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Abstract: Obesity is associated with a significantly increased risk of cardiovascular and metabolic
diseases such as diabetes mellitus. Recently, a growing body of evidence shows that phytochemicals,
especially many flavonoids, place an inhibitory regulatory effect on adipogenesis, obesity and
diabetes. With computer-aided drug discovery, the action modes of more and more bioactive
flavonoids are being identified and confirmed at the molecular level. Citrus fruit peels are particularly
rich in bioactive flavonoids which have demonstrated strong therapeutic potentials in regulating
lipid metabolisms. However, they are usually thrown away after consuming the flesh, sometimes
even causing environmental problems. Thus, extraction of useful flavonoids from citrus fruit waste
for pharmaceutical industry could be a profitable and environmentally friendly solution in the future,
advocating the concepts of circular economy and sustainable society. The aim of this review is to
summarize current evidence on the antiobesity and antidiabetic potentials of identified bioactive
flavonoids extracted from the peels of citrus fruits. Our results suggest that various citrus fruit peels
could be potential sources for novel drugs and nutraceuticals. Combining experimental data and
artificial intelligence methods to study citrus flavonoids would facilitate the discovery of novel drugs
against obesity and obesity-related metabolic diseases.
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1. Introduction

Over the past three decades, Obesity prevalence has doubled globally, leading to a
dramatic increase in associated diseases including type 2 diabetes mellitus, nonalcoholic
fatty liver disease, cancer, and cardiovascular diseases [1–3]. Pathophysiologically, obesity
is characterized by increased mass of adipose tissue. Besides storing energy in the format
of fat, adipose tissue also functions as a major endocrine organ which secrets adipokines,
cytokines, and hormones, affecting inflammation, insulin sensitivity and bioenergetic home-
ostasis [3]. As such, dysfunction of adipose tissue plays an essential role in obesity and
related metabolic syndrome [3,4]. Enhanced adipogenesis, derived from excessive accumu-
lation of triglycerides (TGs) in adipocytes, is the essential process which leads to obesity [3].
During adipogenesis, adipocyte differentiation is the determining step which is character-
ized by a series of morphological and biochemical transition of confluent preadipocytes [5].
After terminal differentiation, a well-controlled stimulation of lipid mechanism-related
genes will be enhanced [5]. Several key transcriptional factors dominate this process, in-
cluding CCAAT/enhancer-binding proteins (C/EBPs), peroxisome proliferator activated
receptors (PPARs), and sterol regulatory element-binding proteins (SREBPs) [6,7]. Insulin-
like growth factor-1 (IGF-1) signaling and adenosine monophosphate-activated protein
kinase (AMPK) signaling are also well-acknowledged to be key influencers involved in
adipocyte differentiation and energy homeostasis [8,9].
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Among obese population, overt diabetes cases are considerably less than cases diag-
nosed as prediabetes, an intermediate state before developing into diabetes which is also
characterized by fasting hyperglycemia, inflammation and elevated oxidative stress [4,10].
Insulin resistance (IR), a deteriorated phenotype in blood glucose control, is well acknowl-
edged as a classical feature of prediabetes [4,10]. An increase in liver fat has recently been
proved to be associated with elevated fasting plasma glucose and insulin levels, as well
as impaired glucose tolerance [3,11]. Thus, fatty liver is another key factor predisposing
obese people to the development of insulin resistance. Emerging evidence also suggest that
macrophages infiltration into adipose tissue and consequent metabolic inflammation are the
key contributors to the pathogenesis of obesity-associated insulin resistance and metabolic
disorders [3,12]. Chronic insulin resistance, combined with a deteriorated β-cell function,
leads to the elevated blood glucose level and subsequently, full-blown diabetes [4,10].

Recently, a growing body of evidence shows that phytochemicals, especially flavonoids
from a variety of fruits such as cherries and grapes, were potent in suppressing adipo-
genesis and development of obesity and diabetes [13–15]. Our previous studies showed
that peel from Averrhoa carambola L., commonly known as star fruit, is rich in polyphe-
nols such as (-)epicatechin and proanthocyanidins. Extracts from star fruit peel exhibits
antiobesity potential by repressing adipocyte differentiation, which was likely mediated
via downregulation of PPARγ and C/EBPα expressions as well as upregulation of PPARα
expression [16]. Interestingly, the peels of fresh and dried citrus fruits are also rich sources
of bioactive compounds such as flavonoids, terpenes and coumarins [17–19]. Among them,
flavonoids are of particular interest, as on one hand, they are the major constituents of
polyphenols in citrus fruits [20,21]; on the other hand, they have been linked to a reduced
risk of various chronic diseases due to their potent antioxidant and anti-inflammatory
properties [13,15,20].

Citrus flavonoids such as hesperidin and naringin have exhibited impressive capacities
in regulating lipid synthesis, storage and utilization both in vitro and in vivo [11,19,22–28].
Oral administration of neohesperidin at a dose of 50 mg/day/kg body weight for 12 weeks
attenuated the body weight gain by 15.01% in HFD-fed obese mice [29]. Similarly, treatment
of diosmetin at a dose of 50 mg/day/kg body weight for 8 weeks reduced the bodyweight
gain by 17.95% in HFD-fed obese mice [30]. Emerging evidence also suggest that citrus
flavonoids process therapeutic effects on obesity and diabetes-associated pathological
conditions in humans [31–33]. Impressively, in Japanese individuals prone to developing
diabetes, a daily consumption of sudachi peel extract power which contains 4.9 mg su-
dachitin for 12 weeks significantly reduced the ratio of visceral fat to subcutaneous fat
by around 3.6%, compared with the placebo group [33]. Waist circumference, another
metabolic syndrome marker, was also moderately reduced by around 4% [33]. Figure 1
depicts the major antiobesity and antidiabetes flavonoids isolated from citrus fruit peels
and their representative fruit source. Recently, researchers have also employed machine
learning methods such as virtual screening to study flavonoids in greater detail as well as
identify and design novel compounds with potential therapeutic utility [34,35]

However, in the routine practice of the juice and fruit processing industry, the peels
of fresh citrus fruits and relevant byproducts are usually thrown away after consuming
the flesh [13,20,21,36,37]. Rapid growth of industrial waste from citrus fruits even causes
some environmental problems [13,20,21,36,37]. Thus, proper revaluation and recycling
of citrus fruit waste adapting the concept of circular economy should be developed to
minimize waste and promote the continual use of resources through the creation of closed-
loop systems [20,21,37]. Extraction of useful phytochemicals from citrus fruit peels for the
development of novel pharmaceuticals offers such a sustainable solution, as it could not
only reduce the amount of landfill waste and subsequent emissions of greenhouse gas, but
also have the potential to create new revenue streams and reduce the demand for virgin
resources [20,21,37].
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In this context, we systematically reviewed the currently available literature of natural
flavonoids isolated from the peels of citrus fruits, with their relevant mechanisms of action
in insulin resistance, obesity and diabetes mellitus. As there is overwhelming evidence
on the antiobesity and antidiabetes potential of crude extracts from citrus fruit peels, this
review discusses and emphasizes those bioactive citrus flavonoids with identified molecular
structures, and how they interfere with diverse molecular pathways in the development of
obesity and diabetes. The following sessions describe more detailed information for each
of the flavonoids.

2. Bioactive Flavonoids from Citrus Fruit Peels
2.1. Flavanones
2.1.1. Didymin

To evaluate the antidiabetic potential of didymin, a bioactive flavonoid glycoside
found in various citrus fruits, Ali et al., first employed a series of cell-free enzymatic
inhibitory assays and they discovered that didymin was a potent inhibitor of α-glucosidase,
PTP1B, rat lens and human recombinant aldose reductase, which was further supported
by the molecular docking analysis [38]. Treatment of didymin in insulin-resistant HepG2
cells also led to downregulation of PTP1B and enhanced glucose uptake. This improved
insulin sensitivity was mediated via activation of IRS-1, PI3K, Akt, and GSK-3 via enhanced
phosphorylations while downregulation of key enzymes involved in gluconeogenesis such
as PEPCK and G6Pase [38].

2.1.2. Eriocitrin (Eriomin)

Eriocitrin (Eriomin) is an abundant flavanone in the peels of various citrus fruits
including C. latifolia, C. limon, C. grandis cv Hirado, and C. leiocarpa [17,39]. Using HFD-fed
and HCD-fed obese rats, Miyake et al. have proved the strong lipid-lowering effects of
eriocitrin [39]. Using HepG2 cells and a diet-induced obese zebrafish model, Hiramitsu et al.
further demonstrated that eriocitrin could ameliorate dyslipidemia and hepatic steatosis
via upregulating PPARα, NRF1, ATP5J, and COX4l1, thus activating mitochondrial biogen-
esis [39]. The antiobesity potential of Eriocitrin was further confirmed in HFD-fed obese
mice [40,41]. Kwon et al. discovered that dietary eriocitrin reduced adipose tissue mass
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and hepatic steatosis via decreasing lipogenesis and increasing FA oxidation in adipose
tissue and liver respectively, as well as enhancing energy expenditure in adipose tissue
and skeletal muscle [40]. Furthermore, insulin sensitivity was improved by eriocitrin as a
result of reduced gluconeogenesis and proinflammatory responses in the liver [40]. Ferreira
et al. also found that eriocitrin supplementation at 25 mg/kg body weight for 4 weeks
could significantly enhance insulin sensitivity and reduce hepatic TG accumulation which
were associated with the inhibitory effect of eriocitrin on oxidative stress and systemic
inflammation [41].

Of note, Cesar et al. recently showed that in a randomized crossover clinical study, a
200 mg/day eriomin administration for 12 weeks was able to reduce hyperglycemia and
improve diabetes-related parameters in patients with hyperglycemia above 110 mg/dL via
its anti-inflammatory effect and upregulation of GLP-1, indicating the therapeutic potential
of eriomin for the glycemic control in prediabetic and diabetic populations [42].

2.1.3. Hesperidin

Hesperidin is a flavonoid commonly found in citrus fruits, with especial high amount
in the peels of C. tangerine, C. succosa, C.suhuiensis, and C. kinokuni [17]. In 3T3-L1 cells,
hesperidin has shown potent inhibitory effects on adipogenesis and free fatty acid (FFA)
secretion derived from adipocyte lipolysis, repressing FFA-induced IR [43]. This is executed
through inhibition of tumor necrosis factor-alpha (TNF- α) stimulated NF-κB and ERK path-
ways, as well as downregulation of antilipolytic genes including perilipin and PDE3B [43].
In HepG2 cells, hesperidin efficiently blocks pancreatic lipase (PL) activity via interacting
with PL by hydrogen bonds and van der Waals forces, showing therapeutic potential in
managing obesity [44]. Rajan et al. further showed in palmitate (PA)-treated HepG2 cells, be-
sides reducing TG content, hesperidin increased glucose uptake in an insulin-independent
manner [45]. Further elucidation of the molecular mechanism revealed that hesperidin
activated AMPK signaling, increasing phosphorylation of acetyl-CoA carboxylase (ACC)
and glycogen synthase kinase 3 beta (GSK3β) while decreasing expression of HMG-CoA
reductase (HMGCR) and SREBP-2 [45]. In primary bovine aortic endothelial cells, hes-
peridin and its metabolite hesperetin improved endothelial function via stimulation of NO
production and reduction of inflammation [31].

Interestingly, in high fat diet (HFD)-fed LDLr(-/-) mice, hesperidin also exerted pro-
tective effect against atherosclerosis via pleiotropic effects such as antioxidative and anti-
inflammatory effects, improvement of insulin sensitivity, reduction of hyperlipidemia
and hepatic steatosis, and blockage of macrophage foam cell formation [46]. Similarly, in
obesogenic cafeteria diet (CAF)-fed obese rat, hesperidin supplementation also showed
therapeutic potential against metabolic syndrome via improving insulin sensitivity and
lowering cholesterol, FFA and inflammation levels [47]. Hesperidin also showed significant
antidiabetic effect in nicotinamide/streptozotocin (NA/STZ)-induced diabetic rats via
remarkable improvements in the insulin sensitivity and antioxidant defense system [25].

Salden et al. found that in obese individuals with a flow-mediated dilation ≥ 3%,
supplementation of hesperidin 2S at 450 mg/day for 6 weeks could significantly im-
prove endothelial function and blood pressures via reduction of soluble vascular adhesion
molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) [32].

Yet, hesperidin has relatively lower water solubility and thus poor oral bioavail-
ability, so the scientific community have tried to modify hesperidin to α-monoglucosyl
hesperidin using cyclodextrin glucanotransferase [48]. Nishikawa et al. discovered that
compared with hesperidin, α-monoglucosyl hesperidin is more potent in inducing brown-
like adipocyte formation and thus suppressing white adipose tissue accumulation in
mice [48]. Yoshida et al. also found that although not improving the insulin sensitivity,
α-monoglucosyl hesperidin did ameliorate hyperglycemia and macrophage infiltration
into the adipose tissue in HFD-fed obese mice [49]. Moreover, hesperetin, the metabolite
of hesperidin and an aglycone of α-monoglucosyl hesperidin, efficiently block the mono-
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cyte chemotactic protein 1 (MCP-1) expression when 3T3-L1 adipocytes cultured alone or
cocultured with RAW264 macrophages [49].

2.1.4. Naringenin

Naringenin is a well-studied bioactive flavonoid extracted from citrus fruit peels. Us-
ing 3T3-L1 and coculture of 3T3-L1 and RAW264 macrophages, Yoshida et al. and Tsuhako
et al. found that naringenin could be a potent antiobesity nutritional supplement due to its
efficient inhibitory effects on adipogenesis and adipose tissue inflammation [12,43,50,51].
Detailed examination revealed that naringenin, besides suppressing TNF-α-stimulated FFA
secretion, blocked toll-like receptor 2 (TLR2) expression during adipocyte differentiation in
3T3-L1 which is partially executed via activation of PPARγ [43,51]. Naringenin was discov-
ered to be an activator of PPARα and PPARγ while an inhibitor of LXRα [52]. Later it was
also found that naringenin reduced adiponectin protein expression and dose-dependently
inhibited insulin-stimulated glucose uptake via suppressing tyrosine phosphorylation of
IRS-1 [53]. Furthermore, in 3T3-L1 and macrophages coculture, naringenin suppressed
TNF-α-induced TLR2 expression via attenuating activation of NF-κB and JNK pathways
in differentiated adipocytes [51]. Noticeably, MCP-1 and MCP-3 expression were also
consistently downregulated in adipocytes, macrophages, and a co-culture of adipocytes
and macrophages [12,50]. These effects were also observed in HFD-fed obese mice and
were correlated with amelioration of hyperglycemia and adipose tissue inflammation,
especially, macrophage and neutrophil infiltration into adipose tissue [12,50,51]. Using
human white adipocyte cultures (hADSC), Rebello et al. found that naringenin enhanced
energy expenditure, and upregulated key genes involved in thermogenesis and insulin
sensitivity including UCP1, PGC1α, ChREBP, and GLUT4 [54]. In human umbilical vein
endothelial cells (HUVECs), Zhang et al. also discovered naringenin ameliorated high
glucose-induced endothelial dysfunction via upregulating the protein level of intracellular
heat shock protein 70 (iHSP70) [55].

With HFD-fed LDLr(-/-) mice, Mulvihill et al. and Burke et al. investigated the ther-
apeutic effect of naringenin on obesity associated metabolic dysfunctions [56–59]. Narin-
genin supplementation to a HFD was able to reverse obesity via increased energy expendi-
ture and hepatic fatty acid (FA) oxidation, which was accompanied by an amelioration of
dyslipidemia, a reduction of inflammation and improvements in insulin sensitivity [56–59].
Elucidation of the relevant molecular mechanism revealed that naringenin stimulated
PPARα-mediated transcription while downregulated SREBP-1-mediated lipogenesis both
in liver and muscles [60]. Although in these mice, atherosclerotic lesions were unchanged
in size, they displayed a much less macrophage content and a more stable plaque phe-
notype [56]. Besides this atheroprotection effect, naringenin also displayed the ability to
promote atherosclerosis regression [61]. Using HFD-fed Fgf21(-/-) mice, Assini et al. found
that naringenin ameliorated hyperinsulinemia and impaired glucose tolerance, partially
through induction of PGC1α [62]. Ahmed et al. further discovered that in NA/STZ-
induced diabetic rats, naringenin treatment potently reversed diabetic symptoms via its
insulinotropic effects and insulin improving action which is partially mediated through
modulating insulin receptor, GLUT4 and adiponectin expression in adipose tissue [63].

Using HFD-fed obese ovariectomized mice, Ke et al. discovered that naringenin
administration placed beneficial effects on metabolic health and tumorigenesis of obesity-
related postmenopausal breast cancer via activation of AMPK signaling and induction
of cell death in tumor cells [64]. Similarly, Snoke et al. also found that in a colon-26
cancer cachexia mouse model, naringenin administration improved insulin sensitivity
while suppressed inflammation and adenocarcinoma growth [65].

2.1.5. Naringin

Naringin is also commonly found in the peels of various citrus fruits including
C. aurantium, C. natsudaidai, C. paradise, and C. grandis cv. Hirado [17]. Although also
displayed strong anti-inflammatory and antioxidant activities, naringin is less studied
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compared with its aglycone naringenin and its effect on obesity and associated metabolic
disorders remains to be fully elucidated.

In a rat model of diabetes, Ahmed et al. found that similar to naringenin, naringin also
stimulated adipose tissue expression of insulin receptor β-subunit, GLUT4 and adiponectin
which partially explains its alleviation effects on the content of serum insulin, C-peptide,
and liver glycogen content [63]. Using an in vitro cardiomyoblast model of diabetes, Chen
et al. also demonstrated the protective potential of naringin on diabetes-associated car-
diomyocyte injury [66]. In H9C2 cells, naringin attenuated high glucose-induced apoptosis
by inhibiting excessive ROS production, the dissipation of mitochondrial membrane poten-
tial, and the activation of the p38 MAPK signaling induced by leptin [66].

2.1.6. Narirutin

Abundant in the peels of C. shunkokan, C. sulcata, C. nobilis var Knep, and C. leiocarpa [17],
narirutin is another flavone glycoside which shows potent capacities in suppressing adi-
pogenesis and intracellular triglyceride accumulation. Rajan et al. recently found that in
insulin resistant HepG2 cells, narirutin enhanced glucose uptake in an insulin-independent
manner mainly through activation of the AMPK pathway [45]. Molecular docking analysis
revealed that narirutin might activate AMPK by binding to the CBS domains in the regula-
tory gamma-subunit of AMPK. Activation of AMPK leads to enhanced phosphorylation
of metabolic enzyme ACC and GSK3β as well as decreased expression of HMGCR and
SREBP-2, resulting in enhanced fatty acid oxidation and reduced lipid biosynthesis [45].

2.1.7. Neohesperidin

Neohesperidin is a flavonoid enriched in the peels of C. aurantium, C. bergamia,
C.glaberrima, C. hassaku, and C. changshanensis [17,67]. Using HepG2 cells, Zhang et al.
found that neohesperidin dramatically increased glucose uptake and this was associ-
ated with activation of AMPK signaling [67]. In vivo studies also showed that, similar
to hesperidin, neohesperidin exhibited impressive potency in suppressing intracellular
triglyceride accumulation and improving insulin sensitivity [29,68]. In HFD-fed obese
mice, neohesperidin administration attenuated gain of body weight, inflammation and
insulin resistance [29]. This was associated with an improved diversity of gut microbiota
and the modified abundance of bacteroidetes and firmicutes, indicating the potential of
flavonoid-induced gut microbiota therapy against obesity [29]. Using diabetic KK-A(y)
mice, Jia et al. discovered that the antidiabetic potential of neohesperidin was associated
with hepatic activation of the AMPK pathway and the subsequent regulation of its target
genes including stearoyl-CoA desaturase 1 (SCD-1), fatty acid synthase (FAS), and acyl-CoA
oxidase (ACOX) [68].

2.2. Flavones
2.2.1. Diosmetin

Diosmetin, a monomethoxyflavone, is naturally present abundantly in the peels of
citrus fruits such as C. medica var. 2 and C. suhuiensis [69,70]. Xie et al. discovered that in
3T3-L1 cells, normal diet–fed ob/ob mice and in HFD-fed obese mice, diosmetin functioned
as an agonist for estrogen receptors (ERs) which subsequently provoked energy expenditure
via stimulation of thermogenesis in brown adipose tissue (BAT) and acceleration of white
adipose tissue (WAT) browning [30]. Diosmetin-induced upregulation of ERs in matured
adipocytes and in mice adipose tissue was indispensable for the observed metabolic benefits
that diosmetin placed in obese mice, as ER blockage by the antagonist fulvestrant abolished
the metabolic benefits including reduction of weight gain and fat mass as well as improved
insulin sensitivity [30]. Using 3T3-L1 and RAW264 macrophages coculture, Lee et al. found
that diosmetin also displayed strong anti-inflammatory and antilipolytic activities [70].
These activities were mediated via downregulation of iNOS and inhibition of MAPK
phosphorylation and nucleus translocation in macrophages and adipocytes which lead
to suppression of inflammatory mediators such as NO, TNF-α, and MCP [70]. As such,
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diosmetin-rich dietary therapy may be suitable for the management of obesity-related
metabolic syndromes.

Interesting, in HFD-fed SD rats, Meephat et al. further discovered that diosmetin
efficiently prevent metabolic syndrome and associated cardiac abnormalities in these insulin
resistant rats as diosmetin treatment improved insulin sensitivity, restored ejection faction,
and decreased left ventricular hypertrophy and fibrosis [69]. Detail investigation indicates
that suppression of the Ang II/AT1 receptor/NF-κB pathway was underlying these rescue
effects of diosmetin [69].

2.2.2. Diosmin

Jain et al. found that diosmin, a flavone enriched in the peels of C. montana, C. latifolia,
C. lumia, and C. kinokuni, was able to suspend the progression of early diabetic neuropathy
in a rat model of HFD/STZ-induced type 2 diabetes [17,71]. After successful induction
of diabetes as evidenced by insulin resistance and dramatically elevated blood glucose,
4 weeks of diosmin supplementation dose-dependently improved thermal hyperalgesia,
cold allodynia and walking function in vivo [71]. This was associated with normalized
malondialdehyde, and nitric oxide as well as restored glutathione levels and superoxide
dismutase activity of diabetic mice [71].

2.2.3. Nobiletin

Nobiletin is a well-studied polymethoxylated flavone (PMF) which is extensively
found in the peels of various citrus fruits [17,72]. Nobiletin has been shown to suppress
adipogenesis and obesity in various in vitro and in vivo models [45]. In 3T3-L1 cells, Miyata
et al. found that besides inducing adipocyte apoptosis, nobiletin increased the secretion of
adiponectin while decreased the secretion of MCP-1 and resistin, thus improving the insulin
sensitivity [73]. Apart from downregulating PPARγ2, Kanda et al. found that nobiletin
suppressed adipogenesis via reducing the phosphorylation of CREB while enhancing the
phosphorylation of STAT5 [74]. Lone et al. further demonstrated that nobiletin exerted dual
modulatory effects on 3T3-L1 preadipocytes, on one hand, nobiletin reduced intracellular
stress and key transcription factors involved in lipid metabolism; on the other hand, it
accelerated browning in 3T3-L1 white adipocytes via induction of multiple beige-specific
genes [75]. Using HepG2 and Ampkβ1-/- primary mouse hepatocyte, Morrow et al.
proved that nobiletin placed a metabolic protection effect on hepatocytes via activation of
AMPK and ACC [76]. Rajan et al. also observed the similar effect induced by nobiletin in
PA-treated HepG2, in addition, they found that nobiletin also upregulated GSK3β while
downregulated SREBP-2 and HMGCR [45]. In addition, Tsuboi showed that in J774.1 mouse
macrophages, nobiletin increased cell release of high-density lipoprotein cholesterol via
activation of AMPK and subsequently the LXRα-PPARγ loop pathway which upregulated
ABCA1 and ABCG1 [77].

The therapeutic potentials of nobiletin against obesity, diabetes and atherosclerosis
are evidenced by multiple in vivo studies [78,79]. Lee et al. showed that in diabetic ob/ob
mice and HFD-fed obese mice, nobiletin significantly improved insulin sensitivity and
glucose homeostasis via decreasing inflammatory adipokines such as interleukin (IL)-6 and
MCP-1, while simultaneously upregulating GLUT4 and GLUT1 in various tissues [78,80].
Zhang et al. found that in both HFD-fed obese mice and rat, gut microbiota was modified
by long-term oral administration of nobiletin which led to improved biotransformation,
indicating the crucial contribution of gut microbiota in the in vivo antiobesity effect of
nobiletin [81,82].

By employing mice with hepatic AMPK deficiency, hepatic ACC dysfunction and mice
with adipocyte-specific AMPK deficiency, Morrow et al. proved the metabolic protective
effect of nobiletin against HFD/HCD-induced obesity, hepatic steatosis, and dyslipidemia,
in vivo [76]. Bunbupha et al. further examined nobiletin-induced protective effect on
nonalcoholic fatty liver disease (NAFLD) and they found that nobiletin-treated HFD-
fed rat exhibited a much less severe NAFLD phenotype including ameliorated adiposity,
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hyperlipidemia, insulin resistance, hepatic lipids accumulation and fibrosis [79]. This
protective effect was mediated through upregulation of hepatic adiponectin receptor 1
(AdipoR1) and plasma adiponectin levels, as well as downregulation of hepatic NADPH
oxidase subunit gp91(phox) [79]. Similarly, in nonobese mice, Kim et al. also observed
nobiletin-induced protective effect on nonalcoholic fatty liver disease (NAFLD) and HCD-
induced hypercholesterolemia [83]. This effect was associated with a reduction of systematic
inflammation and atherosclerosis-associated cardiovascular markers [83]. Consist with this,
Burke et al. have also demonstrated that nobiletin exhibited a strong therapeutic potential
on metabolic dysfunction and cardiovascular disease as nobiletin supplement in HFD-fed
LDLr(-/-) mice led to a more stable plaque phenotype of atherosclerotic lesions, in which
the macrophage content was much less [56].

2.2.4. Sinensetin

Sinensetin is a rare polymethoxylated flavone which is found in certain citrus fruits
including C. sunki, C. sinensis cv Valencia, C. tachibana, and C. tangerine [17,84]. Com-
pared with other parts of the fruit, it is more abundantly found in the peels of the citrus
fruits [85,86]. Kang et al. observed a strong inhibitory effects of sinensetin on adipo-
genesis in 3T3-L1 cells [84]. Its antiadipogenic property was partially explained by a
downregulation of SREBP1c expression as well as an increased phosphorylation of PKA
and hormone-sensitive lipase, indicating the involvement of the cAMP-mediated signaling
pathway [84]. In 3T3-L1 cells, sinensetin blocked insulin-stimulated glucose uptake by
suppressing the IRS and Akt phosphorylation while it enhanced phosphorylation of AMPK
and ACC to stimulate FA oxidation [84]. Similarly, Rajan et al. found that in PA-treated
HepG2 cells, sinensetin also increased AMPK, ACC, and GSK3β phosphorylation levels
and decreased SREBP-2 and HMGCR expression. Nevertheless, an increase in 2-NBDG
glucose uptake was observed in PA-treated HepG2 cells, indicating the tissue-specific
regulation pattern of sinensetin [84], Yet, to this date, the physiological relevance of these
antiadipogenic effect induced by sinensetin still need to be further investigated in vivo.

2.2.5. Sudachitin

Sudachitin is a rare polymethoxylated flavone found in the peels of C. sudachi [33,87].
Studies have shown that in cellular and animal models, the extracts from C. sudachi peel
which is enriched in sudachitin, could ameliorate hyperlipidemia and obesity, possibly
due to an augmented AMPK activity and PPARα transcription [87]. Shikishima et al.
further proved that in a randomized controlled trial, although not affecting glycemic con-
trol and lipid profile, consumption of sudachi peel extract capsules (including sudachitin
4.9 mg/day) for 12 weeks could considerably decreased the ratio of visceral fat to subcu-
taneous fat, and moderately reduced waist circumference in Japanese patients at risk for
developing diabetes [33].

In HFD-fed obese mice and db/db mice, sudachitin displayed strong capacity in
stimulating energy expenditure and limiting weight gain via improving glucose and lipid
metabolism and promoting mitochondrial biogenesis and function [88]. Elucidation of the
underlying molecular mechanism in primary myocytes revealed that sudachitin placed a
favorable effect on Sirt1 and PGC1α upregulation in the skeletal muscle [88].

2.2.6. Tangeretin

Tangeretin is a major polymethoxylated flavone extensively found in a variety of
citrus fruit peels. Miyata et al. discovered the promising therapeutic potential of tangeretin
for the management of insulin resistance as evidenced by its strong inhibitory effect on
adipocyte differentiation and its favorable modulation on the adipocytokine secretion bal-
ance [73]. In 3T3-L1 cells, without affecting cell viability, tangeretin provoked the secretion
of adiponectin, an insulin-sensitizing factor while simultaneously suppressed the secretion
of MCP-1, an insulin resistance factor, thus dramatically reducing the intracellular triglyc-
eride accumulation [73]. In adipocyte and macrophage coculture, Sun et al. discovered that
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tangeretin reduced adipocyte inflammation by reprogramming glucose metabolism and
enhancing lactate accumulation which leads to increased macrophage polarization [89].

The molecular mechanisms underlying lipid-modulating effects of tangeretin have
been extensively studied in various in vitro model employing mouse, rat and human
hepatocytes [45,52,90,91]. Guo et al. found that in primary mouse hepatocytes, tangeretin
upregulated insulin signaling pathway, increased glycogen content while decreased glucose
output. This effect was mediated via inhibiting the phosphorylation of ERK1/2 [91]. Rajan
et al. further discovered that in PA-treated HepG2 cells, tangeretin attenuated intracellular
lipid accumulation via activation of the AMPK pathway [45]. Through transcriptome and
bioinformatics analyses, Chen et al. identified a set of 13 genes associated with lipoprotein
lipase (LPL) under regulation of tangeretin, among them, angiopoietin-like 3 (ANGPTL3),
an inhibitor of LPL catalytic activity, is downregulated in both HepG2 and Huh-7 cells [90].
Further elucidation revealed a tangeretin-responsive element in the promoter region of
ANGPTL3. Although not directly affecting the expression of ANGPTL3 upstream regulator,
LXRα, molecular docking analysis predict the strong binding capacity of tangeretin to the
ligand-binding domain of LXRα [90].

In a mouse model of diabetes, intragastric administration of tangeretin improved the
hepatic insulin sensitivity and glucose homeostasis via deactivating the MEK-ERK1/2
pathway [91]. This tangeretin-induced beneficial effect on insulin resistance was also found
in HFD-fed obese mice [90,92]. Nery et al. discovered that although not directly reducing fat
accumulation in the mouse liver, tangeretin did suppressed adipocyte hypertrophy in the
mice with pre-existent obesity [92]. Chen et al. observed that long-term supplementation
of HFD-fed mice with tangeretin suppressed weight gain, hepatic steatosis, and glucose
intolerance via improving adipose thermogenesis, ameliorating systemic inflammation
and gut microbiota dysbiosis. Interestingly, Liu et al. found in C. elegans, tangeretin
supplementation could even considerably augment the stress tolerance and the lifespan in
an insulin/insulin like growth factor signaling dependent manner [93].

2.2.7. 3′,4′,3,5,6,7,8Heptamethoxyflavone

3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF) is a major and naturally occurring poly-
methoxyflavone found in the peels of various citrus fruits including C. yatsusiro, C. oto,
C. nobilis var Knep, C. clementine and C. unshiu [17,94]. Sawamoto et al. found that in 3T3-L1
preadipocyte, HMF treatment for 8 days dose-dependently inhibits adipocyte differentia-
tion mainly through downregulating PPARγ, C/EBPα, and SREBP1, as well as activating
PKACα and its downstream AMPK and ACC [95]. Nery et al. treated HFD-fed obese mice
with HMF supplement (100 mg/kg) daily for 4 weeks and they found that although HMF
did not affect adipocyte size, HMF was potent in reducing hepatic lipid accumulation which
was associated with a considerably enhanced level of anti-inflammatory cytokine IL-10 [92].

2.2.8. 5-Demethylnobiletin

5-demethylnobiletin (5-OH-Nob) is a hydroxylated polymethoxylated flavone (HPMF)
which is exclusively found in citrus peels. Tung et al. have shown that in 3T3-L1 preadipocytes,
5-OH-Nob could significantly suppress adipogenesis and triglyceride accumulation [72].
Moreover, to overcome the relatively poor aqueous solubility and low oral bioavailability of
5-OH-Nob, they chemically modified 5-OH-Nob to 5-acetyloxy-6,7,8,3′,4′-pentamethoxyflavone
(5-Ac-Nob) which showed improved antiadipogenic and antiobesity effects both in vitro
and in vivo via activation of the AMPK pathway [72].

2.2.9. 5-Hydroxy-3,6,7,8,3′,4′-Hexamethoxyflavone

5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF) is a HPMF enriched in the
peels of certain citrus fruits such as C. sinensis and C. reticulate [96,97]. Lai et al. demon-
strated that 5-OH-HxMF dose-dependently suppressed adipogenesis both in vitro and
in vivo [97]. In 3T3-L1 preadipocytes, 5-OH-HxMF considerably suppressed the protein
expression of key adipogenesis-related genes including PPARγ, SREBP1 and their down-
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stream targets aP2, ACC and FAS while activated the AMPK pathway [97]. Furthermore,
5-OH-HxMF induced a delayed cell cycle entry into G2/M phase after adipogenesis initia-
tion in the treated preadipocytes [97]. Besides these modulations, Wang et al. further dis-
covered that 5-OH-HxMF decreased lipid accumulation via downregulation of C/EBPs and
activation of SIRT1. Interestingly, when compared with 3,5,6,7,8,3′,4′-heptamethoxyflavone
(HMF), 5-OH-HxMF displayed an around 20% higher potency in preventing lipid accu-
mulation, indicating the crucial role played by the hydroxyl group in the antiadipogenic
activity [96]. In HFD-fed obese mice, 5-OH-HxMF efficiently reduced the weight gain,
adipose tissue mass and hyperlipidemia [97].

2.3. Other Flavonoids
2.3.1. Anthocyanins

Anthocyanins, a class of flavonoid compounds well known to exert numerous health-
promoting actions, could also be found in the peels of various citrus fruits such as C. sinensis
L. Osbeck [13,24]. Treatment of 3T3-L1 preadipocytes with 2.5, 5, 10, 25 µM of anthocyanins
equivalents impressively suppressed adipocyte differentiation, intracellular triglyceride
accumulation and adipokine secretion. These beneficial effects were partially attributed to
the antioxidative property of anthocyanins and their modulation on the expression and
function of key genes involved in lipid metabolism including PPARγ, C/EBPα, SREBP-1c,
ACCα, and FAS [24].

2.3.2. Cigranoside C, D, E, F

Cigranoside C, D, E, F are recently discovered flavonoids found in the peels of certain
citrus fruits including C. grandis L. Osbeck, C. grandis Shatianyu, and C. paradisi Mcfad [98].
All four cigranoside displayed strong antidiabetic potential as evidenced by their strong
inhibitory effect on α-amylase, α-glucosidase, and PL in a series of in vitro cell-free assays [98].

2.3.3. Quercetin

Quercetin is a flavonol pigment present in various fruits and vegetables [13]. Dhanya
et al. investigated its mechanism of action in the context of diabetic skeletal muscle [99].
Through inhibition of relevant protein kinases in L6 myotubes, quercetin was proved to
stimulate the glucose uptake mainly via the AMPK pathway and its downstream p38 MAPK
rather than the insulin signaling pathway. The rise of intracellular calcium after quercetin
treatment also indicated the possible calcium-calmodulin mediated protein kinase (CaMKK)
may also be involved [99]. These action modes align quercetin with the commercial drug
metformin, highlighting its therapeutic potential against T2DM [99]. Indeed, further in vivo
study also confirmed its antidiabetic potential as treatment quercetin resulted in various
beneficial effect in NA/STZ-induced diabetic rats including improved insulin sensitivity
and ameliorated hyperglycemia and hyperlipidemia, as well as reduced serum insulin,
oxidative stress and C-peptide and reduced liver glycogen content. Nevertheless, in this
in vivo model, besides adiponectin, GPx, GST and SOD, quercetin treatment still executed
its antidiabetic potential through, at least partially, enhancing the mRNA expression of the
insulin signaling pathway including GLUT4, and insulin receptor β-subunit [25].

Table 1 summarizes these citrus flavonoids, their major molecular targets and relevant
mechanisms underlying their potential against obesity and associated diseases.
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Table 1. Flavonoids from citrus fruit peel with therapeutic potentials against obesity and diabetes.

Flavonoids Constituent Fruit Source Chemical Structure Mechanism Molecular Pathways (Ref.) In Vitro In Vivo

Didymin Flavanone C. reticulata, etc.
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LDLr(-/-) 
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induced 

diabetic rats 
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Table 1. Cont.

Flavonoids Constituent Fruit Source Chemical Structure Mechanism Molecular Pathways (Ref.) In Vitro In Vivo
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PPARα, PGC-1α, UCP1, 

AMPK, JNK [75], PPARγ, 

CREB, STAT5 [74] 
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synthesis and enhancement of FA
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adiponectin, MCP-1, resistin,
and caspase 3 [73], AMPK,
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[76], LDL, IL-1β, IL-6 [83],
ABCA1, ABCG1, PPARγ,

LXRα [77], AdipoR1, gp91
[79], adiponectin, MCP-1, IL-6,
PPARγ, GLUT4, GLUT1, Akt

[78,80], C/EBPβ, PPARδ,
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Flavonoids Constituent Fruit Source Chemical Structure Mechanism Molecular Pathways (Ref.) In Vitro In Vivo

Sinensetin Polymethoxylated
flavone
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3. Discussion and Conclusions

This review aims to present the latest findings on natural flavonoids isolated from
various citrus fruit peels that have shown therapeutic potential toward obesity or associated
metabolic syndrome, and the underlying physiological and cellular mechanisms (Figure 2).
Our investigation showed that many bioactive citrus flavonoids exerted their beneficial
effects against obesity, diabetes and other associated disease through multiple targets and
diverse intracellular processes. This multiple-layer regulation seems to be a favorable
feature for the drug development against obesity and related metabolic diseases, since
these diseases typically have a complex etiology which usually includes a network of
multiple dysregulated factors and processes [2,4].
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Nevertheless, several limitations need to be appropriately addressed before develop-
ing these bioactive flavonoids into clinical drugs against obesity and associated metabolism
syndrome. First, optimized harvesting, processing and extraction methods for obtaining
these bioactive flavonoids from citrus fruit peels still needs to be developed. For exam-
ple, optimizing harvest times and thermal processing methods could help enrich, release
and transform bioactive flavonoid, resulting in more efficient cellular uptake [101,102].
Second, most of the bioactive flavonoids displayed low bioavailability due to their poor
water solubility, limiting their clinical use. Thus, appropriate modifications may need to be
incorporated into their chemical structures to improve the bioavailability. One successful ex-
ample is 5-Ac-Nob. Being chemically modified from 5-OH-Nob, 5-Ac-Nob showed higher
potency in reducing intracellular TG content both in vitro and in vivo, due to its improved
aqueous solubility [72]. Last but not least, although several clinical trials have shown posi-
tive results regarding the therapeutic uses of these flavonoids [31,103], the lack of adequate
clinical evidence to evaluate the long-term toxicity and efficacy of these phytochemicals in
humans is a major limitation for the majority of these bioactive flavonoids.

Despite all these challenges, bioactive flavonoids remain as an effective and promising
alternative approach for obesity and associated diseases. Thanks to the technological
advances in the fields such as metagenomics, metabolomics, and proteomics, scientists now
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could generate huge amount of data and examine various in vitro and in vivo effects of
bioactive flavonoids in great detail [47,81,82,104].

In recent years, there has also been an explosion of interest in artificial intelligence (AI)
and its potential applications across a wide range of industries. The pharmaceutical sector
is no exception, with many companies now exploring how AI could be used to accelerate
and improve the drug discovery process.

In theory, AI has the ability to speed up the process of discovering new drugs by orders
of magnitude. This is because AI can automate many of the tasks that are currently done by
human researchers, such as data collection and analysis [35]. Perhaps most importantly, AI
has the potential to help researchers access and analyze huge amounts of data that would
otherwise be inaccessible. By harnessing the power of big data, AI could help scientists
identify patterns and trends that would otherwise be invisible information which could
be critical in making key decisions during drug discovery research. In addition, AI can
provide a more objective approach to analyzing data than humans alone are capable of.
This is due to the fact that machines are not biased by personal beliefs or preconceptions;
they simply analyze the data as they are. This objectivity can lead to faster and more
accurate decision making during the drug discovery process [105].

There are numerous advantages that AI, especially machine learning, can bring to the
translation of flavonoids to clinical drugs. One common application is virtual screening,
where computer programs are used to identify potential small molecule ligands that
could bind to and modulate the activity of a target protein, or to identify new therapeutic
targets [35]. This can be a more efficient way to screen for lead compounds than traditional
experimental approaches. Another area where machine learning is having an impact is in
the development of predictive models for ADMET (absorption, distribution, metabolism,
excretion and toxicity) properties [35,105]. These models can help assess the safety and
efficacy of candidate molecules at an early stage in the drug development process, saving
time and resources later on. Besides these, it is also possible that machine learning will
be used to design entirely new classes of drugs. Recent advances in artificial intelligence
have led to the development of programs that can generate novel compounds with specific
chemical properties. If these compounds show promise in preclinical studies, they could
one day be developed into new medicines [35,105]. With the assistance from AI, scientists
could focus on more creative and strategic tasks, such as conceptualizing new experiments
or interpreting results [105,106].

In conclusion, citrus fruit peels, although usually regarded as waste, contain numerous
flavonoids that have shown therapeutic potential for obesity and diabetes mellitus. The
chemical structure-based elucidation of these antiobesity and antidiabetes mechanisms
provides scientific bases for using citrus fruit peels as sources of nutraceuticals and phar-
maceuticals against obesity and diabetes. This review thus highlights the therapeutic and
economic potential of these citrus fruit byproducts. Proper management of citrus fruit peel
waste will not only considerably eliminate the relevant environmental concerns, but also
expand the alternative sources of high-value bioactive flavonoids that could alleviate the
global burden of obesity and related diseases.
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Abbreviations

2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG); 3-hydroxy-3-methyl
glutaryl-CoA reductase (HMGCR); 3-isobutyl-1-methylxanthine (IBMX); 5-acetyloxy-6,7,8,3′,4′-
pentamethoxyflavone (5-Ac-Nob); 5-demethylnobiletin (5-OH-Nob); 5-hydroxy-3,6,7,8,3′,4′-hexameth
oxyflavone (5-OH-HxMF); Abnormal dauer formation protein 16 (DAF-16); Acetyl CoA Carboxy-
lase (ACC); Acid-binding protein (aP2); Acyl-CoA synthetase (ACS); Acyl-CoA oxidase (ACO);
Adiponectin receptor 1 (AdipoR1); Adenosine 5′-monophosphate-activated protein kinase (AMPK);
Absorption, distribution, metabolism, excretion and toxicity (ADMET); Advanced glycation end-
product (AGE); Akt substrate of 160 kDa (AS160); AMP-activated protein kinase (AMPK); Angiopoietin-
like 3 (ANGPTL3); Angiotensin II (Ang II); Angiotensin II type 1 (AT1); ATP binding cassette sub-
family A member 1 (ABCA1); ATP binding cassette subfamily G member 1 (ABCA1); ATP-binding
cassette transporters (ABC); ATP Synthase Peripheral Stalk Subunit F6 (ATP5J); Bone marrow-
derived macrophages (BMDMs); Brown adipose tissue (BAT); Calcium-calmodulin mediated pro-
tein kinase (CaMKK); cAMP-response element-binding protein (CREB); Carbohydrate-responsive
element-binding protein (ChREBP); Carnitine palmitoyltransferase I (CPT1); CCAAT enhancer-
binding protein-alpha (C/EBPα); Chemokine (C-C motif) ligand (CCL); Citrate synthase activity
(CSA); c-Jun NH2-terminal kinase (JNK); Cytochrome c oxidase subunit 4 (COX4l1); Endothelial
NO synthase (eNOS); Estrogen receptor (ER); Fatty acid (FA); Fatty acid synthetase (FAS); Fatty
acid translocase (FAT/CD36); Fibroblast growth factor 21 (FGF21); Free fatty acid (FFA); G-protein-
coupled bile acid receptor, Gpbar1 (TGR5); Glucagon-like peptide 1 (GLP-1); Glucocorticoid receptor
(GR); Glucose 6-phosphatase (G6Pase); Glucose transporter Typ 4 (GLUT4); Glutathione peroxidase
(GPx); Glutathione-S-transferase (GST); Glycogen synthase (GS); Glycogen synthase kinase 3 beta
(GSK3β); Heat shock protein (HSP); Heat shock transcription factor 1(HSF1); Heptamethoxyflavone
(HMF); High-cholesterol diet (HCD); High fat diet (HFD); Human recombinant AR (HRAR); Human
umbilical vein endothelial cell (HUVEC); Human white adipocyte cultures (hADSC); Hydroxy-
lated polymethoxyflavones (HPMFs); Inducible nitric oxide synthase (iNOS); Insulin receptor sub-
strate (IRS); Intercellular cell adhesion molecule-1 (ICAM-1); Intracellular heat shock protein 70
(iHSP70); Interleukin (IL); Iodothyronine Deiodinase 2 (DIO2); Liver kinase B1 (LKB1); Low-density
lipoprotein (LDL); Low density lipoprotein cholesterol receptor (LDLr); Mitogen-activated protein
kinase (MAPK); Monocyte chemoattractant protein-1 (MCP-1/CCL2); Nicotinamide/Streptozotocin
(NA/STZ); Nitric oxide (NO); Nobiletin (Nob); Nonalcoholic fatty liver disease (NAFLD); Nu-
clear factor kappa-light-chain-enhancer of activated B cells (NF-κB); Nuclear liver X receptor α

(LXRα); Nuclear respiratory factor 1 (NRF1); Obesogenic cafeteria diet (CAF); Ovariectomized
(OVX); Palmitate (PA); Pancreatic lipase (PL); Patatin-like phospholipase domain containing 2 (pn-
pla2); Polymethoxyflavones (PMFs); Peroxisome proliferator-activated receptor (PPAR); Peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); Phosphodiesterase-3B (PDE3B);
Phosphoenolpyruvate carboxykinase (PEPCK); Phosphoinositide 3-kinase (PI3K); Protein kinase A
(PKA); Protein kinase A catalytic subunit α (PKACα); Protein tyrosine phosphatase 1B (PTP1B); Rat
lens aldose reductase (RLAR); Reactive oxygen species (ROS); References (Ref); Signal transducer
and activator of transcription (STAT); Sirtuin 1 (SIRT1); Sprague-Dawley (SD); Sterol regulatory
element binding transcription factor 1 (Srebf1); Sterol regulatory element-binding protein (SREBP);
Stearoyl-CoA desaturase 1 (SCD-1); Superoxiddismutase (SOD); Toll-like receptor (TLR); Triacyl-
glycerol (TG); Tumor necrosis factor-α (TNF-α); Uncoupling protein (UCP); Vascular cell adhesion
molecule-1 (VCAM-1); White adipose tissue (WAT).
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