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Abstract: The occurrence of severe bleeding syndrome because of the PML-RARα fusion protein is a
life-threatening event in APL. This protein destabilizes homeostasis, maturation, remodeling, and
tissue regeneration in addition to hampering the maintenance and differentiation of hematopoietic
cells into different lineages, fixing cells in the promyelocyte stage. APL is a classic example of how
effective targeted therapy is and, therefore, how important the use of such therapy is to the overall
survival of patients, which in this case is represented by the use of ATRA/ATO. Despite that, about
10% of cases of APL patients demonstrate resistance to treatment. Facing this scenario, we point out
promising target therapies such as those recommended by the NCCN and Leukemia Net. Since this
is such a heterogeneous molecular disease, it is of great importance to understand how important
combined chemotherapy, target therapy, immune-based therapy, and combined therapies are in the
survival of these APL patients.
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1. Introduction

Heterogeneity in the universe of leukemias is a constant reality. When it comes to acute
leukemias, APL is quite distinct because it has a pathognomonic marker, i.e., the transloca-
tion between chromosomes 15 and 17, t(15;17)(q22;q21), which results in the PML-RARα
fusion protein (promyelocytic leukemia protein—α-retinoic acid receptor) (Figure 1). The
ultimate clinical consequence of this genetic translocation is severe hemorrhagic syndrome,
which explains why this leukemia entity is fatal if left untreated [1–3].

Future Pharmacol. 2023, 3, FOR PEER REVIEW 2 
 

 

 
Figure 1. Chromosomal translocation between chromosomes 15 and 17. Acute promyelocytic leu-
kemia is associated with the chromosomal translocation t(15;17)(q22;q21), which results in the fu-
sion of genes PML and RARα. 

Epidemiological studies show that the age profile of patients indicates a prevalence 
of 7% in children and 15% in young adults for manifestations of “de novo acute myeloid 
leukemia”, whereas in adults this manifestation is rare after the age of 45 years old. Some 
studies point out that, in addition to age, there is an ethnicity factor in the predominance 
of the disease, since the Latino population has a large proportion of patients with APL 
among diagnoses of AML [5–7]. 

APL is the best known example of how targeted therapy is important for patient sur-
vival. Since the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) 
into the clinical setting, which revolutionized treatment, the disease-free survival rate has 
increased to 80–90% [8]. 

Nowadays, as there is more understanding of possible target therapies, there are 
more combinations that have the potential to mitigate ATRA and ATO resistance in APL 
cells. We sought through this work to summarize the studies addressing this need for 
updated and converging information in relation to targeted therapy use in the treatment 
of APL. 

1.1. Pathogenesis 
1.1.1. Leading Cause of Death: Disseminated Intravascular Coagulation 

Disseminated intravascular coagulation is a condition where an increase in blood co-
agulation events depletes the platelets and clotting factors needed to control bleeding, 
thus causing hemostatic challenge and subsequent excessive bleeding. This situation can 
lead to death in patients with APL. This occurs because promyelocytes can present two 
procoagulant biomarkers: the tissue factor (TF) and the procoagulant cancerous molecule 
(PC). PCs are released by APL blasts as an alternative procoagulant factor and directly 
activate factor X of the coagulation cascade [8]. Therewithal, promyelocytes carry inflam-
matory cytokines, and inflammation has been described as having procoagulant charac-
teristics. Most of all, during treatment, when the cells are entering apoptosis they exteri-
orize their phospholipid membranes, activating TF. TF, in turn, activates coagulation fac-
tor VII and subsequently factor X, whereas PCs can directly activate factor X without the 
participation of factor VII [9]. In addition to hypercoagulation, the patient may concomi-
tantly develop hyperfibrinolysis by increasing annexin A2 (plasminogen and tPA surface 
receptor which converts plasminogen into plasmin) or through low levels of fibrinogen. 
Inflammatory cytokines such as Interleukin-1 (IL-1) and tumor necrosis factor-alpha 
(TNF-α) modulate TF expression and, in addition, cause endothelial damage that 

Figure 1. Chromosomal translocation between chromosomes 15 and 17. Acute promyelocytic
leukemia is associated with the chromosomal translocation t(15;17)(q22;q21), which results in the
fusion of genes PML and RARα.

Future Pharmacol. 2023, 3, 162–179. https://doi.org/10.3390/futurepharmacol3010012 https://www.mdpi.com/journal/futurepharmacol

https://doi.org/10.3390/futurepharmacol3010012
https://doi.org/10.3390/futurepharmacol3010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futurepharmacol
https://www.mdpi.com
https://doi.org/10.3390/futurepharmacol3010012
https://www.mdpi.com/journal/futurepharmacol
http://www.mdpi.com/2673-9879/3/1/12?type=check_update&version=3


Future Pharmacol. 2023, 3 163

It is classified in the classic FAB system as subtype AML-M3. It is characterized by
an infiltration of the bone marrow by leukemic blasts such as promyelocytes. Abnormal
promyelocytes have an eccentric nucleus and abundant granulations in the cytoplasm.
As for the translocation between chromosomes 15 and 17 that leads to this leukemic
manifestation, the PML-RARα fusion protein blocks cell differentiation by interfering with
the signaling pathway involving the p53 protein, classically known in the progression of
the stages of the cell cycle. The observed result is what is observed in the peripheral blood
of these patients under a microscope, namely the accumulation of immature cells trapped
in the promyelocyte stage, including in the bone marrow [4].

Epidemiological studies show that the age profile of patients indicates a prevalence
of 7% in children and 15% in young adults for manifestations of “de novo acute myeloid
leukemia”, whereas in adults this manifestation is rare after the age of 45 years old. Some
studies point out that, in addition to age, there is an ethnicity factor in the predominance of
the disease, since the Latino population has a large proportion of patients with APL among
diagnoses of AML [5–7].

APL is the best known example of how targeted therapy is important for patient
survival. Since the introduction of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO)
into the clinical setting, which revolutionized treatment, the disease-free survival rate has
increased to 80–90% [8].

Nowadays, as there is more understanding of possible target therapies, there are more
combinations that have the potential to mitigate ATRA and ATO resistance in APL cells.
We sought through this work to summarize the studies addressing this need for updated
and converging information in relation to targeted therapy use in the treatment of APL.

1.1. Pathogenesis
1.1.1. Leading Cause of Death: Disseminated Intravascular Coagulation

Disseminated intravascular coagulation is a condition where an increase in blood
coagulation events depletes the platelets and clotting factors needed to control bleeding,
thus causing hemostatic challenge and subsequent excessive bleeding. This situation can
lead to death in patients with APL. This occurs because promyelocytes can present two pro-
coagulant biomarkers: the tissue factor (TF) and the procoagulant cancerous molecule (PC).
PCs are released by APL blasts as an alternative procoagulant factor and directly activate
factor X of the coagulation cascade [8]. Therewithal, promyelocytes carry inflammatory
cytokines, and inflammation has been described as having procoagulant characteristics.
Most of all, during treatment, when the cells are entering apoptosis they exteriorize their
phospholipid membranes, activating TF. TF, in turn, activates coagulation factor VII and
subsequently factor X, whereas PCs can directly activate factor X without the participation
of factor VII [9]. In addition to hypercoagulation, the patient may concomitantly develop
hyperfibrinolysis by increasing annexin A2 (plasminogen and tPA surface receptor which
converts plasminogen into plasmin) or through low levels of fibrinogen. Inflammatory
cytokines such as Interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-α) modulate
TF expression and, in addition, cause endothelial damage that decreases thrombomodulin
and elevates the levels of plasminogen activator inhibitor type I (PAI-1) [10].

The main organs affected by hemorrhages in these patients are the brain and lungs,
though hemorrhagic manifestations can also occur in the gastrointestinal mucosa and
usually have a fatal outcome [11].

1.1.2. The Pathognomonic Genetic Event

Nuclear bodies (NBs) are nuclear substructures found in the cell nucleus and do
not have a membrane. They are multiprotein structures that interact with regulatory
signals such as nuclear chromatin dynamics and processes such as RNA splicing, gene
transcription, and epigenetics, among others. The PML protein occurs within these discrete
NBs, and its fusion with the α-retinoic acid receptor due to t(15,17) defines the cellular
landscape of APL by repressing the transcription of RARα target genes as a result of
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the presence of the PML-RARα fusion protein. Therefore, causing NB disruption affects
structures such as RAR, which are in charge of controlling the homeostasis of tissue growth,
shaping, and regeneration. However, ligand-free RARα binds to response elements in
DNA repressing gene transcription. The upshot is the abruption of hematopoietic stem
cell development, maintenance, and expansion, as well as maturation/differentiation
in distinct hematopoietic cell lineages. Specifically, what the binding of ATRA causes
is a conformational change that results in corepressors dissociating and activating the
transcriptional mechanism of genes in this region (Figure 2) [12].
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complex of RAR genes, compromising hematopoietic cell maturation. 

Figure 2. RAR transcriptional pathway regulating hematopoietic development through PML-NB
disruption. The presence of the PML-RARα fusion protein causes the repression of a transcriptional
complex of RAR genes, compromising hematopoietic cell maturation.

Senescence, for example, has its signaling pathway related to this gene region. Many
cellular processes act as defense mechanisms that prevent cell transformation from per-
petuating, such as programmed cell death through senescence. The PML protein in NBs
is sensitive to this cellular stress signaling and is recruited by the p53 signaling pathway;
however, cells with compromised PML function demonstrate resistance to the processes of
senescence and apoptosis, even during a p53 activation event [13].

The PML-RARα chimeric protein maintains blockages of RAR binding domains and is
thus considered the critical oncogenic event that leads to APL pathology. Two main mecha-
nisms are proposed: promoting resistance to apoptosis and disrupting the transcription
of RAR targets such as epigenetic cell differentiation. The p53 protein has already had its
importance in the cell cycle very well characterized. Fundamentally, upon cell damage
signaling, p53 through other proteins causes cell cycle arrest during the mitosis G1 phase
of cell repair before the S phase and cell division. The transcriptional repression is indirect
and requires p21 to mediate this cycle arrest in order to interact with the cyclin kinase
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pathway. The activated p21 can phosphorylate retinoblastoma-associated protein (Rb),
which in turn is a regulator behaving as a corepressor through E2F transcriptional factor
interaction. E2F acts as a transcriptional factor, binding to DNA regions of gene promoters
such as Cyclin A. The Cyclin A protein performs a crucial role during the S phase, but
also helps during G2/M transition. This would explain part of the association of p53
interfering during the G2/M phase. At this stage, DNA replication is already completed
and the cells are ready for cell division; however, if the lack of cell repair is noticed or
this positive feedback is overwhelmed, then it can lead to apoptosis/senescence for other
protein interactions such as those involving the BCL-2 family and regulators of this intrinsic
apoptosis pathway. This mechanism elucidates the notion of genome instabilities being
key events for tumorigenesis through interference with the p53 mechanism of action, either
by a mutation in the protein itself or in the complexes it recruits, such as NBs containing
PML. Concerning APL, the PML-RARα complex interacts with the p53 mechanism and has
dominant negative action toward transcription, thus inhibiting activation by physiological
ligands and causing maturation arrest at the promyelocyte stage (Figure 3) [6,13,14].
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Figure 3. PML-RARα interaction with p53 interrupting DNA repair and apoptosis. PML proteins
are generated in NBs and are related to cell maturation and senescence through the p53 signaling
pathway. Therefore, the association of chimeric protein PML-RARα to p53 protein leads cells to
continuously replicate and become non-responsive to cellular signals of senescence and apoptosis.

Despite comprehension of PML-RARα actuation, APL seems to be caused by a range
of genetic factors, not just a single mutation event. An example of this is the development
of APL driven by PML-RARα in murine tumors requiring secondary oncogenic events,
such as Wilms’ tumor 1 (WT1), KRAS, NRAS mutations, and FMS-like tyrosine kinase 3 (FLT3)
activation [15].

1.1.3. Associated Mutations

FLT3 is a gene that belongs to the class III receptor tyrosine kinase (RTK) family. RTKs
are well correlated with cell proliferation, and FLT3 mutations are recurrently associated
with AML prognosis [16].

Under physiological conditions, transcription of the FLT3 gene encodes a monomeric
protein consisting of an extracellular domain, a transmembrane portion, a juxtamembrane
(JM) domain, and two intracellular tyrosine kinase downstream signaling proteins. In the
presence of ligands, dimerization of monomers occurs, followed by the phosphorylation of
effector substrates of intracellular signal transduction pathways. When the FLT3 gene is
mutated, it gives rise to a modified final product, that is, it generates an FLT3 receptor with
changes in its structure [17].

Two types of FLT3 activation mutations have been identified in AMLs. Internal
tandem duplications (ITDs) affect the juxtamembrane (JM) either in tyrosine kinase domain
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1 (TKD1) of the FLT3 receptor or at the predefined point mutation in tyrosine kinase domain
2 (TKD2). As a result, the tyrosine kinase domain is permanently activated, regardless of
ligand, which leads to the uncontrolled proliferation of myeloid cells. This deregulated
activation impairs hematopoiesis and will contribute to leukemogenesis. FLT3 mutations
are present in approximately 2% to 38% of APL cases, depending on ITDs or mutations in
the tyrosine kinase domain [17–19].

Since 2008, after a publication from the International Agency for Research on Cancer
(IARC) included a molecular parameter for leukemia classifications and stratification, FLT3
mutations have been identified as being highly related to hyper leukocytosis. Regarding
APL, FLT3-ITD impedes ATRA-induced differentiation. Such resistance was abrogated
when combined with arsenic trioxide. This is a strong model that indicates the key role of
arsenic in targeting PML/RARα for destruction through distinct biochemical pathways
related to ATRA [20].

Wilms’ tumor 1 (WT1) was first identified as a predisposition gene for Wilms’ tumor,
functioning as a tumor suppressor. In hematologic neoplasms, WT1 is targeted by somatic
mutations in 6% to 15% of “de novo AML cases”. A concurrent occurrence of WT1 with
FLT3-ITD has been identified in pediatric AML, leading to worse overall survival than the
presence of either mutation alone [21].

In hematopoietic progenitor cells presenting CD34+, WT1 is present at low levels;
however, for AML, and especially in the APL scenario, it is highly expressed. This fact
promotes its expression profile as a relapse marker in APL [22].

The RAS protein is an extracellular signal transducer and an important pathway in the
transmission of information from the cell membrane to the nucleus. RAS proteins play a
key role in regulating many cellular events, including cell proliferation, migration, survival,
and apoptosis. Mutant RAS proteins translate these downstream signals and, consequently,
have an oncogenic role. The RAS mutations known as HRAS, NRAS, and KRAS are among
the most common oncogenes, and about 19% of cancer patients have an RAS mutation.
Patients with mutant RAS have a worse prognosis and shorter overall survival. NRAS
mutations are present in 8–13% of AML patients, while KRAS mutations can be found in
2% of these patients [23,24].

FLT3 and KRAS have direct implications on senescence driven through PML action.
Cell death caused by RAS-activated senescence is lost in circumstances where there is
an absence or mutation of the PML protein. Interestingly, FLT3- and KRAS-deregulated
expression is described as a cooperator of PML-RARα in mouse models of APL [25,26].

2. Target Therapy Has Been the Mainstay Treatment for APL since the 1980s

APL treatment has undergone important modifications over the last 30 years and
differs from the regimens used for other AMLs. The greatest impact on the treatment of
APL was undoubtedly the demonstration that ATRA, in pharmacological doses, allows
the progression of cell differentiation. Thus, the leukemic clone progresses in myeloid
maturation, becoming susceptible to cell death mechanisms and chemotherapy. Notably,
two of the most active drugs in APL therapy (ATRA and ATO) allow for the reformation
of PML NBs because of the degradation of PML-RARα. ATO has a complex mechanism
of action and is believed to interfere with multiple intracellular signaling pathways by
binding cysteine-rich residues. Directly, ATO leads PML-RARα toward ubiquitination and
proteasomal degradation. This therapeutic conduct resulted in complete remission in more
than 90% of cases and a 5-year disease-free survival rate of approximately 80% [6,10,27,28].

ATRA’s most common side effects are similar to those seen in a person who takes a
lot of vitamin A. These symptoms can include headache, fever, dry skin and mouth, rash,
feet swelling, sores in the mouth or throat, itching, and eye irritation. For patients with
APL, great attention is needed to notice symptoms of differentiation syndrome (DS) (also
known as ATRA syndrome) that are manifested with cerebral, pulmonary, and myocardial
involvement. Generally, decreasing the dose and use of the DS protocol decreases toxicity
without affecting treatment efficiency [29].
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The pioneering concept of ATRA’s mechanism of action relates to its binding to the
receptor directing cells toward differentiation, thus removing them from the promye-
locyte stage, while ATO activates cascades of apoptosis or partial differentiation of cells.
Elucidations in animal models and bone marrow examinations of patients with APL demon-
strated that high concentrations of ATO induced apoptosis by activating the mechanisms
of apoptosis via mitochondria. On the other hand, at low concentrations, ATO promoted
differentiation. Over the years, the pro-apoptotic activity of ATO has been investigated at
the molecular level and its impact on genes and proteins has been described. Critically,
arsenic does not activate RAR-dependent transcription, although it can induce differentia-
tion syndrome in APL patients [30]. Subsequent research has shown that the therapeutic
efficacy of ATO is due to its effect on the PML portion of the PML-RARα fusion protein
(Figure 4). ATO binding to the PML component via two cysteine residues induces its oxida-
tion and the formation of a disulfide bond. In the final step, ATO mediates the recruitment
of the 11S proteasome, a process essential for the degradation of PML and PML-RARα
proteins. PML-RARα destruction also abrogates self-renewal through the reformation of
PML nuclear bodies that were initially disassembled by PML-RARα and the subsequent
activation of p53 [8,28,31].
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Figure 4. ATRA and ATO binding and dissociating corepressors leading to cell differentiation. APL
target therapy deactivated the repression complex caused by the PML-RARα protein and returned
genetic transcription to cell differentiation, which leads cells back to responsiveness to the cell death
mechanisms of chemotherapy.

The National Comprehensive Cancer Network (NCCN) protocol currently recom-
mends the more recently released drugs when it comes to target therapies for AML. Tar-
geted therapy is a drug therapy that focuses on the specific or unique characteristics of
cancer cells. Targeted therapy can be used alone or in combination with chemotherapy.
Its major advantages are specificity and reduced side effects. Examples of drugs that
have already been approved include Gemtuzumab, Midostaurin, Gilteritinib, Sorafenib,
Venetoclax, Enasidenib, and Ivosidenib [32].

Gemtuzumab is a conjugated drug, specifically, it is a monoclonal antibody directed to
CD33 that is covalently linked to the cytotoxic agent N-acetyl-γ-calicheamicin (ozogamicin).
Its efficacy is rooted in the ubiquitous nature of CD33 as an antigen marker in AML patients
since it is present in blasts from 90% of AML patients. This makes it a potential target
marker of an immunotherapeutic option for AML [33] (Figure 5). Clinical observations
demonstrate the safety and efficacy of using a strategy of ATRA, ATO, and Gentuzumab-
Ozogaminicin (GO) administration, with a benefit of this approach being that it is a better
tolerated therapeutic regimen in high-risk patients than the combination of ATRA and
chemotherapy [34].
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Figure 5. CD33-targeting Gemtuzumab-Ozogamicin. Once the CD33 receptor drives the molecules
to endocytosis and degradation, the cytotoxic agent causes DNA damage and promotes cell death.

FLT3 is a tyrosine kinase receptor and an important early regulator of hematopoiesis
whose mutations affect prognosis in AML patients. Internal tandem duplication mutations
of FLT3 (ITD) result in uninterrupted activation of pathways and their signaling cascades
that promotes cell survival and proliferation, including the MAPK/ERK, PI3K/AKT, and
JAK/STAT pathways. Direct inhibition of FLT3 is therefore a promising therapeutic route,
with some agents already available for immediate use. The US Food and Drug Adminis-
tration (FDA) approved Midostaurin (a first-generation multikinase inhibitor) in 2017 for
use in the treatment of AML patients with FLT3 mutations. This protocol also involved its
combination with cytarabine and induction with daunorubicin and cytarabine consolida-
tion. However, it is known for patients over 60, mostly those with other comorbidities, that
the chemotherapy protocol has extensive toxicities and significant effects. Meanwhile, in
2018, Gilteritinib was approved for clinical use in the treatment of adult AML patients with
poor responsiveness due to FLT3 mutations (Figure 6). Sorafenib, previously approved,
is another FLT3 kinase inhibitor worth mentioning. Studies have shown that Sorafenib
can inhibit cell proliferation by inducing cycle arrest and causing apoptosis in APL cells,
probably by interfering with the MEK/ERK signaling pathway. These multiple kinase
inhibitors target not only FLT3, but also other kinases, revealing the antileukemic effects of
these non-specific inhibitors [35,36].

Venetoclax is an oral BCL-2 inhibitor. BCL-2 mediates tumor cell survival and is
associated with chemotherapy resistance. Venetoclax binds directly to BCL-2 protein and
selectively inhibits BCL-2 by relocalizing pro-apoptotic proteins and restoring apoptosis
(Figure 7) [37]. Venetoclax is particularly capable of crossing the blood–brain barrier and
could be an option for treating patients suffering from APL relapse in the central nervous
system [38].

Up to 19% of AML patients have mutations in isocitrate dehydrogenase-2 (IDH2).
IDH2 mutations produce an oncometabolite, 2-hydroxyglutarate (2-HG), which leads
to hypermethylation of DNA and histones and impaired hematopoietic differentiation.
Enasidenib is an oral inhibitor of mutant IDH2 proteins and was well tolerated by AML
patients. A previous study by Stein et al. (2017) reported hematologic remission responses
in refractory AML patients [39].

Isocitrate dehydrogenase 1 (IDH1) is a metabolic enzyme that catalyzes the oxidative
decarboxylation of isocitrate to a-ketoglutarate (a-KG). Mutations in IDH1 occur in up to
10% of patients with AML. Mutant IDH1 (mIDH1) catalyzes the reduction of a-KG to the
oncometabolite 2-HG. 2-HG competitively inhibits a-KG-dependent enzymes, leading to
epigenetic changes and impaired hematopoietic differentiation. Ivosidenib is an oral small
molecule targeted mIDH1 inhibitor. Ivosidenib monotherapy has been well tolerated and
induces durable remission. Ivosidenib and Enasidenib are important in the context of APL
as mutations in IDH1/2 demonstrate the idea that APL and AMLs carrying mutated IDH
carry common pathways and therefore treatments (Figure 8) [40].
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Figure 6. Gilteritinib and Midostaurin mechanism through FLT3 kinase inhibition. FLT3 muta-
tions lead cells to proliferation, survival, and a lack of differentiation. Gilteritinib, Midostaurin,
and Sorafenib are intracellular ligands to kinase receptors that block this cascade effect, returning
metabolism to cell division and cell death control.
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Figure 7. Venetoclax mechanism through BCL-2 inhibition. BCL-2 associated protein X (BAX) is a
pro-apoptotic protein that is recruited by Venetoclax. In the presence of an apoptotic signal, BAX is
ranslocated from the cytoplasm to the vicinity of the mitochondria, where it undergoes activation and
conformational modification before adhering to the outer mitochondrial membrane. Small units of
activated BAX proteins form oligomers that eventually penetrate the outer mitochondrial membrane
and release cytochrome c, which activates the cell cascade to apoptosis via caspases (adapted from
Kucukyurt and Eskazan, [37]).

2.1. Recommended Treatment

Upon diagnosis, APL patients should be classified as low risk when their global white
blood cell (WBC) count is fewer than 10 × 109/L or high risk when their WBC count
is greater than 10 × 109/L (NCCN recommendations). The recommendations from an
expert panel of the European Leukemia Net (ELN) made in 2019 encourage the immediate
administration of ATRA in patients suspected of suffering from APL. They also determined
that an increase in WBC count above 10 × 109/L after treatment with ATRA or ATO should
be interpreted as a sign of ATRA/ATO-induced differentiation and that the risk should not
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be reclassified. For these cases, the administration of hydroxyurea, idarubicin, or GO is
recommended in case of hyperleukocytosis. Coagulation homeostasis must be monitored
daily and controlled; therefore, transfusions of fibrinogen, platelets, and fresh frozen plasma
should be used to maintain fibrinogen concentration above 100–150 mg/dL, platelet count
between 30 × 109/L to 50 × 109/L, and the INR (International Normalized Ratio) at a value
below 1.5 [41].

The treatment of AMLs, and therefore APL, is normally divided into two phases:
induction and consolidation (post-remission therapy). Induction therapy is used as the first
step in efforts to reduce the spread of cancer and is also used in the evaluation of the drug
response. Patients with different risk classifications will have different induction protocols.
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Figure 8. Ivosidenib and Enasidenib mechanism through mitochondrial citrate metabolism. Muta-
tions in IDH1 and IDH2 enzymes drive accumulation of the 2-HG citrate metabolite, causing DNA
hypermethylation and impaired hematopoietic differentiation (a). Enasidenib and Ivosidenib act
on mutated IDH1mut and IDH2mut, restoring 2-HG citrate metabolite levels and returning cell
metabolism to differentiation and sensitiveness to cell death (b).

Recommendations for low-risk cases are summarized in Table 1 below as options A or B.

Table 1. Recommended therapy for low-risk APL patients.

DRUGS DOSE MOMENT PERIOD

A
ATRA 45 mg/m2 daily (in 2 divided doses) Daily until remission
ATO 0.15 mg/kg IV I

B
ATRA 45 mg/m2 daily (in 2 divided doses) Daily until remission
ATO 0.3 mg/kg IV I Days 1,2,3,4,5 Week 1
ATO 0.25 mg/kg Twice weekly Weeks 2–8

IV I: Intravenous infusion; [32].

Children and adolescents can be administered a 25 mg/m2 dose of ATRA. In cases
where ATO must not be used, idarubicin at a dose of 12 mg/m2 can be used, or alternatively
a single 9 mg/m2 dose of GO on day 5.
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For high-risk patients who tolerate anthracyclines, the NCCN recommends divided
doses of ATRA (45 mg/m2) until clinical remission and one of the following regimens in
Table 2 below.

Table 2. Recommended therapy for high-risk APL patients.

DRUGS DOSE MOMENT PERIOD

A
ATRA + IDARUBICIN 6–12 mg/m2 Days 2, 4, 6, 8

ATO 0.15 mg/kg Days 09–36 2 h IV I

B
ATRA + ATO 0.15 mg/kg/d IV I

SINGLE DOSE OF GO 9 mg/m2 Day 1, 2, 3, or 4

C
ATRA + ATO 0.3 mg/kg IV I Days 1, 2, 3, 4, 5 Week 1
ATRA + ATO 0.25 mg/kg Twice weekly Weeks 2–8

SINGLE DOSE OF GO 6 mg/m2 Day 1, 2, 3, or 4

D
ATRA + DAUNORUBICIN 50 mg/m2 IV I Days 3, 4, 5, 6

CYTARABINE 200 mg/m2 IV I Days 3, 4, 5, 6, 7, 8, 9

E
ATRA + DAUNORUBICIN 60 mg/m2 3 days

CYTARABINE 200 mg/m2 IV I 7 days

F ATRA+ IDARUBICIN 12 mg/m2 Days 2, 4, 6, 8
IV I: Intravenous infusion [32].

For high-risk patients unable to tolerate anthracyclines, the NCCN recommends ATRA
plus ATO. Induction must be continued until bone marrow recovery and remission [32].

2.2. Consolidation Therapy

According to NCCN recommendations, the agents used for induction therapy should
be sustained during consolidation therapy, while the ELN recommends that high-risk pa-
tients should also receive chemotherapy and low-risk patients should receive antileukemic
agents after genetic diagnosis of APL (for antileukemic agents, we refer to ATRA/ATO
treatment). However, after consolidation, the ELN does not recommend maintenance ther-
apy and suggests not performing routine monitoring for low-risk patients with negative
minimal residual disease (MRD); however, for high-risk patients, they suggest that health
centers should monitor MRD quarterly for three years [42].

3. Differentiation Syndrome and Its Problems

Patients with elevated WBC counts are more likely to relapse and are more prone to
develop differentiation syndrome (DS) [30]. This syndrome has a very high incidence in
APL patients treated with ATRA, usually occurring within 2 to 21 days of the initiation
of treatment. DS may manifest with unexplained fever, hypotension, respiratory distress,
pulmonary infiltrates, pericardial effusions, and renal impairment. The pathogenesis of
DS has not been well defined. The hypothesis derived from research in primary cultures
and cell lines suggests a systemic inflammatory response driven by the release of pro-
inflammatory cytokines, with endothelial damage, capillary leakage, and alterations in the
expression of cell adhesion molecules leading to tissue infiltration by leukemic cells and
occlusion of the microcirculation [43].

Some studies have pointed to an increase in mature WBCs susceptible to the exac-
erbated inflammatory process. Therefore, ATRA would increase the expression levels of
cell adhesion molecules and promote an excessive systemic inflammatory response, which
would ultimately lead to endothelial cell damage, capillary permeability, vessel occlusion,
and massive tissue infiltration of differentiating APL cells. Nevertheless, the consensus
in severe cases of DS (respiratory or acute renal failure) is that discontinuation of ATRA
and/or ATO treatment is mandatory [15,19].

Once DS has been recognized, the accepted standard management is treatment with
corticosteroids such as dexamethasone, with the suggested dose being 5–10 mg taken twice
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daily intravenously until resolution and for at least 3 days after. The use of prophylactic
steroid therapy during induction shows a beneficial reduction in the incidence of DS [41].

4. Other Mutations That Evade Conventional Treatment

Besides the classic mutations in acute leukemias, particular cases in APL have been
investigated, especially regarding responsiveness to available treatments.

Data suggest, for example, that FLT3-ITD in acute promyelocytic leukemias prevents
ATRA responsiveness, but not responsiveness to ATO [44,45].

Just as there is translocation shaping the PML-RARα protein, translocation can link
other genes whose prognoses become even more heterogeneous. Other translocational
rearrangements of the RARA gene have also been reported [43].

However, reported variants with NPM1, FIP1L1, NUMA1, IRF2BP2, GTF2I, IRF2BP2,
FNDC3B, BCoR, NPM, OBFC2A, and PRKAR1A were shown to be sensitive to ATRA;
therefore, chemotherapy and target therapy together could benefit this cohort. Other
variants with ZBTB16 and STAT5b responded weakly, while the TBLR1 variant was not
responsive to ATRA treatment [46].

5. Possible Treatments for Each Mutation

APL treatment since the 1980s has been studied as a different entity, which coincides
with the change in status from leukemia being seen as highly lethal to a disease that sees
remission in about 90% of cases. Nevertheless, for this 10% of new cases of APL, scientific
research has been investigating its causes and seeking better therapeutic management.
Besides the classic cases of translocation that do not respond well to the classic therapy for
APL, other hypotheses exist for this evasion of therapy [47]:

• The use of cytotoxic drugs, especially topoisomerase inhibitors, alkalinizing agents,
and anthracyclines, leads to changes in DNA structure and secondary changes, most
of which include treatment-related myelodysplastic syndrome or AML;

• APL is accompanied by other clones in the early stages of the disease but masked by the
dominant clones because the application of ATRA, ATO, and chemotherapy eliminates
abnormal promyelocytes so that other clones have a better chance of survival;

• As reported in the literature, the prognosis of APL, secondary to treated acute myeloid
leukemia, is poor and survival is relatively short. Although patients have achieved
complete remission after one cycle of chemotherapy, their long-term survival still
needs to be investigated because it is unclear whether the choice of follow-up consoli-
dation therapy should be medium-dose cytarabine-based chemotherapy or allogeneic
hematopoietic stem cell transplantation.

In general, resistance cases have been treated with the corresponding conventional
AML treatments. However, we need to converge the applicability of the promising target
therapies and those recommended by the NCCN:

• Gentuzumab is recommended for immature cells with CD33 markers; thus, if it is not
a blastic crisis, perhaps other drugs may be more effective;

• Midostaurin and Gilteritinib targeting FLT3, which is commonly reported in oncohe-
matological disorders, may help in cases where it is uncertain whether conventional
ATRA/ATO treatment is effective;

• Enadesinib and Ivodesinib have shown good results for cases in which the previous
remission was also impaired;

• Venetoclax acts by restoring apoptosis in cells poorly responsive to chemotherapy;
• Since this is such a heterogeneous disease, it is of great importance to outline the ap-

propriate combined therapy of chemotherapy and target therapy to improve survival
in APL patients.

6. Emerging and Combined Target Therapies

Recently approved by the FDA, Olutasidenib is recommended to adult patients with
relapsed or refractory acute myeloid leukemia (AML) with a susceptible IDH1 mutation
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at arginine (R)132 (IDH1(R132)). The recommended Olutasidenib dose is 150 mg taken
orally twice daily on an empty stomach, and a complete remission (CR) rate of 35% has
been observed [48].

On the other hand, 3 + 7 cytarabine plus daunorubicin chemotherapy has been updated
for AML patients. Recent studies including alternative combinations with target therapies
that have been used to substitute classic chemotherapy have shown interesting disease-free
survival rates. Combined target therapy is uncovering potential therapeutic strategies for
AML [49]. The combination of target therapy is a current area of interest, as can be seen by
FDA approval in May 2022 of the combination of Ivosidenib and the hypomethylation agent
Azacitidine (AZA) for the treatment of AML patients with susceptible IDH1 mutations [50].
For newly diagnosed patients, promising results were reported for the combination of AZA,
Venetoclax, and Decitabine. For wild-type FLT3 and high-risk patients, physicians observed
beneficial synergism between Venetoclax and Gilteritinib, in which the mechanism seems to
be MCL-1 suppression. Regarding FLT3-complicated mutations, the use of Gilteritinib plus
AZA in older patients raised the response rate. For the common high-risk p53 mutation,
a specific drug named Eprenetapopt has been used in combination with AZA. This same
approach (Eprenetapopt plus AZA) had exciting results in post-allogenic HCT therapy.
The combination of AZA and Ivosidenib or Enasidenib led to the complete remission of
IDH1/2 complications [51–57] (see Table 3). Other ongoing studies for APL therapy can be
seen in Table 4 below.

Table 3. Emerging combined target therapies.

Indication Combination

IDH1/2 mutation Ivosidenib +AZA [50] or AZA + Ivosidenib
[56] or AZA+ Enasidenib [57]

Newly diagnosed, ineligible for intense
chemotherapy AZA+ Venetoclax + Decitabine [51]

FLT3 high-risk Venetoclax + Gilteritinib [52]

FLT3 mutation in older patients Gilteritinib + AZA [53]

TP53 mutation Eprenetapopt +AZA [54]

Post-allogenic HCT Eprenetapopt +AZA [55]

Table 4. Ongoing trials of APL therapy.

Clinical Trial
Identifier Phase Clinical Test Related Conditions Reference

NCT02129101 I/Ib

To evaluate the tolerable
dose and efficacy of

Azacitidine and
Sonidegib or Decitabine

Acute myeloid leukemia
Acute promyelocytic leukemia [58]

NCT03625505 I

To evaluate the safety
and efficacy of
Venetoclax in

combination with
Gilteritinib

Relapsed or refractory (R/R)
acute myeloid leukemia
Acute myeloid leukemia

Acute promyelocytic leukemia

[59]

NCT03048344 I

To determine the
recommended dose of

arsenic trioxide capsule
formulation ORH 2014

Acute myeloid leukemia
Acute promyelocytic leukemia

Chronic myelomonocytic
leukemia

Mantle cell lymphoma
Myelodysplastic syndromes

Myelodysplas-
tic/myeloproliferative

neoplasm

[60]
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Table 4. Cont.

Clinical Trial
Identifier Phase Clinical Test Related Conditions Reference

NCT04655391 Ib

To evaluate the best
dose and effect of

Glasdegib with
Venetoclax and

Decitabine; Gilteritinib,
Bosutinib, Ivosidenib, or

Enasidenib

Relapse after HCT
Acute myeloid leukemia

Acute promyelocytic leukemia
[61]

NCT03386513 I/II

To evaluate the
antileukemic activity of

IMGN632 when
administered as a

monotherapy to patients
with CD123+

Acute lymphoblastic leukemia
Acute myeloid leukemia

Acute promyelocytic leukemia
Blastic plasmacytoid Dendritic

cell neoplasm
Chronic myeloid leukemia
Chronic myelomonocytic

leukemia
Myelodysplastic syndromes
Myeloproliferative neoplasm

[62]

NCT03328078 I/II

To evaluate oral
administration of

CA-4948 (reversible
inhibitor of

Interleukin-1)

Adult patients with
relapsed/refractory

hematologic malignancies
Acute myeloid leukemia

Acute promyelocytic leukemia
B-cell non-Hodgkin

lymphoma

[63]

NCT02124174 II
To evaluate Vidaza and

valproic acid post
allogeneic transplant

High-risk AML post allogeneic
transplant

Acute myeloid leukemia
Acute myeloid leukemia with

t(8;21), (q22; q22.1),
RUNX1-RUNX1T1

Acute promyelocytic leukemia
Core binding factor Acute

myeloid leukemia
Myelodysplastic syndromes

[64]

6.1. Immunotherapies

Immune-based approaches become promising once antigens are expressed differ-
ently to normal immune cells. Here, we mention the overexpressed antigens in an acute
myeloid context for target-directed immune therapy. A canonical example is GO, which
is directed to CD33. In the same way, blocking CD47, a “don’t eat me signal” which is a
macrophage target agent, can enhance anti-tumor activity; however, it has a low clinical
response [65]. Additionally, studies on combined drugs and Magrolimab (anti-CD47) are in
progress with AZA and even with Atezolizumab, which is another immune checkpoint
(NCT03922477) [66]. The CD70 marker promotes blast stemness, which makes it a target
for treatment. The anti-CD70 drug Cusatuzumab seems to have an eliminative effect
on acute myeloid leukemia cells in preclinical studies, while for clinical approaches, the
hypomethylating agent AZA was also combined (NCT03030612) [67]. Talacotuzumab, a
representative of anti-CD123, is currently under evaluation in combination with decitabine
(NCT024172145) [68].

6.1.1. CAR-T

Clinical application of CAR-T therapy (chimeric antigen receptor T cell therapy) has
been a clinical challenge for AML since the target antigens applied to this technology are
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common in both leukemia cells and normal bone marrow cells. Studies are applying this
technology in the context of relapse or refractory AML. Obstacles emerge from different nu-
ances. For example, there have been reports of graft vs. host disease caused by mismatched
endogenous and exogenous peptides [69]. In addition, the expression level of these anti-
gens in leukemia cells is often weaker, as can be seen in clinical trial NCT04097301, which
was discontinued due to the lower-than-expected proportion of myeloma and leukemia
cells expressing the target (CD44v6) [70]. Other studies attempted different strategies.
The NCT03473457 clinical trial aimed to determine the toxicity profile of different targets,
such as CD38, CD33, CD56, CD123, CD117, CD133, CD34, or MUC1-targeted CAR-T, but
the therapeutic effect was not as expected. NCT03126864 concerned autologous T cells
transduced with lentivirus that were developed to express a CD33-specific chimeric antigen
receptor, though this trial was also terminated. Another strategy proposed in clinical trial
NCT03672851 was an anti-CD123 CAR-T treatment involving T cells lentivirally transduced
to express a CD123-specific hinge-optimized CD28 costimulatory chimeric antigen receptor;
however, this treatment exhibited adverse effects [71–73].

6.1.2. Cancer Vaccines

Cancer vaccines have two main approaches: peptide vaccines and dendritic cell
vaccines. Regarding leukemias, the immune-compromised system is a barrier that needs to
be trespassed in order to achieve antigen recognition. Nevertheless, there are key antigens
leading the developmental vaccine race against myeloid leukemias such as WT1. An
ongoing phase 2 clinical study (NCT01266083) is trying to determine if the WT1 vaccine
causes immune recognition safely enough to prevent leukemia relapse [74]. There are
reports of dendritic cell-based immunotherapies for AML, most of which aim to prevent
leukemia relapse. Through a major histocompatibility complex, dendritic cells can stimulate
adaptative and innate immune responses. These dendritic cell vaccines have the advantage
of safety and high immunogenicity. Clinical trials have shown complete response rates
ranging from 33% up to 74%. However, specifically for APL, they have no consistent robust
data yet [75,76].

7. Hematopoietic Cell Transplantation

It is noteworthy that APL is deadly if untreated; therefore, APL treatment stands in a
different position to the rest of the AML subclassifications in terms of relapse or refractory
cases. If a patient has MRD, and they had been treated classically with chemotherapy plus
ATRA, then they should receive a cycle of ATO treatment for reinduction, which has been
shown to lead to up to 95% remission. However, in case these become ineffectual, manage-
ment through a hematopoietic stem cell transplant (HCT) is most recommended [77,78].
To achieve pre-transplant or post-transplant induction, all combinations cited above in this
article can apply.

Regarding APL specificity, an HCT is indicated for relapsing patients after non-
responsiveness to ATRA and ATO frontline therapy. An autologous HCT is suggested
for MRD-free patients and has demonstrated excellent long-term survival. For patients
with refractory disease, an allogeneic HCT can be an option after risk management evalua-
tion [79,80].

8. Conclusions

Elucidation of the molecular drift that occurs in APL is increasingly guiding treatment
toward the reality of pharmacogenomics. Knowing which specific mutation the patient
carries and the best drug for each case reduces toxicity and not only increases survival, but
also increases the quality of life of patients. We hope that the whole world population will
soon have more access to this type of molecular diagnosis, as well as to the target therapies
indicated for each situation.

As molecular biology moves forwards in terms of the investigation of molecular
pathogeneses, so does pharmacogenomics. Personalization is the future of pharmacology,
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especially when seeking to overcome the risk of relapse and unwanted toxicity while
improving life expectancy and patient survival rates.
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