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Abstract: The present study explores the efficacy of plant-derived natural products (PDNPs) against
spike glycoproteins (S-glycoprotein) of SARS-CoV-2 variants using molecular docking, ADMET,
molecular dynamics (MD) simulation and density-functional theory (DFT) analysis. In all, 100 PDNPs
were screened against spike glycoprotein of SARS-CoV-2 variants, namely alpha (B.1.1.17), beta
(B.1.351), delta (B.1.617), gamma (P.1) and omicron (B.1.1.529). Results showed that rutin, EGCG,
hesperidin, withanolide G, rosmarinic acid, diosmetin, myricetin, epicatechin and quercetin were
the top hit compounds against each of the SARS-CoV-2 variants. The most active compounds,
rutin, hesperidin, EGCG and rosmarinic acid gave binding scores of −10.2, −8.1, −8.9, −8.3 and
−9.2 kcal/mol, against omicron, delta, alpha, beta and gamma variants, respectively. Further, the
stability of docked complexes was confirmed by the analysis of molecular descriptors (RMSD, RMSF,
SASA, Rg and H-bonds) in molecular dynamic simulation analysis. Moreover, the physiochemical
properties and drug-likeness of the tested compounds showed that they have no toxicity or carcino-
genicity and may be used as druggable targets. In addition, the DFT study revealed the higher activity
of the tested compounds against the target proteins. This led us to conclude that rutin, hesperidin,
EGCG and rosmarinic acid are good candidates to target the S-glycoproteins of SARS-CoV-2 variants.
Further, in vivo and clinical studies needed to develop them as drug leads against existing or new
SARS-CoV-2 variants are currently underway in our laboratory.

Keywords: SARS-CoV-2 variants; plant-derived natural products; molecular docking; molecular
dynamic simulation; Density-Functional Theory

1. Introduction

The recently discovered severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-
2), is a single-stranded RNA virus like the previously discovered severe acute respiratory
syndrome Coronavirus (SARS-CoV), with 99.8% similarity in their gene sequences [1]. The
SARS-CoV-2 genome has been found to be around 29.9 kB in size and comprises 27 distinct
structural and non-structural proteins in addition to 14 open reading frames (ORFs). In
the act of binding to host receptors, structural proteins such as spike glycoprotein (S), an
envelope protein (E), nucleocapsid protein (N) and matrix protein (M) have been noted
to play a significant role. Human angiotensin-converting enzyme 2 (ACE2) receptors are
located on the cell surface, where they interact with spike proteins (S-protein), a trimeric
protein, with tremendous affinity, to enable the SARS-CoV-2 genome to enter host cells [2,3].
The N-terminal S1 domain and the membrane-proximal S2 domain are the two subunits
that make up the S-protein. Through the receptor-binding domain (RBD), the S1 domain
identifies the ACE2 receptor on the cell surface; whereas, the S2 domain interferes with the
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fusion of viral particles with the host cell membrane. Antibodies produced against SARS-
CoV-2 are known to be neutralized by the RBD and other binding domains of S-protein [4].
As a result, it is possible to use the suppression of the S-glycoprotein and the human ACE2
receptor as they are prime targets for the development of COVID-19 remedies. It needs to
be mentioned that the majority of the vaccines being administered to combat SARS-CoV-2
infection are typically based on S-glycoprotein sequences. Several anti-SARS-CoV-2 vaccine
candidates only employ the RBD site as an antigen. SARS-CoV-2 is no different from those
other viruses due to its ability to mutate. SARS-CoV-2 has more than 23,202 mutated
variants which have been sequenced, and they spread and infect people more quickly,
increasing the contagiousness of the virus. [5]. In particular, the United States (US), United
Kingdom (UK), Brazil, South Africa and India have all seen a number of variants that
exhibited increased transmissibility, immune evasiveness, more adaptable interaction of the
spike protein to host receptors, as well as decreased vaccine efficacy because of mutations.
Since there is no effective therapeutic agent currently available for the treatment of this viral
infection, the entire world is still struggling to effectively combat and control SARS-CoV-2
and its variants.

Since ancient times, traditional medicine practitioners throughout the world have
used medicinal plants in the treatment of various infections and disease conditions [6]. As
demonstrated by numerous studies, traditional medicines in the form of crude extracts are
rich sources of plant-derived natural products (PDNPs), such as polyphenols, flavonoids,
terpenoids, alkaloids, steroids, tannins, lignans and fatty acids, which are also termed as
secondary metabolites or phytochemicals. In the current drug-discovery scenario, PDNPs
allow researchers to use them exclusively as drug-like lead molecules for the drug discovery
and development processes [7]. For example, many studies revealed that polyphenols and
flavonoids display promising antiviral properties including against HIV, influenza and
dengue, as well as against COVID-19 [8]. Recently, we have also identified a few flavonoids
namely quercetin, apigenin, myricetin, daidzein, epigallocatechin gallate (EGCG), genis-
tein and luteolin, as well as other polyphenols such as ferulic acid, gingerol-6, piperine,
resveratrol, etc. which inhibit SARS-CoV-2 by targeting its structural (spike protein) and
non-structural proteins by using computational (molecular docking and molecular dy-
namic simulation) tools [9,10]. More recently, Agarwal et al. reported rutin as an effective
inhibitor of the SARS-CoV-2 main protease (Mpro) with the help of a molecular docking
study [11]. Furthermore, a group of NPs (e.g., withanolides), which are isolated from
Withania somnifera, have shown COVID-19 inhibitory activity using in silico and in vitro
methods [12]. Moreover, diosmetin, an important flavonoid of citrus lemon, significantly
acts as predicting inhibitor of SARS-CoV-2 main protease as demonstrated by molecular
docking, molecular dynamic simulations and quantum computational studies [13].

In this context, the aim of our study is to find out the possible drug leads of those
PDNPs that are present in medicinal plants in good quantity against anti-SARS-CoV-2
variants by using computational tools. Based on the selection criteria, we have screened
100 PDNPs that are reported to have antiviral, anti-inflammatory and immunomodula-
tory properties in previous literature reports. A total of 100 PDNPs have been subjected
to ADMET, drug-likeness and molecular docking studies to find out suitable inhibitory
agents against SARS-CoV-2 variants namely alpha variant (B.1.1.17), beta variant (B.1.351),
delta variant (B.1.617), gamma variant (P.1) and omicron (B.1.1.529), respectively. Among
these, nine PDNPs viz. rutin, EGCG, hesperidin, withanolide G, rosmarinic acid, dios-
metin, myricetin, epicatechin and quercetin exhibited better binding affinities to the S-
glycoproteins of SARS-CoV-2 variants than the reference drug. The top hits ligands,
hesperidin, EGCG, rosmarinic acid and rutin, were further evaluated through an MD simu-
lation study to determine the stability of the ligand–protein interactions within the binding
pockets of spike proteins of alpha, beta, gamma, delta and omicron variants, respectively.
In addition, the DFT study revealed that hesperidin, EGCG, rosmarinic acid and rutin were
found to show very good activity against each of the SARS-CoV-2 variants.
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2. Materials and Methods
2.1. ADMET and Drug Likeness Study

Prediction of ADMET (absorption, distribution, metabolism, excretion and toxicity) is
an important method in drug design and development processes. The ADMET properties
were computed and calculated using SwissADME, internet server http://www.swissadme.
ch/index.php, accessed on 21 May 2022. The drug-like properties including molecular
weight (MW) (<500), lipophilicity (<4.15), hydrogen bond acceptor (HBA) (<10), hydrogen
bond donor (HBD) (<5), topological polar surface area (TPSA) (<140 Å2), water-solubility
(LogS), pharmacokinetics (gastrointestinal absorption, blood–brain barrier and perme-
ability) and toxicity (mutagenic, tumorigenic, irritant and reproductive effect) have been
performed by using Osiris Properties Explorer software [14].

2.2. Ligand Preparation

A library of 100 PDNPs from Indian medicinal plants with antiviral, anti-inflammatory
and immunomodulatory properties was created for molecular docking investigations
(Supplementary Tables S1–S5). The compounds were first screened from the PUBCHEM
database (https://pubchem.ncbi.nlm.nih.gov/) to ensure their safety as spatial data file
(SDF) and simplified molecular input line entry system (SMILES) format. The chemical
structures of all the ligands were corrected for their properties, such as bond length and
bond angles, before inserting missing hydrogen atoms. Prior to the molecular docking
experiment, all ligands were entered from the workspace and optimised using the LigPrep
module of Maestro version 12.6.144 Schrodinger 2020-4 LCC, New York USA programme
with the force field OPLS3e which created possible states at the target pH. [15]. Following
the preliminary results of molecular docking analysis, 9 PDNPs (three best compounds
against each receptor) were chosen for further MD simulation, ADMET, and DFT studies
and analysis.

2.3. Protein Preparation and Grid Generation

The structures of S-glycoproteins of all variants were available and thus obtained
directly from the protein data bank (https://www.rcsb.org/) website. The 3D structures of
all proteins, including alpha (PDB ID: 8DLI), beta (PDB ID: 7LYQ), delta (PDB ID: 7W92),
gamma (PDB ID: 7SBT) and omicron (PDB ID: 7QO7) variants, were pre-processed and
refined by using the protein preparation wizard in the Maestro version 12.6.144 Schrodinger
2020-4 LCC, New York USA suite. The selected receptor proteins were pre-processed by
adding missing hydrogen atoms and converting selenomethionines to methionine. All
hydrogen bonds were optimised using sample water orientation with PROPKA pH 7.0
while the receptor’s energy was minimised using the default RMSD value 0.30 Å and
OPLS3e force field methods. For generating the grid, we picked up the native ligands
(NAG) that bound with residues in the active site of all the receptors including alpha,
beta, gamma and omicron (Supplementary Figure S6). Because no native (crystallographic)
ligand was found in the delta variant’s 3D structure, we created the binding site using
Goodford’s grid algorithm via the sitemap tool and then used the default van der Waal
1.0 with 0.25 the partial charges cut-off scaling factors to create the grid map over the
receptors [16,17].

2.4. Molecular Docking

Glide v8.8 (Schrodinger 2020-4 LCC, New York, NY, USA) software was used for the
docking study to determine the binding affinities of ligands within the binding pockets
of target proteins. The flexible molecular docking was performed by using HTVS (High
Throughput Virtual Screening) precision. For the docking, the scaling factors were applied
van der Wall radii 0.80 Å and a partial charge cut-off 0.15 Å was applied to the softening
potential of ligands. Binding affinities were expressed as Glide scores for each ligand
(PDNPs), obtained from project table. The final poses of complexes were visualised by the

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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pose viewer. Among them, the best poses were chosen based on the energy function that
integrates the empirical and force field algorithm at the same time [18].

2.5. Molecular Dynamic Simulation

Following the molecular docking studies, the best-binding interacting complexes,
hesperidin-alpha, EGCG-beta, rutin-delta, rosmarinic acid-gamma and rutin-omicron,
were subjected to MD simulations experiments to examine their stability and confirm
the molecular docking results using Desmond module of Schrodinger 2020-4 LCC, New
York USA software. As previously indicated, the simulation was done with the OPLS-
3e force field at 1000 trajectory frames of 100 ns time. The complex systems were then
solvated by creating a transferable intermolecular potential 3P (TIP3P) water model with
a box of 10.0 dimensions and periodic boundary condition (PBC) and neutralising the
complexes with Na+/Cl− ions. The final stage of the simulation was performed at a
constant temperature 300 K along with isobaric isothermal ensemble (NPT equilibrium)
by employing a Nose–Hoover chain thermostat at 300 K temperature 1 bar pressure after
achieving equilibrium. The Particle–Mesh–Ewald summation (PME) approach was also
used to determine the long-range electrostatic interactions between the atoms of ligand
and protein. Finally, the interaction diagram was shown to analyse the trajectories of
MD simulation trajectories using several parameters such as RMSD, RMSF, interacting
Hydrogen bonds and radius of gyration (Rg) for the complexes [19,20].

2.6. DFT Calculation

The chemical characteristics of 4 PDNPs (rutin, hesperidin, EGCG, and rosmarinic
acid), with the lowest binding energies in molecular docking and simulation processes
against the control drug (nafamostat), are investigated using Density-Functional Theory
(DFT). The DFT analysis (optimisation of shape and chemical characteristics) was conducted
using Gauss View 6.0.16 and Gaussian 09W software and the B3LYP hybrid method at the
6-311G ground state. The optimum geometries of PDNPs were computed for HOMO and
LUMO energies, as well as their gaps, and for showing the molecular electrostatic potential
(MEP) map [21].

3. Results
3.1. Evaluation and Analysis of ADMET and Drug Likeness Properties

Lipinski’s rule of five (Ro5), bioavailability score and drug score of all tested PDNPs
utilised in this investigation were calculated using the SwissADME online server and Osiris
Property Explorer, as shown in Tables 1 and 2. Among them, nine PDNPs (rutin, EGCG,
hesperidin, withanolide G, rosmarinic acid, diosmetin, myricetin, epicatechin and quercetin)
were chosen for further study due to higher bioavailability and drug score (bioavailability
score > 0.50 and drug score > 0.30) to generate lead therapeutic agents against new SARS-
CoV-2 variants (Figure 1). According to ADMET characteristics, epicatechin, quercetin,
diosmetin and withanolide G have a high rate of human GI absorption, whereas EGCG,
rutin, myricetin, rosmarinic acid and hesperidin have a low rate. The LogS number
represents the drug’s water solubility. The solubility of all evaluated PDNPs ranged from
−2.22 to −4.32 [22].

Table 1. Results of ADME and drug-likeness properties of qualified PDNs.

Ligand MW HBA HBD TPSA MLogP LogS GI BBB Ro5

Epicatechin 290.27 6 5 110.38 0.24 −2.22 High No Yes

EGCG 458.37 11 8 197.37 −0.44 −3.56 Low No No

Rutin 610.52 16 10 269.43 −3.89 −3.30 Low No No

Quercetin 302.24 7 5 131.36 −0.56 −3.16 High No Yes

Myricetin 318.24 8 6 151.59 −1.08 −3.01 Low No Yes
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Table 1. Cont.

Ligand MW HBA HBD TPSA MLogP LogS GI BBB Ro5

Diosmetin 300.26 6 3 100.13 0.22 −4.06 High No Yes

Rosmarinic acid 360.31 8 5 144.52 0.90 −3.44 Low No Yes

Hesperidin 610.56 15 8 234.29 −3.04 −3.28 Low No No

Withanolide G 454.60 5 2 83.83 3.48 −4.71 High No Yes

Nafamostat 347.37 4 4 140.57 2.96 −3.40 Low No Yes

MW = molecular weight, HBA = Hydrogen Bond Acceptor, HBD = Hydrogen Bond Donor, TPSA = Topo-
logical Polar Surface Area, MLogP = Lipophilicity, LogS = Water Solubility, GI = Gastrointestinal Absorption,
BBB = Blood–Brain Barrier, Ro5 = Rule of Five.

Table 2. Results of toxicological properties of 10 PDNPs.

Ligand Mutagenic Tumorigenic Irritant Reproductive Effect

Epicatechin No No No No

EGCG No No No No

Rutin No No No No

Quercetin Yes Yes No No

Myricetin Yes No No No

Diosmetin No No No No

Rosmarinic acid No No No No

Hesperidin No No No No

Withanolide G No No No No

Nafamostat No No No No
Future Pharm. 2022, 2,  5 
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Furthermore, no PDNPs pass through the blood—brain barrier. EGCG, rutin and
hesperidin had higher PSA values (>200.0), indicating that these compounds have stronger
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druggable properties but other PDNPs (myricetin, quercetin, hesperidin, rosmarinic acid,
withanolide-G, diosmetin, epicatechin) had lower PSA values (<100.0). As shown in
Table 1, the molecular weight of EGCG, rutin, hesperidin, myricetin, quercetin, hesperidin,
rosmarinic acid, withanolide-G, diosmetin and epicatechin are in the range of drug-likeness
properties, except rutin and hesperidin [23]. In the toxicological study, quercetin and
myricetin were predicted to be mutagenic and tumorigenic but other compounds showed
no toxicity.

3.2. Evaluation and Analysis of Molecular Docking Analysis

The molecular docking approach has become a popular computer-aided virtual ap-
proach for screening drug targets in a short period of time while spending little energy and
money on drug design and discovery. In order to search the therapeutic agents against the
new variant of the SARS-CoV-2 virus, 100 PDNPs were initially screened based on their
previously known antiviral properties [24]. They were subjected to molecular docking stud-
ies against said S-glycoproteins of SARS-CoV-2 variants. Using the lowest binding energy
scale in comparison to the reference drug molecule “nafamostat”, the top three PDNPs for
each variant were chosen for ADMET analysis. After that, the best PDNP for each variant
was selected by combining docking and ADMET investigation for the molecular dynamic
(MD) simulation study. Evaluation of the molecular docking study of 100 PDNPs yielded
encouraging results against each of the SARS-CoV-2 variants. The reference drug nafamo-
stat showed docking scores −5.324, −5.665, −5.340, 4.260 and −5.325 Kcal/mole against
omicron, delta, alpha, beta and gamma variants, respectively. Using these scores as filters,
we chose the top 10 PDNPs which are rutin, hesperidin, ECG, EGCG, withanolide G, ros-
marinic acid, diosmetin, myricetin, epicatechin and quercetin against all variants. Figure 2
depicts the 2D interactions of the best hits of PDNPs within protein receptor-binding sites
in molecular docking, whereas molecular interactions are depicted in Table 3.

Table 3. Detail account of PDNPs, their molecular docking score against SARS-CoV-2 variants, and
more active PDNPs shown in bold as compared to drug.

PubChem
Smiles Compounds

Docking Score

ID Omicron Delta Alpha Beta Gamma

5280805
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Hesperidin −9.029 −7.873 −8.993 −7.559 −4.055 

107905  ECG −8.202 −7.454 −7.765 −7.429 −6.615 

65064  EGCG −7.700 −7.993 −7.851 −8.369 −7.532 

21679023  Withanolide G −5.817 −6.159 −8.766 −6.590 −4.443 

5281792  Rosmarinic acid −6.739 −6.629 −8.761 −7.187 −9.235 

5281612  Diosmetin −7.659 −5.867 −6.173 −8.200 −6.439 

5281672  Myricetin −6.877 −6.521 −6.916 −8.102 −5.968 

72276  Epicatechin −7.596 −7.736 −7.799 −7.367 −8.896 

5280343  Quercetin −6.092 −6.795 −6.825 −6.844 −8.021 

4413  Nafamostat −5.324 −5.665 −5.340 −4.260 −5.325 

 

Withanolide G −5.817 −6.159 −8.766 −6.590 −4.443

5281792
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Table 3. Detail account of PDNPs, their molecular docking score against SARS-CoV-2 variants, and 
more active PDNPs shown in bold as compared to drug. 

PubChem  
Smiles Compounds 

Docking Score 
ID Omicron Delta Alpha Beta Gamma 

5280805 
 

Rutin −10.224 −8.160 −8.589 −8.095 −5.891 

10621 
 

Hesperidin −9.029 −7.873 −8.993 −7.559 −4.055 

107905  ECG −8.202 −7.454 −7.765 −7.429 −6.615 

65064  EGCG −7.700 −7.993 −7.851 −8.369 −7.532 

21679023  Withanolide G −5.817 −6.159 −8.766 −6.590 −4.443 

5281792  Rosmarinic acid −6.739 −6.629 −8.761 −7.187 −9.235 

5281612  Diosmetin −7.659 −5.867 −6.173 −8.200 −6.439 

5281672  Myricetin −6.877 −6.521 −6.916 −8.102 −5.968 

72276  Epicatechin −7.596 −7.736 −7.799 −7.367 −8.896 

5280343  Quercetin −6.092 −6.795 −6.825 −6.844 −8.021 

4413  Nafamostat −5.324 −5.665 −5.340 −4.260 −5.325 

 

Rosmarinic
acid −6.739 −6.629 −8.761 −7.187 −9.235

5281612
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Table 3. Detail account of PDNPs, their molecular docking score against SARS-CoV-2 variants, and 
more active PDNPs shown in bold as compared to drug. 

PubChem  
Smiles Compounds 

Docking Score 
ID Omicron Delta Alpha Beta Gamma 

5280805 
 

Rutin −10.224 −8.160 −8.589 −8.095 −5.891 

10621 
 

Hesperidin −9.029 −7.873 −8.993 −7.559 −4.055 

107905  ECG −8.202 −7.454 −7.765 −7.429 −6.615 

65064  EGCG −7.700 −7.993 −7.851 −8.369 −7.532 

21679023  Withanolide G −5.817 −6.159 −8.766 −6.590 −4.443 

5281792  Rosmarinic acid −6.739 −6.629 −8.761 −7.187 −9.235 

5281612  Diosmetin −7.659 −5.867 −6.173 −8.200 −6.439 

5281672  Myricetin −6.877 −6.521 −6.916 −8.102 −5.968 

72276  Epicatechin −7.596 −7.736 −7.799 −7.367 −8.896 

5280343  Quercetin −6.092 −6.795 −6.825 −6.844 −8.021 

4413  Nafamostat −5.324 −5.665 −5.340 −4.260 −5.325 

 

Diosmetin −7.659 −5.867 −6.173 −8.200 −6.439

5281672
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Table 3. Detail account of PDNPs, their molecular docking score against SARS-CoV-2 variants, and 
more active PDNPs shown in bold as compared to drug. 

PubChem  
Smiles Compounds 

Docking Score 
ID Omicron Delta Alpha Beta Gamma 

5280805 
 

Rutin −10.224 −8.160 −8.589 −8.095 −5.891 

10621 
 

Hesperidin −9.029 −7.873 −8.993 −7.559 −4.055 

107905  ECG −8.202 −7.454 −7.765 −7.429 −6.615 

65064  EGCG −7.700 −7.993 −7.851 −8.369 −7.532 

21679023  Withanolide G −5.817 −6.159 −8.766 −6.590 −4.443 

5281792  Rosmarinic acid −6.739 −6.629 −8.761 −7.187 −9.235 

5281612  Diosmetin −7.659 −5.867 −6.173 −8.200 −6.439 

5281672  Myricetin −6.877 −6.521 −6.916 −8.102 −5.968 

72276  Epicatechin −7.596 −7.736 −7.799 −7.367 −8.896 

5280343  Quercetin −6.092 −6.795 −6.825 −6.844 −8.021 

4413  Nafamostat −5.324 −5.665 −5.340 −4.260 −5.325 

 

Myricetin −6.877 −6.521 −6.916 −8.102 −5.968

72276
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Table 3. Detail account of PDNPs, their molecular docking score against SARS-CoV-2 variants, and 
more active PDNPs shown in bold as compared to drug. 

PubChem  
Smiles Compounds 

Docking Score 
ID Omicron Delta Alpha Beta Gamma 

5280805 
 

Rutin −10.224 −8.160 −8.589 −8.095 −5.891 

10621 
 

Hesperidin −9.029 −7.873 −8.993 −7.559 −4.055 

107905  ECG −8.202 −7.454 −7.765 −7.429 −6.615 

65064  EGCG −7.700 −7.993 −7.851 −8.369 −7.532 

21679023  Withanolide G −5.817 −6.159 −8.766 −6.590 −4.443 

5281792  Rosmarinic acid −6.739 −6.629 −8.761 −7.187 −9.235 

5281612  Diosmetin −7.659 −5.867 −6.173 −8.200 −6.439 

5281672  Myricetin −6.877 −6.521 −6.916 −8.102 −5.968 

72276  Epicatechin −7.596 −7.736 −7.799 −7.367 −8.896 

5280343  Quercetin −6.092 −6.795 −6.825 −6.844 −8.021 

4413  Nafamostat −5.324 −5.665 −5.340 −4.260 −5.325 

 

Epicatechin −7.596 −7.736 −7.799 −7.367 −8.896

5280343
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Table 3. Detail account of PDNPs, their molecular docking score against SARS-CoV-2 variants, and 
more active PDNPs shown in bold as compared to drug. 

PubChem  
Smiles Compounds 

Docking Score 
ID Omicron Delta Alpha Beta Gamma 

5280805 
 

Rutin −10.224 −8.160 −8.589 −8.095 −5.891 

10621 
 

Hesperidin −9.029 −7.873 −8.993 −7.559 −4.055 

107905  ECG −8.202 −7.454 −7.765 −7.429 −6.615 

65064  EGCG −7.700 −7.993 −7.851 −8.369 −7.532 

21679023  Withanolide G −5.817 −6.159 −8.766 −6.590 −4.443 

5281792  Rosmarinic acid −6.739 −6.629 −8.761 −7.187 −9.235 

5281612  Diosmetin −7.659 −5.867 −6.173 −8.200 −6.439 

5281672  Myricetin −6.877 −6.521 −6.916 −8.102 −5.968 

72276  Epicatechin −7.596 −7.736 −7.799 −7.367 −8.896 

5280343  Quercetin −6.092 −6.795 −6.825 −6.844 −8.021 

4413  Nafamostat −5.324 −5.665 −5.340 −4.260 −5.325 

 

Quercetin −6.092 −6.795 −6.825 −6.844 −8.021

4413
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Table 3. Detail account of PDNPs, their molecular docking score against SARS-CoV-2 variants, and 
more active PDNPs shown in bold as compared to drug. 

PubChem  
Smiles Compounds 

Docking Score 
ID Omicron Delta Alpha Beta Gamma 

5280805 
 

Rutin −10.224 −8.160 −8.589 −8.095 −5.891 

10621 
 

Hesperidin −9.029 −7.873 −8.993 −7.559 −4.055 

107905  ECG −8.202 −7.454 −7.765 −7.429 −6.615 

65064  EGCG −7.700 −7.993 −7.851 −8.369 −7.532 

21679023  Withanolide G −5.817 −6.159 −8.766 −6.590 −4.443 

5281792  Rosmarinic acid −6.739 −6.629 −8.761 −7.187 −9.235 

5281612  Diosmetin −7.659 −5.867 −6.173 −8.200 −6.439 

5281672  Myricetin −6.877 −6.521 −6.916 −8.102 −5.968 

72276  Epicatechin −7.596 −7.736 −7.799 −7.367 −8.896 

5280343  Quercetin −6.092 −6.795 −6.825 −6.844 −8.021 

4413  Nafamostat −5.324 −5.665 −5.340 −4.260 −5.325 

 

Nafamostat −5.324 −5.665 −5.340 −4.260 −5.325
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Figure 2. Two-dimensional view of molecular interactions in between (A) Rutin-S-protein of 
omicron variant, (B) Hesperidin and S-protein of alpha variant, (C) EGCG and S-protein of beta 
variant, (D) Rosmarinic acid and S-protein of gamma variant and (E) Rutin and S-protein of delta 
variant. 

3.2.1. Molecular Docking against Omicron Variant 
Among the top 10 PDNPs, rutin, hesperidin and ECG exhibited significant docking 

scores of −10.224, −9.029 and −8.202−9.4 kcal/mol as compared to docking score of −5.324 
kcal/mole for nafamostat against S-glycoprotein of omicron variant. By seeing molecular 
interactions, rutin binds with twenty-eight amino acids such as Asn314, Gln610, Gly611, 
Ala644, Lys832, Ala849, Gln311, Ser588, Gly590, Gly591, Val612, Arg643, Ser732, Val733, 

Figure 2. Two-dimensional view of molecular interactions in between (A) Rutin-S-protein of omicron
variant, (B) Hesperidin and S-protein of alpha variant, (C) EGCG and S-protein of beta variant,
(D) Rosmarinic acid and S-protein of gamma variant and (E) Rutin and S-protein of delta variant.
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3.2.1. Molecular Docking against Omicron Variant

Among the top 10 PDNPs, rutin, hesperidin and ECG exhibited significant docking
scores of −10.224, −9.029 and −8.202−9.4 kcal/mol as compared to docking score of
−5.324 kcal/mole for nafamostat against S-glycoprotein of omicron variant. By seeing
molecular interactions, rutin binds with twenty-eight amino acids such as Asn314, Gln610,
Gly611, Ala644, Lys832, Ala849, Gln311, Ser588, Gly590, Gly591, Val612, Arg643, Ser732,
Val733, Asp734, Lys761, Ala828, Gly829, Gln833, Tyr834, Cys848, Gln850, Lys851, Leu855,
Thr856, Val857, Leu858, Pro859 within binding pockets of the receptor protein. Hesperidin
showed the interactions at Asn314, Gln610, Ile663, Ile309, Gln311, Phe589, Gly590, Gly591,
Ser593, Leu608, Gly611, Arg643, Ala644, Pro662, Gly664, Lys730, Ser732, Val733, Asp734,
Lys761, Thr765, Ala768, Val769, Lys832, Tyr834, Lys851, Gly854, Thr856, Val857, Leu858,
Pro859, Leu861 amino acids. Moreover, ECG found to interact with Gly611, Gly835, Val548,
Thr585, Pro586, Cys587, Ser588, Phe589, Val612, Asn613, Thr615, Glu616, Gln833, Tyr834,
Asp836, Cys837, Lys851 amino acids [25].

3.2.2. Molecular Docking against Delta Variant

It was observed that three PDNPs, rutin, EGCG and hesperidin, have a more negative
docking score than the control drug nafamostat drug (Table 3). With a docking score of
−8.160, rutin formed nine chemical contacts with Ser50, Cys299, Thr300, Asp735, Thr737,
Gly755, Thr759, Leu51 and Leu52 amino acid residues (Figure 2). EGCG docked with a
docking score of −7.993, when interacting with the amino acid residues Thr272, Thr300,
Thr313, Asn315, Thr737, Thr759, Asn762, Leu751 and Leu752. Furthermore, with a docking
score of −7.873, hesperidin was found to bind at active sites with the amino acid residues
Gln52, Ser314, Gly755, Thr759, Leu301, Leu752 and Phe757. According to our results,
rutin is the most effective against the delta variant followed by EGCG and hesperidin,
respectively [26].

3.2.3. Molecular Docking against Alpha Variant

In the case of the alpha variant, hesperidin, withanolide G and rosmarinic acid out-
performed the nafamostat in terms of docking score against S-glycoproteins. Hesperidin
binds with the amino acids Thr547, Thr573, Asp745, Asn856, Leu977, Asn978, Arg1000,
Val320, Pro322, Phe541, Leu546, Ile587, Pro589, Cys590, Met740, Val976 and Leu977 to
establish seventeen chemical interactions. Likewise, withanolide G showed thirteen molec-
ular interactions with the amino acid residues Thr549, Asn856, Asn978, Pro322, Val320,
Phe541, Leu546, Ile587, Pro589, Cys590, Phe592, Met740 and Val976 whereas the functional
moieties of rosmarinic acid were found to interact with Thr547, Thr549, Thr573, Tyr741,
Asn856, Asn57. Finally, hesperidin was found to be more effective against the alpha variant
followed by withanolide G and roamarinic acid [27].

3.2.4. Molecular Docking against Beta Variant

When compared to nafamostat, EGCG, diosmetin and myricetin had significantly
higher binding affinities against S-glycoprotein of the beta variant. The fourteen interactions
between EGCG and the amino acids Thr549, Thr573, Asp574, Met740, Gly744, Asn856,
Phe541, Ile569, Ala570, Ile587, Pro589, Tyr741, Phe855 and Val976 resulted in a docking
score of −8.369. While myricetin docked with a significant docking score (−8.102) via
interactions with Thr549, Thr573, Met740, Gly744, Phe541, Ile587, Pro589, Tyr741, Cys743,
Leu966, Val976 and Leu977 amino acid residues, diosmetin docked with a docking score
of −8.200, via interaction with these same amino acid residues: Ile587, Met740 (Figure 2).
Finally, the binding energy is shown to be in the following order: EGCG > diosmetin >
myricetin [28].

3.2.5. Molecular Docking against Gamma Variant

The PDNPs rosmarinic acid, epicatechin and quercetin were found to have docking
scores −9.235, −8.248 and −7.925 kcal/mole, respectively, compared to nafamostat’s
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docking scores −5.325 kcal/mole against S-glycoprotein of gamma variant. Rosmarinic
acid binds to the following amino acid residues: Thr369, Lys378, Asp405, Glu406, Gln409,
Thr415, Phe374, Phe377, Thr417, Leu368, Ala372 and Tyr495. Furthermore, epicatechin
and quercetin both interacted with the following amino acid residues: Tyr369, Ser371,
Phe374, Phe377, Lys378, Arg408, Gln409, Thr417, Leu368 and Ala372, respectively. Finally,
the binding energy is shown to be in the following order: rosmarinic acid > epicatechin >
quercetin [29].

3.3. Evaluation and Analysis of Stability in Complexes through MD Simulation

MD simulation is a computer-calculated approach for obtaining dynamic data at
atomic spatial resolution during ligand-protein complex formation. The MD simulation
study was performed for 100 ns to analyse the structural characteristics and stabilities of
best-docked complexes such as rutin-omicron, rutin-delta, hesperidin-alpha, EGCG-beta,
rosmarinic acid-gamma, obtained by molecular docking studies [30].

3.3.1. RMSD and RMSF Analysis

Firstly, RMSD analysis was carried out where the rutin-omicron complex exhibited a
transitory movement up to 5 ns with an RMSD value of 14.75 Å, followed by achieving
equilibrium inside the active regions of the protein and finally, rutin sustained the stability
up to end of the simulation. The complex of rutin-delta showed conformational changes
from beginning up to 55 ns at RMSD range ranging from 1.0 to 3.5 Å, beyond 60 ns RMSD,
stability increases and remains constant up to 90 ns of the entire simulation. In the case of
the hesperidin-alpha complex, only slight variations in stability were seen at the start of
the simulation. The hesperidin demonstrated consistent RMSD between 20 to 90 ns with
an RMSD range of 2.4 to 4.0 Å.

The RMSD plots of the EGCG-beta complex as well as and rosmarinic acid-gamma
complex show a considerable number of conformational changes but no appreciable sta-
bility. Figures 3 and 4 showed the RMSD and RMSF values. The RMSD values of the Cα

atoms as shown in Table 4 were determined to be 2.48–34.46 Å, 2.192–4.272 Å, 2.213–5.801 Å,
2.758–79.25 Å and 2.008–7.086 Å for the S-glycoproteins in the complexes of omicron, delta,
gamma, beta and alpha variants, respectively. Furthermore, RMSD data were supported by
root mean square fluctuations (RMSF) plots of the local changes in residues per atom in
obtained complexes. The RMSF plots were created to better comprehended the flexibility
of each residue in protein complexes. The fluctuation in each residue is estimated using the
RMSF values of protein Cα atoms which were, later on, found to be 1.91–17.43 Å (rutin-
omicron), 0.051–9.242 Å (rutin-delta), 0.616–9.723 Å (hesperidin-gamma), 11.057–34.333 Å
(EGCG-beta), 0.254–9.756 Å (rosmarinic acid-alpha), respectively [31]. Thus, RMSF confirms
the conformational changes in protein structures after binding with these compounds.
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Figure 3. RMSD analysis of (A) Rutin-omicron complex, (B) Hesperidin-alpha complex, (C) EGCG-
beta complex, (D) Rosmarinic acid-gamma complex and (E) Rutin-delta variant complex for 100 ns 
MD simulation. 

Figure 3. RMSD analysis of (A) Rutin-omicron complex, (B) Hesperidin-alpha complex, (C) EGCG-
beta complex, (D) Rosmarinic acid-gamma complex and (E) Rutin-delta variant complex for 100 ns
MD simulation.
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Figure 4. RMSF analysis of (A) Rutin-omicron complex, (B) Hesperidin-alpha complex, (C) EGCG-
beta complex, (D) Rosmarinic acid-gamma complex and (E) Rutin-delta complex for 100 ns MD 
simulation. The graphs are displaying protein residue fluctuations (light blue curves), residues in 
interaction with the ligand shown by green vertical lines; salmon and cyan rectangles display alpha-
helical and beta-stranded domains, respectively. Only active residues in the S-glycoprotein of all the 
variants are simulated. 

3.3.2. Radius of Gyration (Rg) Analysis 
The radius of gyration (Rg) helps to determine the compactness of the protein–ligand 

complexes [32,33]. To examine the compactness and structural changes of formed 
complexes, the Rg value was calculated and analysed, with a larger value indicating less 
compactness of folded protein and a lower value indicating greater compactness of folded 
protein. Table 4 presented the Rg values while Figure 5 shows the Rg plots of formed 
complexes. The average Rg for the rutin-omicron complex was 4.68–5.34 Å while the 
rutin-delta complex exhibited an average Rg value of 4.466–5.307. Over 100 ns simulation, 
the average Rg value in the rosmarinic acid-gamma complex was 3.687–5.124; whereas, it 
was observed as 4.763–5.908 in the hesperidin-alpha complex and 4.187–4.609 in the 

Figure 4. RMSF analysis of (A) Rutin-omicron complex, (B) Hesperidin-alpha complex, (C) EGCG-
beta complex, (D) Rosmarinic acid-gamma complex and (E) Rutin-delta complex for 100 ns MD
simulation. The graphs are displaying protein residue fluctuations (light blue curves), residues
in interaction with the ligand shown by green vertical lines; salmon and cyan rectangles display
alpha-helical and beta-stranded domains, respectively. Only active residues in the S-glycoprotein of
all the variants are simulated.
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Table 4. Details of properties of complexes obtained during MD simulation.

Properties Omicron Variant Delta Variant Gamma Variant Beta Variant Alpha Variant

RMSD value (Å) (Protein) 2.48–34.46 2.19–4.27 2.21–5.80 2.75–79.25 2.00–7.08

RMSD value (Å) (Ligand) 1.29–14.75 0.85–8.42 1.09–20.16 2.16–74.14 1.01–5.84

RMSF value (Å) (Protein) 1.91–17.43 0.05–9.24 0.61–9.72 11.05–34.33 0.254–9.75

Rg (Å) 4.68–5.34 4.46–5.30 3.68–5.12 4.18–4.60 4.76–5.90

SASA (Å2) 20.85–152.19 78.64–246.68 10.77–605.76 306.64–522.23 59.43–365.01

PSA (Å2) 434.30–479.31 408.97–476.18 235.79–321.38 346.76–409.92 356.01–426.20

3.3.2. Radius of Gyration (Rg) Analysis

The radius of gyration (Rg) helps to determine the compactness of the protein–ligand
complexes [32,33]. To examine the compactness and structural changes of formed com-
plexes, the Rg value was calculated and analysed, with a larger value indicating less
compactness of folded protein and a lower value indicating greater compactness of folded
protein. Table 4 presented the Rg values while Figure 5 shows the Rg plots of formed
complexes. The average Rg for the rutin-omicron complex was 4.68–5.34 Å while the
rutin-delta complex exhibited an average Rg value of 4.466–5.307. Over 100 ns simulation,
the average Rg value in the rosmarinic acid-gamma complex was 3.687–5.124; whereas,
it was observed as 4.763–5.908 in the hesperidin-alpha complex and 4.187–4.609 in the
EGCG-beta complex. The complexes stayed intact throughout the 100 ns simulation frame
of time.
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Figure 5. Ligand properties during the complex formation at 100 ns simulation trajectory: (A) Rutin-
omicron complex, (B) Hesperidin-alpha complex, (C) EGCG-beta complex, (D) Rosmarinic acid-
gamma complex and (E) Rutin-delta complex. 
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Figure 5. Ligand properties during the complex formation at 100 ns simulation trajectory:
(A) Rutin-omicron complex, (B) Hesperidin-alpha complex, (C) EGCG-beta complex, (D) Rosmarinic
acid-gamma complex and (E) Rutin-delta complex.
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3.3.3. Solvent Accessible Surface Area (SASA) Analysis

In addition, we used the solvent-accessible surface area (SASA) analysis to anticipate
the interactions between solvent and complexes during the simulation [34]. The SASA
values can be computed by dissolving protein cavities, and observing residue rearrange-
ment during protein–ligand interactions. Table 4 and Figure 5 show the average SASA
values 20.85–152.19 for the omicron variant; 78.643–246.681 for rutin-delta; 10.778–605.765
for hesperidin-gamma; 306.646–522.238 for EGCG-beta; and 59.436–365.014 for rosmarinic-
alpha complexes throughout a 100 ns simulation period.

3.3.4. Polar Surface Area (PSA) Analysis

Polar surface area (PSA) is the sum of the surface area covered by polar moieties
such as oxygen and nitrogen atoms. PSA is used to calculate the values of molecular
descriptors for studying intestinal absorption and blood–brain barrier (BBB) penetration
properties. The PSA values of less than 200 Å2 (for intestinal absorption) and less than
60 Å2 (for blood–brain barrier penetration) have been identified as good predictors of drug
absorption [35]. The computed PSA values for the compounds within the complexes were
434.30–479.31 (omicron variant), 408.977–476.184 (delta variant), 235.797–321.389 (gamma
variant), 346.765–409.927 (beta variant) and 356.019–426.209 (alpha variant), respectively,
as shown in Table 4. However, according to value analysis, they do not have adequate
intestinal and blood–brain barrier penetration because their PSA values are greater than
200 Å2 and 60 Å2, respectively.

3.4. Evaluation and Analysis of Density-Function Theory (DFT) Method

The optimised structures of the top 4 hits (rutin, hesperidin, EGCG, rosmarinic acid)
and their geometrical parameters are displayed in Figures 6 and 7 as well as Table 5, by
using DFT/B3LYP hybrid approach on the 6-311G basis set. The chemical reactivity of
the top four hits was determined using frontier molecular orbital (FMO) and molecular
electrostatic potential (MEP) plots. The FMO theory is utilised to investigate the highest
occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) via
electron donation and acceptance Figures 6 and 7. The HOMO energies were predicted to
be −5.74 eV (rutin), −5.57 eV (hesperidin), −5.90 eV (EGCG), −5.94 eV (rosmarinic acid)
and −5.78 eV (nafamostat), while the LUMO energies were determined to be −1.75 eV
(rutin), −1.84 eV (hesperidin) and −1.68 eV (EGCG). As a result, the energy gap (Egap) for
the HOMO-LUMO investigation was determined to be 3.99 eV (rutin), 3.73 eV (hesperidin),
4.22 eV (EGCG) and 3.78 eV (rosmarinic acid), as shown in Table 5 [36]. They have a lower
energy gap than nafamostat with the value of 4.25 eV, indicating that they are reactive to
the protein receptors. The MEP surface exhibits the compound·s reactive sites based on
colour indications ranging from dark red (nucleophile) to dark blue (electrophile) regions.
In our computed study, rutin, hesperidin, EGCG and rosmarinic demonstrated nucle-
ophilicity with the value of −8.230 × 10−2 au, −8.796 × 10−2 au, −8.080 × 10−2 au and
−8.538 × 10−2 au, whereas electrophilicity was estimated with values of 8.230 × 10−2 au,
8.796 × 10−2 au, 8.080 × 10−2 au and 8.538 × 10−2 au. On the other hand, for nafamostat,
the nucleophilicity and electrophilicity values were −7.178 × 10−2 au and 7.178 × 10−2,
respectively [37]. According to our findings, rutin, hesperidin, EGCG and rosmarinic acid
are the top hits for identifying inter- or intramolecular interaction sites in S-glycoproteins
of SARS-CoV-2 variants.
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Table 5. DFT calculations of best hits of PDNPs.

Compounds HOMO LUMO * ∆Egap

Rutin −5.74 −1.75 3.99

Hesperidin −5.57 −1.84 3.73

EGCG −5.90 −1.68 4.22

Rosmarinic acid −5.94 −2.16 3.78

Nafamostat −5.78 −1.53 4.25
* All the values are in eV.

4. Discussion

Mutations in the S-glycoprotein of coronavirus, which interact with the transmem-
brane protein (ACE2) of human cell receptors have resulted in the emergence of several
variations of SARS-CoV-2. The interactions between S-glycoprotein and ACE2 are critical
for virus entry into host cells, thereafter facilitating the replication of the viral genome [38].
It is now evident that in the continuous mutations in S-glycoproteins, SARS-CoV-2 variants
may also act as resistance against drug action and vaccine-induced acquired immunity. Inhi-
bition of S-glycoprotein and ACE2 may, thus, serve as therapeutic targets for the discovery
and development of anti-COVID-19 inhibitors [39]. Recently it has been seen that medicinal
plants and their chemical constituents may act as safe and alternative agents to manage the
COVID-19 disease. Therefore, in order to continue our research into PDNPs as therapeutic
agents, we chose 100 PDNPs that have already been established to have antiviral properties,
and then, assessed them against the S-glycoproteins of SARS-CoV-2 variants. To compare
our findings, we used nafamostat (S-glycoprotein inhibitor) as a reference drug. Prior to
performing the thorough analysis, we conducted a preliminary docking study and discov-
ered 9 PDNPs (diosmetin, EGCG, epicatechin, hesperidin, myricetin, quercetin, rosmarinic
acid, rutin and withanolide-G) with more negative binding energy than nafamostat. Later
on, nine PDNPs were subjected to detailed MD simulation and ADMET by using Glide v8.8
(Schrodinger, LLC, New York, NY, USA) software to assess how and in what way, these
PDNPs inhibited the S-glycoproteins of said variants. The usage of herbs and medicinal
plants containing a significant amount of PDNPs has a long history in the prevention of
respiratory diseases including the common cold, flu, cough, etc., which are caused by both
bacteria and viruses [40]. A number of PDNPs obtained from gingers, turmeric, giloy, black
pepper, tulsi, ashwagandha, green tea, etc., have shown beneficial effects against SARS-
CoV-2 infection as per in silico studies [41]. Polyphenols, particularly flavonoids, have been
extensively studied for their antiviral activity against hepatitis viruses, dengue viruses,
Epstein–Barr viruses, herpes viruses, influenza viruses, HIV, rotaviruses and coronaviruses.
Although the precise mechanism of action is uncertain, they reduced viral infection in host
cells by preventing virus entry or decreasing virus multiplication. Several studies have
shown that tea polyphenols have antiviral properties by inhibiting DNA viruses such as
herpesviruses, papillomaviruses, poxviruses and HIV-1. In a dose-dependent way, resvera-
trol, ferulic acid and gallic acid greatly suppressed the expression of Epstein–Barr Virus
lytic genes. Furthermore, resveratrol has been shown to inhibit respiratory viruses such as
rhinoviruses and syncytial viruses, as well as Varicella-zoster, a virus that causes fever and
a vesicular rash. Furthermore, Chojnacka et al. summarised a study based on the analysis
of several studies and concluded that ellagic acid, myricetin, kaempferol and quercetin
exhibited anti-influenza activity, whereas cyanidin-3 rutinoside, cyanidin-3-glucoside, rutin
and gallic acid were found to show inhibitory activity against the H1N1 influenza virus
via an inhibiting viral attachment or by influencing viral entrance inhibition into host
cells [42,43].

Additionally, because computational approaches are straightforward, quick and eco-
nomical, they are a useful tool for the discovery and development of drugs based on
bioactive natural products. To provide 2D and 3D molecular profiles of natural products,
they construct pharmacophore models, molecular interaction fields, docking and simula-
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tions of complexes. Because experimental procedures are time-consuming, expensive and
replete with errors when a suitable protein target is lacking, computational tools can be
used to enhance the pharmacological efficacy and safety of natural products as well as their
further development. Polyphenols are a diverse class of natural compounds that serve a
variety of biological functions. Their anti-inflammatory and antioxidant effects are well
established. They have been investigated for antiviral properties, including the recently
found SARS-CoV-2, which has wreaked havoc due to its high infectivity and mortality rate.
Many research organisations found different therapeutic compounds from medicinal plants
in a relatively short period of time, attributable to computational strategies in research.
The majority of research has concentrated on polyphenols because of their antiviral charac-
teristics, which have been widely documented in prior works. Furthermore, substantial
research has been conducted in the last two years on natural products that demonstrate
high anti-SARS-CoV-2 activity, but no report on natural products as inhibitory agents of
various SARS-CoV-2 variants is known. As a result of these findings, we conducted a thor-
ough cross-analysis of previously published pharmacological and computational research
including the polyphenols identified in our study as anti-S-glycoprotein of SARS-CoV-2
variants [44–46].

In some studies, EGCG was reported to exhibit anti-COVID-19 properties by fighting
SARS-CoV as well as its mutant version B.1.1.7, preventing the viral replication and viral
entry into the host cells; whereas, epicatechin had no inhibitory impact on SARS-CoV-
2 [47]. As per our findings, EGCG firmly attached to the binding pockets of S-glycoproteins
of delta and beta variants with significant docking scores whereas epicatechin exhibited
greater binding affinity to the S-glycoprotein of the gamma variant than the nafamostat.
Thus, we may conclude that EGCG and epicatechin can effectively kill SARS-CoV-2 and its
variant. Yusuf A. Haggag et al. demonstrated the potential use of hesperidin in prophylaxis
and treatment of COVID-19 and then hypothesized that hesperidin would reduce the entry
of SARS-CoV-2 by blocking the ACE2 human receptor [48]. Moreover, hesperidin has also
been found to inhibit SARS-CoV-2 infection by reducing the interaction of S-glycoprotein
and human ACE2 receptor as well as TMPRSS2 expression in VeroE6 cells using lentivirus-
based pseudo-particles of SARS-CoV-2 and its new variants [49]. When we computed the
hesperidin, we discovered that it had substantial binding affinity against S-glycoproteins
of both delta and alpha variants. The binding energies of hesperidin against both the said
variants were more significant than the binding energy of nafamostat and therefore, it may
prevent the entry of delta and alpha variants into the human body.

In our study, quercetin and its glycoside rutin demonstrate strong binding efficacy
within the binding groves of S-glycoproteins of gamma and delta variants, displaying
effective docking scores when compared to nafamostat. Our results were very similar
to the experimental as well as virtual studies, which have been done earlier, where both
the compounds were found to cleave the 3CLpro at catalytic dyad (His41/Cys145) of
S-glycoprotein and thus, quercetin and rutin may inhibit SARS-CoV-2 and its variants [50].
In the case of diosmetin and myricetin, both are flavonoids, have promising computed
results against COVID-19 infection. Jishan Khan et al. have reported the protective effect of
diosmetin against COVID-19 disease by inhibiting Mpro of SARS-CoV-2 using a virtual
study [13]. In a study, Xiao et al. show the inhibitory activity of myricetin against SARS-CoV-
2 Mpro with IC50 3.684 ± 0.076 µM in the enzyme assay using the fluorescence-resonance
energy-transfer method. Myricetin also suppressed pulmonary inflammation by inhibiting
the overexpression of inflammatory cytokines such as IL-6, IL-1α, TNF-α and IFN-γ which
are expressed during COVID-19 infection as shown in a different study [51]. In order to
our findings, it is predicted that diosmetin and myricetin may act as excellent inhibitory
agents of S-glycoprotein of beta variant. Overall, these results indicate that both diosmetin
and myricetin could inhibit S-glycoproteins that restrict the entry of beta variants through
the human ACE2 receptor.

Based on previous reports, withanolides, steroidal lactones of Indian Ashwagandha,
have been predicted as lead PDNPs based on drug-likeness or drug-ability properties,
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molecular docking and MD simulation studies to combat COVID-19 infection via inhibiting
Mpro, 3CLpro, and spike protein of SARS-CoV-2 as well as to strengthen the immune
system in those patients [52,53]. To check its efficacy against different variants, we have
predicted that withanolide G shows strong binding affinity with a promising docking
score against the S-glycoprotein of the alpha variant and thus inhibited effectively the
attachment of the virus with the human ACE2 receptor. Elebeedy et al. reported the
encouraging outcomes from the inhibitory potential of rosmarinic acid for S-glycoprotein
of SARS-CoV-2 using molecular docking study as well as in vitro assay with the help of
plaque reduction and MTT assay on Vero E6 cells. In this study, rosmarinic acid exhibited a
significant IC50 value equal to 15.37 ng/µL [54]. Our results predict that rosmarinic acid
acts as a strong inhibitory agent against alpha and gamma variants because it strongly
binds to the S-glycoproteins of both variants, possessing −8.761 and −9.235 binding
energies, respectively.

By elaborating ADMET parameters, lipophilicity and solubility play a key role in
favorable drug development by evaluating the absorption and skin permeation effects [55].
In our findings, these PDNPs have good absorption (lower than −5.0) values, showing
drug-likeness behaviour. These compounds have good penetration power and reach the
target receptor molecule through any barrier because of good distribution values. The
topological polar surface area is related to the total polar surface covered by all the atoms
in a compound. The topological polar surface area of screened compounds lied in between
83.83 Å2 to 269.43 Å2 values, which is good for drug design. As per Ro5, it is believed that
a compound should have certain pharmacological properties that would make it fit or/not
fit as an orally active therapeutic agent for human consumption (e.g., a molecule with a
molecular mass <500 Da, <5 HBD, <10 HBA and an octanol-water partition coefficient
<5) [56]. Among the tested PDNPs, six compounds namely epicatechin, EGCG, quercetin,
myricetin, rosmarinic acid, diosmetin and withanolide G qualified the Lipinski’s Ro5 except
for EGCG, rutin and hesperidin as their value were outpaced the standard value of 5. Hence,
they might be good chemical agents for drug design and development against COVID-19.
Considering all these parameters, all nine compounds (epicatechin, EGCG, rutin, quercetin,
myricetin, rosmarinic acid, hesperidin, diosmetin and withanolide G) fulfilled the criteria
provided by combined parameters of Lipinski’s Ro5, ADMET and drug-likeness properties
than reference drug nafamostat.

MD simulation analysis was carried out to find out the stability of complexes, which
are formed during the docking study of the best hit of PDNPs against each of the SARS-CoV-
2 variants studied here. Our observations showed no sudden surge in RMSD plots during
the whole simulation time, suggesting that all complexes are stable. Moreover, fluctuations
in RMSF were in the permissible range that maintained the integrity of protein–ligand
interactions. Results of Rg values revealed that rutin, hesperidin, EGCG and rosmarinic
acid do not induce conformational changes and showed similar compactness in protein
structure during the entire MD simulation in our study. During SASA analysis, the binding
of all nine PDNPs with the S-glycoproteins of all variants induce very little conformational
changes, which means that the interacting sites are well exposed and readily accessible
to the solvents. In order to determine the molecular interactions, a number of hydrogen
bonds and hydrophobic bonds as well as water bridges were observed in all the complexes
obtained through simulation, which again explained the conformational stability.

In our findings, the chemical reactivity of the best hits was obtained through geometry
optimization along with the calculation of the HOMO-LUMO energy gap and MEP method
on the DFT/B3LYP method at 6-311G basis set. After performing the DFT analysis, we
found that rutin, hesperidin, EGCG and rosmarinic acid were more reactive than nafamo-
stat, a reference drug. The highly chemically reactive MEP map has a great impact on a
higher biological efficacy of drug leads as inhibitors and in this case, our best hits passed
these barriers and thus, must be developed as inhibitors of S-glycoproteins of SARS-CoV-2
variants. Based on the computed results, it was quite significant that rutin, hesperidin,
EGCG and rosmarinic acid, among the selected ones, are the best hits to have potential
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binding affinities, which were better than reference drug “nafamostat” binding affinities
against aforementioned variants of SARS-CoV-2. Along with previous reports on antiviral
activities, the present study has given us the warrant to justify that rutin, hesperidin, EGCG
and rosmarinic acid may serve as promising leads for further optimization and drug de-
velopment processes to manage the COVID-19 infection via inhibiting SARS-CoV-2 virus
and its variants. We suggest here that adequate preclinical and clinical study and their
validations are urgently needed to establish the therapeutic efficacy of these compounds
either alone or in combination for the management of COVID-19 infection.

5. Conclusions

In conclusion, a total of 100 plant-derived natural products were subjected to molecular
docking, molecular dynamic (MD) simulation and DFT studies in order to identify the
small molecule inhibitors against S-glycoprotein of SARS-CoV-2 variants. All the PDNPs
that were tested were found to exhibit a strong affinity for the catalytic pockets of certain
residues. Hesperidin, withanolide G and rosmarinic acid were identified as the three best
inhibitory agents against the alpha variant; EGCG, diosmetin and myricetin were against
the beta variant; rosmarinic acid, epicatechin and quercetin were against the gamma variant;
rutin, EGCG and hesperidin were against the delta variant; and hesperidin against the
omicron variant. Thus, based on the results of our in silico investigation, it is clear that
rutin, EGCG, hesperidin, withanolide G, rosmarinic acid, diosmetin, myricetin, epicatechin
and quercetin could serve as potential inhibitors against the S-glycoprotein of SARS-CoV-2
novel variants. Further in vitro and in vivo research to more clearly establish their efficacy
as potential COVID-19 therapeutics is currently underway in our laboratory.
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