDB structures
in total).
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Figure 1. Dimeric structure of SARS-CoV-2 Mpro bound to the reversible inhibitor GC376 (PDB 
6wtk). The catalytic dyad residues His41 and Cyst145 and a water molecule moderate the chemical 
attachment of the inhibitor. 

2.1. Predominantly Irreversible Warheads 
The search for SARS-CoV-2 Mpro inhibitors was initiated by a structure-based high-

throughput screening of a >10,000 compound database of approved drug molecules, ad-
vanced clinical trial drug candidates, and other bioactive compounds. The pseudo-
tetrapeptide N3, a Michael acceptor, previously reported as a SARS-CoV and MERS-CoV 
Mpro inhibitor, was found to bind SARS-CoV-2 Mpro time-dependently with kobs/[N3] of 
11,300 M−1s−1 [14] (Figure 2; Table 1). A plaque reduction assay (VeroE6 cells) provided an 
EC50 value of 16.77 µM. The crystal structure of the SARS-CoV-2 Mpro complex (PDB 6lu7) 
confirms the β-vinyl carbon being covalently bound to Cys145′s sulfur atom (1.8 Å C-S 
distance; Figure 2). The P1 lactam ring is held in position by various contacts, including 
His163, Glu166, and backbone atoms of Phe140, Asn142, and His172 and two water mol-
ecules. The side chain of Leu in P2 fits into the hydrophobic enzyme S2 pocket, maintain-
ing several van-der-Waals interactions. The isopropyl group of Val in P3 is solvent-ex-
posed, while Ala in P4 is surrounded by Met165, Leu167, Phe185, Gln192, and Gln189. 
The same screening study also revealed the 5-hydroxytryptamine receptor antagonist 
cinanserin as an Mpro binder (IC50 = 125 µM; EC50 (VeroE6) = 20.61 µM), reflecting another 
example of a repurposed drug that is known as a potent inhibitor of other coronaviruses 
[15]. 

 
Figure 2. Chemical structure, Mpro binding affinity and antiviral activity of Michael acceptor com-
pounds N3 and cinanserin [14]. The X-ray structure confirms covalent bond formation of N3′s β-
vinyl carbon with the Cys145 thiolate (PBD 6lu7). 

Figure 1. Dimeric structure of SARS-CoV-2 Mpro bound to the reversible inhibitor GC376 (PDB
6wtk). The catalytic dyad residues His41 and Cyst145 and a water molecule moderate the chemical
attachment of the inhibitor.

2.1. Predominantly Irreversible Warheads

The search for SARS-CoV-2 Mpro inhibitors was initiated by a structure-based high-
throughput screening of a >10,000 compound database of approved drug molecules,
advanced clinical trial drug candidates, and other bioactive compounds. The pseudo-
tetrapeptide N3, a Michael acceptor, previously reported as a SARS-CoV and MERS-CoV
Mpro inhibitor, was found to bind SARS-CoV-2 Mpro time-dependently with kobs/[N3] of
11,300 M−1s−1 [14] (Figure 2; Table 1). A plaque reduction assay (VeroE6 cells) provided an
EC50 value of 16.77 µM. The crystal structure of the SARS-CoV-2 Mpro complex (PDB 6lu7)
confirms the β-vinyl carbon being covalently bound to Cys145’s sulfur atom (1.8 Å C-S dis-
tance; Figure 2). The P1 lactam ring is held in position by various contacts, including His163,
Glu166, and backbone atoms of Phe140, Asn142, and His172 and two water molecules.
The side chain of Leu in P2 fits into the hydrophobic enzyme S2 pocket, maintaining
several van-der-Waals interactions. The isopropyl group of Val in P3 is solvent-exposed,
while Ala in P4 is surrounded by Met165, Leu167, Phe185, Gln192, and Gln189. The same
screening study also revealed the 5-hydroxytryptamine receptor antagonist cinanserin as
an Mpro binder (IC50 = 125 µM; EC50 (VeroE6) = 20.61 µM), reflecting another example of a
repurposed drug that is known as a potent inhibitor of other coronaviruses [15].



Future Pharmacol. 2023, 3 83

Future Pharm. 2023, 3 82 
 

 

 
Figure 1. Dimeric structure of SARS-CoV-2 Mpro bound to the reversible inhibitor GC376 (PDB 
6wtk). The catalytic dyad residues His41 and Cyst145 and a water molecule moderate the chemical 
attachment of the inhibitor. 

2.1. Predominantly Irreversible Warheads 
The search for SARS-CoV-2 Mpro inhibitors was initiated by a structure-based high-

throughput screening of a >10,000 compound database of approved drug molecules, ad-
vanced clinical trial drug candidates, and other bioactive compounds. The pseudo-
tetrapeptide N3, a Michael acceptor, previously reported as a SARS-CoV and MERS-CoV 
Mpro inhibitor, was found to bind SARS-CoV-2 Mpro time-dependently with kobs/[N3] of 
11,300 M−1s−1 [14] (Figure 2; Table 1). A plaque reduction assay (VeroE6 cells) provided an 
EC50 value of 16.77 µM. The crystal structure of the SARS-CoV-2 Mpro complex (PDB 6lu7) 
confirms the β-vinyl carbon being covalently bound to Cys145′s sulfur atom (1.8 Å C-S 
distance; Figure 2). The P1 lactam ring is held in position by various contacts, including 
His163, Glu166, and backbone atoms of Phe140, Asn142, and His172 and two water mol-
ecules. The side chain of Leu in P2 fits into the hydrophobic enzyme S2 pocket, maintain-
ing several van-der-Waals interactions. The isopropyl group of Val in P3 is solvent-ex-
posed, while Ala in P4 is surrounded by Met165, Leu167, Phe185, Gln192, and Gln189. 
The same screening study also revealed the 5-hydroxytryptamine receptor antagonist 
cinanserin as an Mpro binder (IC50 = 125 µM; EC50 (VeroE6) = 20.61 µM), reflecting another 
example of a repurposed drug that is known as a potent inhibitor of other coronaviruses 
[15]. 

 
Figure 2. Chemical structure, Mpro binding affinity and antiviral activity of Michael acceptor com-
pounds N3 and cinanserin [14]. The X-ray structure confirms covalent bond formation of N3′s β-
vinyl carbon with the Cys145 thiolate (PBD 6lu7). 

Figure 2. Chemical structure, Mpro binding affinity and antiviral activity of Michael acceptor com-
pounds N3 and cinanserin [14]. The X-ray structure confirms covalent bond formation of N3′s β-vinyl
carbon with the Cys145 thiolate (PBD 6lu7).

Cinanserin also resembles an α,β-unsaturated carbonyl drug, which is supposed to
covalently bind to Cys145 similarly to N3; however, crystal structure confirmation of this
interaction is yet not available. Pharmacological profiles for both drugs have not been
accessed; however, toxicological data point to an acceptable safety level (CC50 >130 µM (N3)
and >200 µM (cinanserin)) [14]. In vitro screening of successful SARS-CoV Mpro inhibitors
uncovered the N3 analog 1 as a nanomolar inhibitor of SARS-CoV-2 Mpro (IC50= 0.15 µM),
able to inhibit replication in VeroE6 cells (EC50 = 2.88 µM) [16]. In the crystal structure,
inhibitor 1 forms a covalent bond between its β-vinyl carbon and the Cys145 sulfur atom
of the main protease (PDB 7jt7 and 7jw8). The ester portion expands into subsite S1′, the
γ-lactam ring in P1 is stabilized in S1 by hydrogen bonding involving Phe140, His164, and
His166, and the hydrophobic leucine and O-tert-butyl threonine side chains occupy S2 and
the surface S3 subsites, respectively. Virtual screening efforts to develop peptidomimetic
N3 analogs resulted in a series of α,β-unsaturated carbonyl compounds with variable
hydrophobic P1–P3 substituents. Biological evaluation of the promising lead compound
2 from this set found only moderate Mpro inhibition (IC50 = 47 µM, [17]). In a search
to expand the chemical space of anti-SARS-CoV-2 Mpro α,β-unsaturated carbonyl drugs,
recently, also nonpeptidomimetic compounds have been designed [18]. They feature a
fused benzo[b]-[1,4]oxazinone-imidazo [2,1-b]thiazole system, which beneficially orients
substituents on the aromatic portion of these molecules towards the main protease subsites,
as suggested by molecular docking. Biological testing revealed compound SIMR-2418
(Figure 3) as a micromolar SARS-CoV-2 Mpro inhibitor (IC50 = 21 µM) with acceptable
ADME properties (t0.5 > 1 h; mouse LMS).

Another virtual screening study identified nonpeptidomimetic acrylamides as cysteine
reactive Mpro inhibitors [19]. The most potent compound from this series is only active in
its S-configuration (IC50 =2.9 µM, Ki = 38 µM; Table 1). A co-crystal structure of LON-WEI-
adc59df6-47 (PDB 7nw2) confirms covalent bond formation between the β-vinyl carbon
and the active site sulfur atom. From the natural pool of Michael acceptors, the flavonoid
myricetin was tried for its anti-SARS-CoV-2 properties (Figure 3) [20]. In vitro screening
confirmed sub-micromolar inhibition (IC50 = 0.2–0.6 µM), and in the solid-state structure,
the covalent linkage to C6 of the pyrogallol unit is obvious (PDB 7b3e). Alternatively,
a noncompetitive inhibition mechanism is proposed in the literature [21]. Myricetin’s
carbonyl-rich structure enables stabilization by hydrogen-bonding, which is moderated
through active site water molecules [22]. Covalent bond formation via pyrogallol-C6 can
be explained by a preceding oxidation of pyrogallol to o-quinone, enabling attack of the
nucleophilic Cys145 thiolate. Myricetin was further shown to block viral infection in vitro
(EC50 = 8 µM (VeroE6, [22]); 0.9 µM (Calu-3), [21]) and reduce lung inflammation in a mouse
model of bleomycin-induced pulmonary inflammation, making it potentially useful for
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the symptomatic treatment of COVID-19 [23]. To increase potency, myricetin analogs were
designed that included compound 3 with a diphenyl phosphate to the 7-OH of myricetin,
resulting in a stronger antiviral effect (Figure 3; EC50 = 3.15 µM) [22].

An early drug-repurposing study identified the anticancer drug Carmofur, featuring a
carbamoyl warhead, as another type of irreversible Mpro inhibitor [24] that also inhibits
other SARS-CoV-2 target proteases [25]. Upon acylation of Cys145, releasing 5-fluoro-uracil
as side product, the 1-hexylcarbamoyl chain maintains several interactions with Gly143 and
hydrophobic residues in S2, as obvious from its co-crystal structure (PDB 7buy). Flexibility
and small overall size of the active inhibitor result in an IC50 of 1.82 µM and a half-maximal
effective concentration (VeroE6) of ~25 µM. Cell toxicity was determined to be around
150 µM (Table 1).

Recently, there has been renewed interest in developing optimized peptide and
peptide-mimetic inhibitors based on the initial success of Michael acceptor warheads.
The exchange of the α,β-unsaturated carbonyl for hydroxymethyl and alkoxymethyl ke-
tones gave rise to another class of potent Mpro inhibitors [26,27]. Reaction of these highly
electrophilic ketones with the active site thiolate resulted in a hemithioketal that, unlike
Michael-type inhibitors, possesses a coordination-relevant OH group supporting addi-
tional stabilizing interactions with the active site residues. Among these, the hydrox-
ymethyl ketone PF-00835231 (Figure 4) has been identified as a nanomolar Mpro binder
(IC50 = 0.007 µM) and effective antiviral (EC50 = 35.9µM, Vero6, USA/WA1/2020), the
potency of which can be increased almost 80-fold by the application of an efflux inhibitor
(EC50 = 0.46µM, 2µM CP100356; Table 1). Thermal shift assays as well as an X-ray crystal
structure (PDB 6xhm) confirm tight binding to the active site, including a dense array of
stabilizing hydrogen bonds in S1′ (Figure 4) [28]. The compound is safe in cell assays
and displays pharmacokinetic profiles in animals (rat, dog, monkey) that were beneficial
for preclinical studies (Table 1). Solubility issues and low oral bioavailability (>2% in
rat, dog, monkey) can be overcome by transformation of PF-00835231 into its phosphate
prodrug PF-07304814, which is suitable for intravenous injection formulation, releasing
about 75% active drug by human alkaline phosphatase cleavage [26]. Extension of the
C-terminal alcohol by an alkyl or aryl group results in inhibitors with an α-acyloxymethyl
ketone warhead. Unlike the hydroxymethyl ketone PF-00835231, acyloxymethyl ketones
possess an electrophilic α-carbon that can be attacked by the active site thiolate, resulting in
an irreversible covalent bond, as confirmed by the cocrystal structure of 4 (PDB 7mbi; [27]).
By experimental variation, benzoyloxymethyl ketones were identified as the most potent
Mpro inhibitors, with 2,6-disubstituted aryl rings additionally lowering the pKa of the
corresponding acid, thus reducing IC50 values down to single-digit nanomolar (Figure 5).
EC50 values of 4 and 5 are 0.3 and 0.16 µM, respectively, with no observed cell toxicity up to
the highest tested concentration (200 µM) [27]. With a mouse plasma half-life > 4 h, logD of
4.4, and basolateral-to-apical permeability > 20 × 10−6 cm/s, 4 promises beneficial ADME
properties and nondiscriminant thiol reactivity. The six-membered lactam ring seems only
to have a marginal effect on the potency of these inhibitors. While highly selective for
cysteine proteases over other cellular proteases, these inhibitors act promiscuous towards
human cathepsin B and S with IC50′s for 4 of 0.2 µM for CatB and 0.05 µM for CatS.
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a chloromethyl group is more effective than fluoromethyl is, as a consequence of the 
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Figure 5. Chemical structure and inhibition data of α-acyloxymethyl ketones 4 and 5 [27]. The Cys145
reactive α-carbon is highlighted.

Similar to α-acyloxymethyl ketones, α-halomethyl ketones are known as alkylating
agents and potent inhibitors for cysteine proteases such as human calpain and cathepsin
B [29]. Promiscuity and metabolic stability issues [30] need to be addressed to develop
highly selective agents against SARS-CoV-2 Mpro. Although peptidic α-halomethyl ketones
occur as synthetic intermediates towards α-acyloxymethyl ketones, their inhibitory action
towards SARS-CoV-2 Mpro has not been tested in the recent literature, probably due to the
mentioned lack of selectivity. Structural design therefore seems to concentrate on more
specific peptide mimetics such as α-chloroacetamide 6, which has been identified as a
potent SARS-CoV-2 Mpro inhibitor (IC50 = 0.4 µM) in a comprehensive in vitro study [31].

The crystal structure of 6 confirms displacement of the chloride by the active site
thiolate and covalent bond formation (PDB 7mlf). The pyridine sits in the S1 pocket, fixed
by a hydrogen bond with the nearby His163, the tert-butylphenyl substituent spreads
out into S2, maintaining hydrophobic interactions, and the cycloalkyl group expands
towards S4 (Figure 6). Structural optimization of the “side chain” residues shows that
a smaller cyclopentyl ring (R3) gives slightly better (IC50 = 0.38 µM) and 4-pyridyl or
5-methylpyrazin-2-yl moieties in R1 slightly worse (IC50 = 0.8–1 µM) inhibition. Regarding
the warhead, a chloromethyl group is more effective than fluoromethyl is, as a consequence
of the higher electrophilicity of C-Cl. This electrophilicity can even be further increased
by attachment of a second or third halogen, as demonstrated in a related study by Ma
et al. using a slightly altered backbone structure [32]. The α,α-dichloroacetamide Jun9-
62-2R, accessible by a simple one-pot Ugi four-component reaction, shows beneficial
inhibitory data (IC50 = 0.43 µM; EC50 = 0.9 µM) and low cell cytotoxicity (CC50 > 100 µM,
Vero6; Table 1). The tribromoacetamide Jun9-88-2R is even more potent (IC50 = 0.08 µM;
EC50 = 0.58 µM) but has a significant lower therapeutic index (CC50 = 5.5 µM, Vero6), likely
due to interference with other vital proteases that seems predictable for this substitution
pattern [33]. Within their comprehensive SAR study, the authors found a tighter inhibition
for the R-configurated isomers, as observed from the cocrystal structure of Jun9-62-2R (PDB
7rn1, Figure 6). A noteworthy, optimized framework uses an α-chloro-α-fluoroacetamide
moiety as warhead, allowing for a strong and selective inhibition of SARS-CoV-2’s main
protease [34]. A lead derivative from this series, 7, with a p-pentafluorosulfanyl phenyl
group in P2 and a 5-pyrimidinyl group in P1, has an IC50 of 0.056 µM (Ki = 1.34 µM)
and acts selectively only in its (R,R)-cis configuration. More recently, novel pyrazoline
skeleton derivatives bearing a chloroacetamide warhead also showed promising SARS-
CoV-2 Mpro inhibition [35]. A lead compound from this series, 8, has an IC50 of 0.53 µM in
its R-configuration, while the S-enantiomer is five times less active. The crystal structure
of this compound interestingly shows no occupants in the coordination-rich S1 and S2
subsite; therefore, the 3-phenyl substituent points in the S4 direction and the 5-quinoxalin-
6-yl group towards S1 (Figure 6). Instalment of a benzene on C4 and optimization of the
C3 substituent gave an even tighter Mpro binder, as confirmed by a fluorescent substrate
assay. Nonpeptidomimetic chloroacetamide-based inhibitors have been developed in
silico; however, likely due to more flexible backbone geometries, none of the tested lead
compounds have sub-micromolar inhibition capacity [36]. None of the herein presented
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inhibitors with chloromethyl ketone warhead have been tested for their pharmacokinetic
parameters yet.
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Vinyl sulfones are another known warhead for irreversible cysteine protease inhi-
bition [37]. Upon reaction with the active site thiolate, they establish a covalent bond
with the inhibitor β-vinyl carbon atom. Decorating the discussed pyrazoline skeleton
with such a functionality results in the nanomolar SARS-CoV-2 Mpro binder 9 (Figure 7,
IC50 = 0.035 µM), which shows promiscuity to other coronaviruses, including SARS-CoV,
HCoV-NL63, IBV, and HCoV-229E [35]. Other nonpeptidic inhibitors with vinyl sulfone
warheads have been developed based on the successful α-chloroacetamide 6. Swapping
out the warhead gives molecule 10 with a IC50 of 0.42 µM, which was further optimized by
tuning the P3 residue to a 3-chlorophenyleth-2-yl group (11; IC50 = 0.17 µM) [31]. Isother-
mal titration calorimetry as well as a crystal structure of 10 (PDB 7mlg) confirm covalent
bond formation. The orientation of the molecule in the active site is due to the unchanged
P1 and P2 residues almost identical with 6.
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Inhibitors with an ester warhead are another category of irreversible Mpro agents that
has been considered in drug development during this pandemic. Nucleophilic attack of the
thiolate results here in the departure of a leaving group and irreversible enzyme acylation.
Interestingly, usage of this warhead has so far been limited to small-molecule inhibitors
involving rigid pyridine and/or indole systems, exemplified by the molecule GRL-0820
(Figure 8). Among a screen of structural analogs, GRL-0820 stands out with an Mpro IC50 of
0.073 µM and tolerable anti-SARS-CoV-2 activity (EC50 = 15 µM, VeroE6, [38]). Alternate
connection or aromatic substitution of the indole unit leads to even more potent Mpro

binders [15,39]; however, the viral activity of these ester compounds is either unknown [39]
or negligible [15]. Recently, a similarly rigid 5-chlopyridinyl ester of salicylic acid was
proposed as a drug candidate [40], showing micromolar potency and anti-SARS-CoV-2-viral
activity (12, IC50 = 4.9 µM, EC50 = 25 µM). Pharmacokinetic evaluation of ester warhead
inhibitors is still pending.
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Table 1. Different warhead chemistries, antiviral, and pharmacokinetic data of irreversible SARS-
CoV-2 Mpro inhibitors.

Warhead Drug Example a Efficacy Potency Toxicology Pharmacology Lit.

Ki/IC50 (µM) EC50 (µM) CC50 (µM) t0.5
(h)

Cmax
(ng/mL)

Clear.
(mL/min/kg)

Michael
acceptor N3, Cinanserin, 1 -

1: 0.15 (IC50)
N3: 16.77

1: 2.88
N3: >130
1: >200 - - - [14]

[16]
Acrylamide LON-WEI-

adc59df6-47
2.9 (IC50)
38.4 (Ki)

- - - - - [19]
Carbamoyl Carmofur 1.82 24 133 - - - [24]

Hydroxymethyl
ketone PF-00835231 0.0069 (IC50) 0.46 b >50 (VeroE6) 0.72 (rat) 1250 (rat) 27 (rat) [26]

Acyloxymethyl
ketone 4, 5 0.001 0.16 >200

>4
(mouse-
plasma)

- - [27]

Chloroacetamides
6,

Jun9-62-2R,
Jun9-88-2R

6a: 0.4 (IC50)
Jun9-62-2R: 0.43 (IC50)
Jun9-88-2R: 0.08 (IC50)

6a:
-Jun9-62-2R:

0.9
Jun9-88-2R:

0.58

6a:
-Jun9-62-2R: >100
Jun9-88-2R: 5.48

- - - [31]

Chlorofluoro-
acetamides 7 0.056 (IC50)

1.34 - - - - - [34]

Vinylsulfonamide 11 2.3 (Ki)
0.17 (IC50) - - - - - [31]

a Bold entries resemble inhibitors corresponding to reported activity, safety, and pharmacology data; b using an
efflux inhibitor.

2.2. Reversible Warheads

Reversible inhibitors possess a reactive carbonyl function that, upon reaction with
the nucleophilic cysteine thiolate, forms a temporary addition product. The resulting
covalent bond is less strong than that for the previously described irreversible warheads,
thus supporting time-dependent reversal of the binding event and drug clearance. Func-
tional groups that establish a reversible covalent bond include foremost aldehydes, α-
ketoamides, and some α-substituted ketones as well as nitriles. Aldehydes and ketones
form hemithioacetals, whereas nitriles form a reversible thioimidate (Figure 9). It seems
an acceptable consensus that reversible inhibition is preferable as, in general, it allows for
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more selective target binding and fewer off-target effects, and promotes bioavailability
and efficacy of respective inhibitors and their ultimate clearance from the infected host.
It therefore does not surprise that among the 500+ covalent anti-SARS-CoV-2 Mpro drug
candidates, predominantly those with reversible warhead chemistries were forwarded to
clinical testing (see next chapter).
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Aldehydes represent the biggest investigational group among reversible SARS-CoV-2
Mpro inhibitors. Chronologically, the two peptides 13 and 14 were the first tested aldehydes,
rationally modeled after successful SARS-CoV Mpro inhibitors [41]. They feature a γ-lactam
group in P1, a six-membered aliphatic or aromatic side chain in P2, and an indole moiety in
P3. Both drug compounds show remarkable in vitro activity (IC50 = 0.053 and 0.04 µM, 13
and 14), strong antiviral effect (EC50 = 0.53 and 0.72 µM, 13 and 14), low cytotoxicity, and
preferable pharmacokinetic parameters. Beneficial complementarity of the used side chains
is highlighted in the obtained X-ray structures (PDB 6lze (13) and 6m0k (14)): an additional
H-bond between the thioacetal –OH group and Cys145 backbone enhances stabilization of
the covalent bond. The γ-lactam group maintains H-bonds with Glu166 and His163 and
an additional contact with Phe140 in S1, the cycloaliphatic (13) or aromatic (14) P2 residue
penetrates the S2 pocket, supported by several hydrophobic interactions, and the indole
moiety is located at the solvent interface (S4).

A structural analog of 14 with a benzyl group in P2 (15) shows improved binding
(IC50 = 0.034 µM) and even better antiviral activity (EC50 = 0.29 µM) [42]. Vuong et al.
explored the known peptide aldehyde GC373 and its bisulfite adduct GC376 as potent
reversible anti-SARS-CoV-2 Mpro agents [43]. Both drugs were initially investigated as
inhibitors of a feline coronavirus (FCoV) that causes a fatal inflammatory disease in cats
(feline infectious peritonitis). Under physiological conditions, the bisulfite adduct GC376
reverses to the active aldehyde drug GC373 (Figure 10). Since FCoV and SARS-CoV-2 Mpro

are highly homologous cysteine proteases and share close resemblance of their active site
geometries, a repurposing attempt seemed reasonable. Indeed, both drugs proved effective
as new anti-COVID-19 agents with half-maximal inhibitory concentrations, Mpro-IC50, of
0.40 µM (GC373) and 0.19 µM (GC376) [43]. Several hydrogen bonds with the oxyanion
hole residues Gly143, Ser144, and Cys145 stabilize the hemithioacetal of GC373, as is
obvious from its cocrystal structure [43,44]. Inhibitor interactions in S1 and S2 are identical
to those of the aldehydes 13 and 14, the benzyloxycarbonyl group in P3 coordinates with
Glu166. In the cell infectivity assay, both drugs showed micromolar effectivity (GC373:
EC50 = 1.5 µM; GC376: EC50 = 0.9 µM) and low cell toxicology (CC50 for both >100 µM).
Efficacy of GC376 against SARS-CoV-2 infection was shown in a transgenic mouse model
expressing the human angiotensin-converting enzyme type 2 (K18 hACE2) [45]. Pharma-
cokinetic profiling performed by Shi et al. indicated a quick and durable uptake of GC376
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after intramuscular injection in mice and rats (t0.5 = 1.1 h (mice) and 3.9 h (rat)), a high peak
plasma concentration, and good clearance [46] (Table 2). Reversibility of GC376 binding
was demonstrated with a 13CHO-labeled GC376 derivative in a time-dependent NMR
experiment [47]. To find even more potent structural analogs of GC376, the Vederas group
explored various synthetic derivatives with different P2 and P3 substitutions for their
anti-SARS-CoV-2 behavior [48]. The two lead compounds 16 and 17, with a cyclopropyl
group in P2 and an m-halophenyl substituent in P3, were identified in this series, displaying
improved IC50 values of 0.07 and 0.08 µM, respectively. Both compounds showed slightly
better antiviral susceptibility compared to GC376 (EC50 = 0.57 and 0.7 µM, respectively)
and no cytotoxicity [48]. A crystal structure of 16 with SARS-CoV-2 Mpro highlights an
enhanced interaction of the P2/P3 groups with respective enzyme subsites (PDB 7lco).
Further structural optimization of the GC376 core led to the two potent antiviral drug
candidates UAWJ247 (IC50 = 0.045 µM) [49] and NK01-63 (coronastat, IC50 = 0.016 µM) [50].
The latter compound has a pronounced antiviral effect (EC50 = 0.006 µM; Huh-7ACE2-
infected cells) and high selectivity over other human proteases. Aside from the common
interaction patterns, the NK01-63 cocrystal structure features two additional H-bonds of the
P3 trifluoromethylphenyl group to nearby Asn142, reiterating the prominent stabilization
effect of halogens (PDB 7tiz). In vitro mice tests confirmed good microsomal stability,
and in vivo pharamacokinetic analysis underlined high uptake via both intraperitoneal
and oral routes, with an extended half-life in critical tissues such as lung (I.P., t0.5 = 2.2 h;
P.O. t0.5 = 3.4 h). Another example of activity-guided optimization of GC376′s structure led
to analog 18, which has a constrained bicyclic ring system in P3 [51]. Mpro FRET substrate
assay of 18 indicated an IC50 of 0.18 µM and nanomolar efficacy in the plaque reduction
assay (EC50 = 0.035 µM; VeroE6).

Inspired by the structurally related FDA-approved antivirals boceprevir and telaprevir,
Xia et al. also synthesized and tested boceprevir/telaprevir-GC376 chimera [52]. Some of
these analogs turned out to be nanomolar SARS-CoV-2 Mpro inhibitors (19: IC50 = 0.054 µM;
20: IC50= 0.051 µM) and (sub)micromolar antivirals (VeroE6, 19: EC50 = 0.37 µM; 20:
EC50 = 2.6 µM). X-ray data for both compounds (PDB 7lyi (19) and 7lyh (20)) confirmed
successful insertion of the bicyclic proline moieties into the S2 subpocket. Additional
modification of the P3 substituent, as tried in an extensive SAR study by Qiao et al., led to
the superior compound MI-23 with an IC50 of 0.008 µM [53]. In the cocrystal structure, the
extended 1-ethyl-3,5-difluorobenzene substituent in P3 interacts via hydrophobic contacts
with nearby Leu167 and Pro168, additionally contributing to a tight fit of this inhibitor.
Presumably due to a limited cell membrane permeability, MI-23 and other inhibitors of
this series had reduced activity in the cell protection assay (EC50 = 5.6 µM), incentivizing
the authors to select further structurally modified P3 analogs for pharmacological testing.
The analog MI-30 (21) with a (2,4-dichlorophenoxy)acetyl group in P3 had a persistent low
IC50 of 0.017 µM, good in vitro efficacy (EC50 = 0.54 µM), no common cell toxicology, and
protected transgenic mice that expressed hACE2 against SARS-CoV-2 infection. In an SD
rat model, MI-30 showed good in vivo stability (t0.5 = 2.35 h), high plasma concentrations
(Cmax = 23582 ng/mL), and sufficient clearance (CL = 17.1 mL/min/kg).

To improve the surface interaction of inhibitory peptides, Yang et al. shifted their
focus to optimizing tripeptides as SARS-CoV-2 Mpro inhibitors [54]. A potent aldehyde
from their series (MPI8) has the common γ-lactam ring in P1, a cyclohexyl group in P2, and
a benzyloxycarbonyl-protected tert-butylserine in P3, and displayed an IC50 of 0.11 µM
and good in vitro antiviral efficacy (EC50 = 2.5 µM). Indeed, the cocrystal structure of MPI8
(PDB 7jq5) reveals a bifurcated orientation of the P3 residue covering an extended area of
the solvent-exposed S3/S4 site, highlighting enhanced interaction with several hydrophobic
Mpro residues. In an extended study by the same group, the authors classify MPI8 as dual
inhibitor of Mpro and cathepsin L, showing nanomolar half-inhibition concentrations for
both cysteine proteases [55]. Cathepsin L, among other membrane proteases, is suspected
to facilitate coronaviral entry, giving dual inhibitor aldehydes such as MPI8 superior viral-
neutralization qualities. This concept was further explored in various drug-repurposing
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studies focusing on well-known proteasome inhibitors. As such, MG-132 was shown to
effectively bind to and inhibit both SARS-CoV-2 and cathepsin L [56,57]. Another set of
studies proved calpain inhibitors II and XII as potent SARS-CoV-2 Mpro binders (IC50 = 0.97
and 0.45µM, respectively) with a micromolar antiviral effect [39,58,59].

A second important reversible warhead functional group that has been extensively
implemented in Mpro inhibitor design comprises α-ketoamides. This function is espe-
cially valuable since, in addition to the hemithioacetal generated by the reaction of the
ketone with the cysteine sulfur, the neighboring ketoamide can also engage in stabilizing
hydrogen bonds. A recurring bonding motif for this function involves a hydrogen bond
from the hemithioacetal –OH with His41 and hydrogen bonds from the amide group with
backbone amides Gly143, Ser144, and Cys145. Some of the first proposed peptide-based
inhibitors during the pandemic were compounds 22 and 23 (Figure 11), prominent SARS-
CoV inhibitors. Their sub-micromolar performance against SARS-CoV-2 was confirmed
by FRET Mpro assay, and optimized compound 23 blocked SARS-CoV-2 viral replication
with EC50′s > 5 µM [7,60]. The solid-state structure of 23 with Mpro confirms the expected
hydrogen bond network around the active site Cys145, orienting the C-terminal benzyl
group towards the S1′ site. S1 is accommodated by the five-membered ring glutamine sur-
rogate, S2 hosts the cyclopropyl side chain, and the pyridyl moiety in P3 seems beneficial in
supporting additional hydrogen bonds with Glu166 that line up the N-terminal Boc group
towards the surface S3 pocket. Beneficial ADME and pharmacokinetic data of 23 (Table 2)
suggest pyridone-containing inhibitors as a viable framework towards anticoronaviral
drugs. Based on the GC376 core structure, α-ketoamides UAWJ246 and UAWJ248 were
developed (Figure 11) [49]. In vitro testing indicated a negligible effect of exchanging the
aldehyde for a ketoamide warhead, with UAWJ246 scoring an IC50 of 0.045 µM and an
EC50 of 4.61 µM. Other repurposing studies identified the hepatitis C antivirals boceprevir
and telaprevir as promising model compounds to combat SARS-CoV-2 (Figure 11) [61,62].
Cocrystal structures with both drugs confirm hemithioactal formation and a surprisingly
snug fit of both drugs into the protease subsites (boceprevir: PDB 6zru; telaprevir: PDB
6zrt). While the IC50 of telaprevir was determined as 18 µM [63] and cell studies indicated
cytotoxicity above 60 µM [64], boceprevir seemd more active (IC50 = 4.13 µM), inhibited
SARS-CoV-2 replication with an EC50 value of 1.95 µM, and was not toxic in Caco-2 cells
(CC50 > 100 µM) [61]. A different study found the proteasome inhibitor A, which in-
hibits proliferation of various cell cancer lines in nanomolar concentrations, a suitable
COVID-19 antiviral [65]. The VeroE6 cell assay determined an even better antiviral effect
(EC50 = 1.28 µM) of A compared to the related tripeptides with an aldehyde warhead.
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Figure 10. Chemical structures of aldehyde-based Mpro inhibitors 13–15 [41,42], GC376 and GC373 
[43], 16 and 17 [48], UAWJ247 [49], NK01-63 [50], 18 [51], 19 and 20 [52], MI-23 and MI-30 (21) [53], 
MPI8 [54], as well as MG-132 [56]. Inhibitory (IC50) and antiviral data (EC50) are given below each 
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gen bonds. A recurring bonding motif for this function involves a hydrogen bond from 
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Figure 10. Chemical structures of aldehyde-based Mpro inhibitors 13–15 [41,42], GC376 and
GC373 [43], 16 and 17 [48], UAWJ247 [49], NK01-63 [50], 18 [51], 19 and 20 [52], MI-23 and MI-
30 (21) [53], MPI8 [54], as well as MG-132 [56]. Inhibitory (IC50) and antiviral data (EC50) are given
below each structure.
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A third category of reversible Mpro inhibitors uses a nitrile warhead to establish a
temporary covalent bond with the enzyme. A nucleophilic Cys145 thiolate attack of the elec-
trophilic nitrile carbon results here in the formation of a reversible thioimidate. Although
nitrile-based peptidomimetic SARS-CoV-2 inhibitors developed as past (corona)viral de-
fense agents showed only moderate inhibition success [66], the nitrile function is a chemi-
cally valuable way to reduce the number of hydrogen bond donors in the molecule [67]. This
feature is helpful for the development of orally available drug candidates, as a reduced num-
ber of hydrogen bond donor functions increases drug permeability in the gut. Using this
chemical masking strategy, Pfizer chemists developed, in a comprehensive drug develop-
ment program, nirmatrelvir, influenced by structural optimization of the α-hydroxymethyl
ketone PF-00835231 and the benzothiazol-2-yl ketone candidate 24 (Figure 12) [67]. The
concept proved successful, with nirmatrelvir showing nanomolar SARS-CoV-2 Mpro inhibi-
tion (IC50 = 0.019 µM), a strong antiviral effect (EC50 = 0.075 µM), and no cell toxicity [68].
The X-ray structure shows thioimidate formation of the inhibitor with Cys145 of the main
protease, supported by stabilizing hydrogen bonds of the imine with nearby Gly143 (PDB
7vh8 and 7vlq) [69]. The choice of an N-terminal trifluoroacetyl group in the drug design
is supported by stabilizing contacts with Gln192 in the S4 pocket. In vivo animal tests
confirmed desired intestinal permeability features, excellent oral bioavailability, and proper
drug clearance (Table 2). A mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA10) model re-
sponded with significantly reduced virus levels in the lungs after 4 days of a twice-daily
treatment regime with nirmatrelvir (300 mg/kg) compared to the placebo group. Excel-
lent in vitro and pharmacokinetic performance as well as favorable off-target selectivity
qualified the drug candidate for clinical trials, consequentially leading to emergency FDA
approval of nirmatrevir in December 2021. During the preclinical trials, it was found
that coadministration of the anti-HIV drug ritonavir increased drug performance due to
ritonavir’s inhibitory action on CYP-mediated metabolism. This ultimately resulted in
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coformulation of nirmatrelvir with ritonavir in the final drug paxlovid. In light of the
mutational adaptivity and widespread transmission of different SARS-CoV-2 variants of
concern, it can be seen encouraging that several studies confirmed nirmatrelvir’s ability to
efficiently neutralize infection of beta, delta, and omicron variants of the virus in animal
models [70–74]. Regarding effectivity in humans, a manufacturer-conducted study indi-
cated persistent pharmacokinetic performance, viral clearance, and drug safety in healthy
participants [75]. Related studies with renally impaired subjects showed increased peak
plasma concentrations of the drug and delayed clearance correlating with severity of renal
disease, thus recommending a dose reduction for this impairment group [76]. Driven by
the success of nirmatrelvir, several analogs with adaptations of the P2 and P3 sites have
been developed. A related patent by Pfizer identified compound 25 as a strong main
protease binder (Ki = 0.004 µM) and effective SARS-CoV-2 antiviral (EC50 = 0.019 µM) [77].
A different group considered elements of GC376 and its derivatives for their inhibitor
optimization screening. Among their synthesized compounds, nitrile 26 was the most
active in the inhibition assay (IC50 = 0.009 µM) and potent in reducing viral replication
(EC50 = 2.2 µM) [78].
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An odd case of covalent inhibition of SARS-CoV-2 Mpro concerns the repurposing
studies of the anti-inflammatory agent ebselen, which has been in the inhibitor race since
early 2020. Enzymatic testing indicated strong inhibition and antiviral activity of ebselen
(IC50 = 0.67 µM, EC50 = 4.67 µM, VeroE6) [14,79]. Two inhibition mechanisms are discussed
in the literature: covalent attachment to and ultimate selenylation of Cys145 [79] and
allosteric inhibition at a dimerization site (discussed later). Covalent inhibition proceeds
through SN-type opening of the benzisoselenazol ring and subsequent hydrolysis, releasing
a phenolic byproduct and the selenylated cysteine sulfur, as suggested by DFT and mass
spectrometric analysis (Figure 13) [80,81]. The final sulfur selenium adduct was confirmed
by X-ray crystallography (PDB 7bak) [79]. Considering the possibility for plural inhibition
within Mpro, ebselen analogs were designed and tested. One design avenue considered
ebselen derivatives with a modified nitrogen substituent [79], where again it was found that
halide substitution beneficially influences inhibitor properties. The most active compound
from this series, 27, showed similar potency to that of the parent ebselen and had about
three times improved antiviral activity (EC50 = 1.78 µM; VeroE6). Substitution of the
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selenium atom for sulfur gives the isosteric compound ebsulfur, which also acts as a potent
Mpro inhibitor. Among a series of analogs, compound 28 bound with an IC50 of 0.11 µM to
the target; however, antiviral and pharmacokinetic data have not been reported yet.
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Table 2. Reversible inhibitors of SARS-CoV-2 Mpro with inhibitory and pharmacological data.

Warhead Drug Example Efficacy Potency Toxicology Pharmacology Lit.

IC50 (µM) EC50 (µM) CC50 (µM) t0.5
(h)

Cmax
(ng/mL)

Clear.
(mL/min/kg)

Aldehydes 13–21, GC376,
MPI8, MI-23 GC376: 0.19 GC376: 0.92 GC376:

>100 (Vero6)
GC376: 1.1
(mouse),
3.9 (rat)

GC376: 46700
(mouse),

12560 (rat)

GC376:
33.1 (mouse),

20.1 (rat)
[43]
[46]

Ketoamides 23, UAWJ246 23: 0.67
UAWJ246: 0.045

23: 4–5
UAWJ246: 4.61

UAWJ246:
>250 (Vero6) 23: 1.0 (mouse) 23: 334

(mouse)
23: 566

(mouse)
[7]
[49]

Nitriles nirmatrelvir 0.019 0.075 >100 (Vero6) 1.5 (rat, P.O.) 1290
(mouse, P.O.) - [68]

2.3. Noncovalent Active Site Inhibitors

A virtual screening study performed by Yang et al. identified Z1759961256 (Figure 14)
as one of six hits with micromolar Mpro potency and viral activity against SARS-CoV-2 [82].
Similarly, in the optimization of the molecular library probe ML300 in a comprehensive
study design, CCF981 evolved as lead compound with a strong Mpro inhibition capability
(IC50 = 0.068 µM) and a pronounced antiviral effect (EC50 = 0.56 µM; VeroE6) [83]. The
drug binds well into Mpro’s active site cavity with the imidazole system pointing towards
S1′, the benzotriazole unit in S1, and the m-chlorobenzene occupying S2, as abstracted from
the binding modes of structurally similar analog crystal structures. Following the dual
inhibitor approach to maximize the antiviral effect, Elseginy et al. synthesized inhibitor
29 (Figure 14) after mapping a >50,000 compound library for structural hits [84]. In vitro
tests identified 29 not only as a potent Mpro binder (IC50 = 0.11 µM) but similarly as a
good inhibitor of PLpro and human furin protease. Cell assays indicated cytotoxicity in
mammalian cells that were overcome by synthesis of analogs of 29. Inspired by the weak
anti-SARS-CoV-2 Mpro activity of the antiepileptic perampanel, Zhang et al. synthesized
and tested 27 structural analogs in their search for better inhibitory activity [85]. While
most synthesized compounds showed sub-micromolar Mpro inhibition, VeroE6 cell assays
indicated considerate toxicity. One compound (30), however, stood out, having a low Mpro

IC50 of 0.17 µM, potent antiviral effect (EC50 = 0.98 µM), and displaying no cell toxicity
within the tested concentration range (CC50 > 100 µM). The crystal structure of a related
analog shows the cloverleaf-like molecular structure occupying three subpockets of the
protease (PDB 7l11). Using an in-house structural library, Unoh et al. recently discovered
another cloverleaf-like structure that shows beneficial anti-SARS-CoV-2 properties and
binds noncovalently in the active site of Mpro [86]. Virtual screening with predefined
filters that include two hydrogen bond acceptors in S1 and a hydrophobic element in S2
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narrowed down the selection of hit structures suitable for biological screening. Among
them, the compound S-217622 displayed very strong binding to Mpro (IC50 = 0.013 µM)
and pronounced antiviral effect in the plaque reduction assay (EC50= 0.37 µM). Further
biochemical assays confirmed that S217622’s antiviral activity extends to common SARS-
CoV-2 variants, including the omicron strain (EC50= 0.29–0.5 µM), while other proteases,
including cathepsins and thrombin, remain uninhibited. In the X-ray structure, the 1,3,5-
triazine-2,4(1H,3H)-dione core sits in the middle of the catalytical site, with the three
wing-like substituents reaching in S1′, S1, and S2 pockets (PDB 7vu6). A tight fit is achieved
by a dense H-bond network involving Gly146, Ser147, His165, and Glu168 of the enzyme
as well as π–π interactions between His43 and the aromatic P2 inhibitor moiety (Figure 14).
The superior in vitro performance of S-217622 stimulated in vivo testing in mice infected
with SARS-CoV-2 Gamma strain, where viral titers in lung homogenates were determined
12 h after oral dose of S-217622 and 24 h after infection. The drug demonstrated a peak
plasma concentration that at all tested doses (2–32 mg/kg single dose, P.O.) was above
the protein-adjusted EC50, thereby reducing the viral titer at the highest two doses to the
detection limit (1.8 log10[TCID50]/mL). Full pharmacokinetic profiling in hamster revealed
a stable concentration level (Cmax = 62 µM at 30 mg/kg single dose P.O., t0.5 = 1.2 h) and
reduced lung damage from acute SARS-CoV-2 infection in hamster recipients [87].
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cessing. Experimentally, to date, six allosteric sites have been suggested, three of which 
are located at the dimerization interface and three more at distal surface regions (Figure 
15). Since dimerization is integral for the activity of the main protease, allosteric inhibitors 
targeting dimerization close sites seem especially valuable. While there are numerous 
studies reporting on in silico-generated noncompetitive inhibitors (and the interested 
reader is referred to those reviews for details, for example [88]), we focus solely on the 
few experimentally confirmed allosteric Mpro inhibitors that have been biologically vali-
dated and ideally crystallographically characterized. There are currently 35 PDB entries 
concerning noncompetitive inhibitors, possessing vastly different structural features and 
lipophilicity. The average size of cocrystallized allosteric inhibitors is about 200 Da less 
than that of covalently bound competitive inhibitors (Mw,aver = 236 ± 75 g/mol). 

Figure 14. Chemical structures of noncompetitive Mpro inhibitors Z1759961256 [82], CCF981 [83],
29 [84], 30 [85], and S-217622 [86] with respective IC50 and EC50 values. The cloverleaf structure of
S-217622 enables tight binding to Mpro’s active site (PDB 7vu6).

3. Allosteric Inhibitors

Aside from the Cys145-hosting main active site, several surface-exposed pockets of
Mpro support catalytic activity assisting crucial enzyme dimerization or substrate process-
ing. Experimentally, to date, six allosteric sites have been suggested, three of which are
located at the dimerization interface and three more at distal surface regions (Figure 15).
Since dimerization is integral for the activity of the main protease, allosteric inhibitors tar-
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geting dimerization close sites seem especially valuable. While there are numerous studies
reporting on in silico-generated noncompetitive inhibitors (and the interested reader is
referred to those reviews for details, for example [88]), we focus solely on the few exper-
imentally confirmed allosteric Mpro inhibitors that have been biologically validated and
ideally crystallographically characterized. There are currently 35 PDB entries concerning
noncompetitive inhibitors, possessing vastly different structural features and lipophilicity.
The average size of cocrystallized allosteric inhibitors is about 200 Da less than that of
covalently bound competitive inhibitors (Mw,aver = 236 ± 75 g/mol).
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residues (PDB 7ap6). The flattened structure of the anticancer agent pelitinib covers a hy-
drophobic pocked within Mpro’s C-terminal dimerization domain, thereby interfering with 
activity-determining enzyme dimerization. It displays a potent antiviral effect (EC50 = 1.25 
µM) and unfortunately, moderate VeroE6 cell toxicity (CC50 =14 µM). While the 3-cyano-
quinoline moiety interacts with the C-terminal helix around Ser301, the ethyl ether forms 
bridging interactions with a loop from the opposing protomer (PDB 7axm). Similarly, the 
vasodilator ifenprodil and the investigational chemokine RS-102895 (Figure 16) also bind 
to this allosteric site, resulting in moderate antiviral activity (EC50 ≥ 20 µM) for both drugs 
(Table 3). Ifenprodil is undergoing clinical phase III studies to test its efficiency in acute 
intervention for hospitalized COVID-19 patients [90]. The same study identified a deep 
groove within the dimerization domain as a second allosteric site, which can be occupied 
by the investigational anticancer agent AT7519 (Figure 16) [89]. Binding to the grove is 
supported by van-der-Waals interactions of the chlorinated benzene ring with a hydro-
phobic residue wall as well as hydrogen-bonding with Gln110 and Arg298 (PDB 7aga). 
Mutational analysis demonstrated that Arg298 is crucial for dimerization, explaining 
AT7519′s moderate antiviral effect (EC50 = 25.2 µM; CC50 > 100 µM). The anthelminthic 
drug niclosamide was identified as a wonder antiviral for various viruses, including 
SARS, MERS, ZIKV, HCV, and human adenovirus [91]. In a repurposing attempt, Li and 
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erties [92]. While several analogs were identified with low micromolar IC50 values and 
good antiviral effect but unfortunately also considerable cell toxicity, one compound, 
JMX0286 (Figure 16), stands out due to an increased selectivity index (IC50 = 4.8 µM, EC50 
= 2.3 µM, CC50 = 53 µM, A549-hACE2 cells). Kinetic experiments showed a lowered max-
imum velocity but similar Km for inhibitor-treated samples, suggesting a noncompetitive 
inhibition mechanism. Molecular modeling points to a similar binding mode and allo-
steric site as that observed for AT7519. A recent clinical phase II trial showed no significant 
effect of niclosamide on decreasing the contagious period of SARS-CoV-2 infection [93]. 
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A comprehensive drug screening effort of 5000 FDA- or near-FDA-approved drugs
identified 37 Mpro inhibitors [89]. In cell-based assays, seven compounds had antiviral
activity without toxicity. From their X-ray structures with Mpro, one drug showed nonco-
valent binding within the active site, while four more drugs were located at distal sites.
The S. aureus antibacterial MUT056399 (Figure 16) coordinated near the active site and
moderately inhibited SARS-CoV-2 viral activity (EC50 = 38.2 µM, CC50 > 100 µM; Table 3)
in the Vero E6 cell assay. From the cocrystal structure, it is obvious that the diphenyl ether
blocks access to the catalytic dyad, with other parts of the molecule binding to S1 and S2
pocket residues (PDB 7ap6). The flattened structure of the anticancer agent pelitinib covers
a hydrophobic pocked within Mpro’s C-terminal dimerization domain, thereby interfer-
ing with activity-determining enzyme dimerization. It displays a potent antiviral effect
(EC50 = 1.25 µM) and unfortunately, moderate VeroE6 cell toxicity (CC50 =14 µM). While
the 3-cyanoquinoline moiety interacts with the C-terminal helix around Ser301, the ethyl
ether forms bridging interactions with a loop from the opposing protomer (PDB 7axm). Sim-
ilarly, the vasodilator ifenprodil and the investigational chemokine RS-102895 (Figure 16)
also bind to this allosteric site, resulting in moderate antiviral activity (EC50 ≥ 20 µM)
for both drugs (Table 3). Ifenprodil is undergoing clinical phase III studies to test its ef-
ficiency in acute intervention for hospitalized COVID-19 patients [90]. The same study
identified a deep groove within the dimerization domain as a second allosteric site, which
can be occupied by the investigational anticancer agent AT7519 (Figure 16) [89]. Binding
to the grove is supported by van-der-Waals interactions of the chlorinated benzene ring
with a hydrophobic residue wall as well as hydrogen-bonding with Gln110 and Arg298
(PDB 7aga). Mutational analysis demonstrated that Arg298 is crucial for dimerization,
explaining AT7519’s moderate antiviral effect (EC50 = 25.2 µM; CC50 > 100 µM). The an-
thelminthic drug niclosamide was identified as a wonder antiviral for various viruses,
including SARS, MERS, ZIKV, HCV, and human adenovirus [91]. In a repurposing attempt,
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Li and coworkers tested a library of 300 niclosamide derivatives for their anti-SARS-CoV-2
properties [92]. While several analogs were identified with low micromolar IC50 values
and good antiviral effect but unfortunately also considerable cell toxicity, one compound,
JMX0286 (Figure 16), stands out due to an increased selectivity index (IC50 = 4.8 µM,
EC50 = 2.3 µM, CC50 = 53 µM, A549-hACE2 cells). Kinetic experiments showed a lowered
maximum velocity but similar Km for inhibitor-treated samples, suggesting a noncom-
petitive inhibition mechanism. Molecular modeling points to a similar binding mode
and allosteric site as that observed for AT7519. A recent clinical phase II trial showed
no significant effect of niclosamide on decreasing the contagious period of SARS-CoV-2
infection [93]. Considering the structural similarity of Mpro’s binding site and its direct
vicinity with that of thrombin (FactorXa), Chaves et al. were curious about the inhibitory
effect of anticoagulants apixaban (Figure 16) and rivaroxaban [94]. In the in vitro assay,
apixaban (IC50 = 0.01 µM) was superior to rivaroxaban (IC50 = 0.14 µM) and 21-fold more
active than GC-376. Kinetic analysis suggests noncompetitive binding that seems to occur
at the same allosteric site as that binding pelitinib (molecular docking). Apixaban inhibited
SARS-CoV-2 replication in infected Calu-3 cells, with an EC50 of 1.84 µM, 60-times less po-
tent than remdesivir, and showed in this assay a CC50 of 491 µM. Despite a low free plasma
concentration (Cmax = 0.55 mM) due to high binding affinity for albumin, apixabans free
fraction was ~10-times higher than its SARS-CoV-2 Mpro affinity, serving as a good basis
for further anti-coronaviral pharmacological studies. A structure-based virtual screening
of 3.8 million small-molecule ligands recently identified three hits that showed promising
complexation with the Mpro enzyme [95]. Among them, GR20 (Figure 16) showed with
IC50 = 91.8 µM the best Mpro inhibition. Although competitive inhibition cannot be ruled
out by the authors, kinetic analysis suggested a mixed inhibition model. Molecular docking
gives the best fitting of GR20 into allosteric groove 2 (Figure 15), similar to that of the
anticancer agent AT7519. From the natural pool of antivirals, the broad-spectrum drugs
chebulagic acid and punicalagin have been demonstrated to show potent activity against
Mpro [96]. Both drugs displayed IC50 and EC50 values in the lower micromolar range,
with enzyme kinetic data indicating noncompetitive binding. From initial docking, it is
suggested that these structurally extensive plant-based antivirals fit into a groove between
domains II and III distal from the active site.

As an alternative anti-COVID-19 drug design, Xia and co-workers originally envi-
sioned thiophilic metal complexation of the active site Cys145 using colloidal bismuth
subcitrate (CBS) to inhibit Mpro’s activity [97]. Indeed, incubation of SARS-CoV-2 Mpro with
CBS resulted in excellent inhibition (IC50 = 0.93 µM), but unexpectedly, kcat/Km remained
unchanged with both Km and vmax decreasing, indicating noncompetitive binding. Induc-
tively coupled plasma mass spectrometry revealed an inhibitor:enzyme monomer ratio of
2. By mutational analysis, one binding site was identified as the C-terminal Cys300 residue,
which is essential to stabilize the dimeric structure of Mpro [98]. The VeroE6 antiviral assay
yielded a half maximal effective concentration of CBS against SARS-CoV-2 replication of
177.3 µM, sparking excitement for further drug optimization endeavors.

Based on the extended conformation of the native Mpro monomer, Geng and co-
workers recently designed inhibitory nanobodies using the Nanoluc Binary Technology
(nanoBiT) [99]. Application of a phage display library obtained 11 high-affinity nano-bodies
from Mpro-immunized camel. An in vitro Mpro FRET assay indicated two antibodies as
sub-micromolar Mpro binders (NB1A2 IC50 = 0.19 µM, NB2B4 IC50 = 0.12 µM; Table 3). Size-
exclusion chromatography showed that binding to Mpro leads to dissociation to catalytically
inactive monomers. Moreover, X-ray crystallographic analysis showed different epitopes
for the two antibodies. In the cocrystal structure with NB2B4, the antibody is located at
the α-helical domain of Mpro, distal from the catalytic site (PDB 7vfb). The other antibody
binds instead to an epitope that overlaps with the substrate binding site, thus suggesting
NB1A2 as not only an allosteric but also a competitive inhibitor (PDB 7vfa).
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4. Inhibitors in Action—Drug Performance in the Clinic

Several herein described SARS-CoV-2 antivirals that target its main protease, Mpro,
have entered clinical studies and/or trials with varying success [100,101]. As mentioned
before, reversible covalent inhibitors provide more beneficial pharmacokinetic data to
qualify for clinical testing (Figure 17). Among the trial candidates, nirmatrelvir established
the golden ticket to become the first covalent SARS-CoV-2 Mpro inhibitor, approved in
combination with ritonavir for the treatment of mild-to-moderate COVID-19 in adults
and pediatric patients 12 years or older. The US has committed to purchasing 20 million
treatment courses, with close to 10 million treatment courses currently prescribed [102]. The
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first meta-analysis studies indicate effectivity of the marketed drug paxlovid in reducing
mortality and hospitalization rates in patients with COVID-19, with benefits especially
for vulnerable cohorts including older patients, immunosuppressed patients, and patients
with underlying neurological or cardiovascular disease [103,104]. Nonetheless, one must
be aware of the limitations of a single target treatment regime, most importantly, the occur-
rence of viral resistance by mutational escape (“variants of concern”), as has been suggested
in recent literature [105,106]. Recently, a higher reinfection rate after completing an antiviral
treatment course compared to a control group has been observed in a prospective cohort
study (preprint) [107]. Interestingly, this seems not to be attributable to virus mutation or
impaired immunity but rather to a suboptimal drug exposure for certain patients [108], leav-
ing room for further drug design and formulation development. Potential viral resistance
has not only been recognized for paxlovid’s Mpro-active ingredient nirmatrelvir but also for
other late-stage Mpro antivirals such as GC376 and boceprevir. In fact, a study by Peng and
co-workers investigated the development of resistance in a feline coronavirus (FIPV) under
pressure from GC376 and found that a mutation in nsp12 of its main protease rendered the
enzyme up to three times less susceptible for the inhibitor [109]. Encouraging data from cell
culture studies hint that GC376 performs efficiently against Mpro’s from SARS-CoV-2 and
various seasonal coronaviruses (NL63, 229E, and OC43), suggesting beneficial inhibition
promiscuity of this drug that can be used as a basis for future structure development and
antiviral testing [110]. This is in contrast to the molecular docking analysis that suggested
comparable affinity of boceprevir and GC376 for the different analyzed coronaviral Mpro

enzymes, leading the authors to caution against overinterpretation of in silico data during
antiviral therapy development.
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Figure 17. In Vitro performance of selected Mpro inhibitors. Compounds with nanomolar potency
and efficacy are located in the yellow highlighted top corner of this graph, reflecting promising
lead compounds or currently FDA-approved drugs (nirmatrelvir) to treat COVID-19. Irreversible,
reversible, and noncovalent inhibitors are highlighted in blue, orange, and green, respectively.

5. Future Strategies/Outlook

The threat of a potentially uncontrollable pandemic has mobilized unprecedented
scientific efforts to identify druggable targets of SARS-CoV-2. Influenced by successful past
(corona)viral research, the main protease of the current coronavirus, Mpro, was identified
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as one such target due to its critical role in virus replication and the expected low muta-
tional susceptibility. Over the past three years, various research groups and companies
around the globe entered the quest for potent SARS-CoV-2 Mpro antivirals, revealing at
least two dozen lead structures with predominantly reversible warheads. About half a
dozen peptidomimetic and small-molecule inhibitors have since entered clinical trials [101],
with nirmatrelvir (Pfizer) receiving FDA emergency approval after successful pass of
clinical trials and Shionogi’s nonpeptidic S-217622 advancing to late-stage Phase III eval-
uation [86,111]. Central to the rapid discovery of vastly different inhibitor scaffolds was
the accessibility of research data, catalyzed partly by extended open access policies of
scientific journals and global molecular design initiatives such as COVID moonshot [112].
However, considering emerging reports of breakthrough infections after antiviral treatment
and the constant threat of viral adaptability, and learning from the persistence of other
viral epidemics such as HIV, the scientific community is challenged to be on the lookout
for extended and alternative treatment options. One such strategy that has been proven
effective, for example, in epidemiologic HIV management, is combination therapy, to
explore synergistic drug effects and limit the potential mutational escape of mono-target
antiviral therapies. Alternative viral targets with successfully developed inhibitors that
can be co-targeted in a combination therapy include the RNA-dependent RNA polymerase
(RdRP), the nucleocapsid protein (N), and the spike protein (S), among others [113]. An
example of a synergistic combination therapy with high potential to further condemn viral
replication is pairing the paxlovid drug nirmatrelvir with the RNA polymerase-attacking
molnupiravir [114,115].

Another approach of enhanced antiviral combat considers alternative warhead chemistries
to increase target specificity as well as drug bioavailability and clearance after successful
therapy. An example that explores the chemical space around the reactive electrophilic warhead
shows promising potential to finetune inhibitor properties to desired parameters solely by
exchange of the reactive head group [116]. Aside from the already employed diversity of
functional groups, novel chemistries that have the potential to improve target interaction
can be derived from wider drug repurposing screens, including, for example, boronic acids,
such as in ixazomib [117]. The example of colloidal bismuth subcitrate as a strong Mpro

inhibitor highlights the potential of thiophilic metal complexes in anti-Mpro pharmacophore
design [97]. Especially in the light of minimizing off-target effects, the excellent in vitro and
in vivo performance of selected noncovalent leads such as S-217622 should be considered [86].
Lastly, available new drug delivery technologies can help to reduce dosage and unwanted side
effects, potentially allowing the consideration of drug candidates with a smaller selectivity
index that have previously been excluded [118]. Target overlap in vulnerable COVID-19
patients that are treated for pre-existing conditions, including cardiovascular and viral diseases,
might lead to side-effects upon COVID-19 treatment. This can be desired if such interactions
are synergistic, but drug exposure should be limited if contraindications have been identified.
For such cases, new formulation technologies are anticipated to reduce the amount of active
drug needed, minimizing off-target effects and avoiding drug accumulation. With these tools in
development, new or improved SARS-CoV-2 Mpro inhibitors remain an exciting and beneficial
avenue for the successful treatment and eradication of COVID-19 and its complications.
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