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Abstract: Kidney function highly depends on mitochondria, organelles that regulate different
metabolic pathways. Mitochondria-altered function and structure are present during acute kid-
ney injury (AKI) and chronic kidney disease (CKD). Targeting mitochondria using several strategies
has been shown to improve kidney function. Here, we review some experimental mitochondria
targeting strategies with clinical potential in kidney diseases encompassing cationic/lipophilic small
molecules, peptides, nanocarriers, and even the entire organelle.
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1. Introduction

Kidneys are among the most energy-demanding organs due to their filtration and
reabsorption functions. In particular, the proximal tubular segment of the nephron con-
sumes large amounts of energy in the form of adenosine triphosphate (ATP) provided by
oxidative phosphorylation, a metabolic process performed in the mitochondria [1].

In addition to their energy-producing function, mitochondria also exert other metabolic
processes such as glutaminolysis, the catabolism of branched-chain amino acids, fatty acid
beta-oxidation, nucleotide biosynthesis, heme metabolism, redox balance, the management
of metabolic by-products, cellular death regulation, calcium homeostasis, etc. [2,3].

Acute kidney injury (AKI) is characterized by an abrupt reduction in kidney function
due to pre-renal, renal, and post-renal causes such as the reduction of blood supply, nephro-
toxins, and obstruction, respectively [4]. On the other hand, chronic kidney disease (CKD)
is characterized by the progressive and irreversible loss of kidney function and structure
for more than three months and may be a consequence of other conditions such as diabetes,
hypertension, or aging [5].

AKI and CKD are related to each other since the presence of one could predispose
the development of the other [6–8]. In addition to their complicated pathophysiology,
several mitochondrial alterations have been reported in both pathologies, contributing to
their progression.

In different experimental AKI models, mitochondrial morphological alterations are
prevalent in tubular segments, showing fragmentation, swelling, and the loss of cristae;
moreover, functionality is also compromised, with reduced electron transport chain (ETC)
activity, a loss of membrane potential, and increased reactive oxygen species (ROS) produc-
tion as a consequence [9–15]. Interestingly, these alterations also persist during AKI to CKD
progression [16–18]. Similarly, in established CKD, mitochondrial alterations are present,
showing low membrane potential and consequently reduced ETC activity and overproduc-
tion of ROS [19–21]; on the other hand, morphological alterations such as mitochondrial
fragmentation have been noticed, especially in podocytes [21–24].

ROS overproduction is present in AKI and CKD, representing a therapeutic target since
their abrogation reduces tissue damage and improves kidney function [25–34]. ROS are
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well-known inducers of the inflammatory response through the activation of the transcrip-
tion factor nuclear factor kappa B (NF-kB) [35]; moreover, mitochondria-derived ROS are ac-
tivators of the NLR family pyrin domain containing 3 (NLRP3) inflammasome/interleukin
(IL)-1β axis [36,37], which has been reported to promote kidney injury [38]. The specific
blocking of mitochondria-derived ROS also reduces kidney damage and improves kidney
function [15,23].

Hence, specific mitochondrial targeting in order to block excessive ROS production
and restore some mitochondrial functions could be a suitable complementary therapeutic
strategy for kidney diseases.

Here, we review some of the most promising strategies to improve mitochondrial
function in kidney diseases. Many of these strategies have been proven in the treatment of
other diseases; for this reason, drug repositioning may be advantageous in the context of
regulatory procedures [39] for its implementation in kidney diseases.

Mitochondria targeting strategies include the use of small molecules, peptides, nanocar-
riers, and mitochondrial transplantation (Figure 1).
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Figure 1. Mitochondria targeting strategies. Small molecules, peptides, nanocarriers, and whole
mitochondria transplantation represent therapeutic strategies targeted to mitochondria to alleviate
their dysfunction in kidney diseases. Figure created with BioRender.com.

Mitochondria targeting compounds include lipophilic cationic small molecules and
peptides that can be used alone or conjugated with other bioactive molecules [40,41]; addi-
tionally, nanocarriers of drugs harboring signals that direct them to mitochondria or even
whole mitochondria transferred to target tissue could be used to alleviate mitochondrial
dysfunction [42,43].

2. Lipophilic and Cationic Small Molecules

These molecules possess lipophilic characteristics which allow them to pass through
membranes and positive charges that confer their affinity to mitochondrial membrane
potential. They usually do not exert a biological activity by themselves; hence, they are
used as carriers of other compounds.

2.1. Triphenylphosphonium (TPP) Conjugates

TPP is one of the small molecules that target mitochondria because it contains a
central positively charged phosphorus atom linked to three phenyl rings [44]. This
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molecule has been extensively used in the famous molecular probe MitoSOXTM that detects
mitochondrial-derived ROS since it contains a TPP moiety bound to hydroethidine [45].
TPP has also been extensively conjugated with other molecules to direct them to and act in
mitochondria, such as antioxidants and chemotherapeutics that have been used in different
disease models [46,47].

As mentioned above, TPP has been conjugated with a broad range of antioxidants
such as ubiquinone, vitamin E, vitamin C, curcumin, and quercetin, among others [46]; here,
we review some of the TPP–antioxidant conjugates with potential use in kidney diseases.

MitoQ is a TPP–ubiquinone conjugate that is already marketed as a nutritional supple-
ment; in addition, clinical trials in healthy young and older adults using mitoQ are demon-
strated to be safe and reduce oxidative stress markers in plasma and leukocytes [48–50].
Although this compound is not prescribed as a treatment for any diseases, it has been tested in
clinical trials for chronic and degenerative diseases. In phase II clinical trials in patients with
chronic liver damage due to hepatitis C viral (HCV) infection who cannot receive the standard
treatment, the oral intake of mitoQ after 28 days reduces alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) serum levels, indicating a reduction in liver damage [51].
On the other hand, in patients with Parkinson’s disease, the oral intake of mitoQ for several
months seems not to affect disease outcomes [52]. Moreover, antioxidant protective effects of
mitoQ have been tested in a broad range of disease models, including AKI and CKD.

Regarding AKI, in a model of ischemia/reperfusion (I/R) in mice, a single intravenous
(IV) administration of mitoQ preserves mitochondrial desoxyribonucleic acid (mtDNA)
content and reduces functional kidney alterations [53]. More profound findings were
reported in a cisplatin-AKI model in which mitoQ intraperitoneally (IP) administrated one
hour before cisplatin administration results in kidney function improvement, less oxidative
stress, less inflammation, and reduced mitochondrial structural alterations [54].

In terms of CKD, in a model of galactose-induced aging that leads to renal damage,
the IP administration of mitoQ for two weeks IP reduces fibrotic markers in the kidney [55];
moreover, in a CKD model by angiotensin II infusion, the co-administration of mitoQ
for four weeks ameliorates glomerular and podocyte injury by decreasing mitochondrial
fission and ROS production [23].

Diabetic nephropathy are one of many complications of diabetes mellitus physiopathol-
ogy and are one of the leading causes of CKD and end-stage renal disease (ESRD) [56].
In different diabetic nephropathy (DN) models, the use of mitoQ seems to ameliorate
kidney damage and reduce fibrotic and inflammatory markers. In diabetic mice models,
conversely to other CKD models, ATP and ADP levels are increased; interestingly, the
oral administration of mitoQ for twelve weeks reduces their levels similar to control mice
and mitigates structural and functional damage in kidneys without affecting glycemic
levels [57,58]. Additionally, the IP administration of this compound for twelve weeks seems
to have more in-depth effects, decreasing oxidative stress, diminishing NLRP3-derived
IL-1β production and tubular damage, and slightly reducing glucose levels; at the mi-
tochondrial level, mitoQ treatment preserves membrane potential and mtDNA content,
reduces mitochondrial fragmentation and restores mitophagy [37,59].

Although mitoQ seems to have promising results in kidney diseases models, some
in vitro findings are relevant to take into account, in which direct administration of mitoQ to
proximal tubules causes mitochondrial swelling and depolarization due to TPP–ubiquinone
linker, the alkyl chain [60]; hence, a modification of the linker could improve the effects
of mitoQ.

SkQ1 is a TPP–plastoquinone conjugate that has been tested as an ophthalmic solution
in clinical trials for dry eye syndrome reducing corneal damage and discomfort symp-
toms [61,62]; in fact, SkQ1 is already marketed in Russia as Visomitin drops (Mitotech LLC,
Moscow, Russian Federation). Although it functions similarly to mitoQ and even has more
potent antioxidant effects [63], this has not been tested in kidney diseases yet. However, its
protective effects could be possible since, in an aging model in mice with mtDNA defects,
SkQ1 treatment reduces oxidative damage in several organs, including kidneys, when
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administrated in drinking water for 150 days [64], suggesting that its use is suitable in AKI
or CKD.

MitoTEMPO is a TPP-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) conjugate that
acts as a mimetic of the antioxidant enzyme superoxide dismutase (SOD) [65]. Although
this compound has not been tested in clinical trials yet, this has been used in hepatic,
cardiovascular, nervous system, infectious, and kidney disease models.

In different AKI models in rodents, the pre-treatment and treatment with mitoTEMPO
reduce kidney and mitochondrial damage, as has been demonstrated in cisplatin-induced
AKI in which seven days pre-treatment with mitoTEMPO administrated IP reduces oxida-
tive and tubular damage in kidneys [66]; or in I/R-induced AKI, in which mitoTEMPO
administration directly to the kidney during the ischemic induction and followed by
four days of IP administration preserves mtDNA and ATP content, avoids mitochondrial
swelling, and reduces oxidative damage [15]. Additionally, in septic shock-associated
AKI, in which mitoTEMPO administration IP or IV after sepsis induction partially restores
ETC function and ATP content in kidney mitochondria, whereas in whole tissue reduces
oxidative damage and decreases IL-1β levels resulting in improved kidney function [67–69].

In CKD models, mitoTEMPO shows similar results improving mitochondrial func-
tion and reducing kidney damage. In 5/6 nephrectomy-induced CKD models in rodents,
with or without aldosterone administration, the IP mitoTEMPO administration for four
to twelve weeks maintains mitochondrial function and morphology; moreover, it reduces
fibrotic, inflammatory, and oxidative markers in the kidney, preserving podocyte’s struc-
ture [70–72]. Interestingly, mitoTEMPO also impacts the skeletal muscle, promoting its
regeneration and recovering ATP production [73]. In a model of kidney fibrosis by unilat-
eral ureteral obstruction (UUO) in mice, the IP administration of mitoTEMPO for seven
days reduced ROS levels and the fibrotic area in kidneys, as well as decreased gene ex-
pression of alpha-smooth muscle actin (α-SMA), collagen, transforming growth factor-beta
(TGF-β), and fibronectin [74].

On the other hand, during DN using the db/db mice model, the oxidative stress
induces an increase in apoptotic cell death and impaired mitophagy in the kidney, which
could be partially reversed by antioxidant treatment, including IP administration of mi-
toTEMPO for four weeks, thus resulting in improved renal function [75]. Similar results
in other models of diabetes using streptozotocin and Ins2+/−AkitaJ mice have been re-
ported, in which subcutaneous administration of mitoTEMPO for three weeks improves
kidney function, reduces glomerular injury, and partially avoids the loss of endothelial
cells and podocytes [76].

Many antioxidants have been demonstrated to have beneficial effects on mitochondrial
function during AKI and CKD models [25–34]; among these, curcumin and lipoic acid
represent two molecules to potentially be conjugated with TPP to reach mitochondria and
to explore in kidney diseases. A TPP–curcumin conjugate has been developed and tested
in rotenone-induced liver damage in mice, reducing the lipid peroxidation and partially
preserving the activity of the antioxidant enzymes superoxide dismutase and catalase [77].
On the other hand, a TPP–lipoic acid conjugate has also been developed; however, the
conjugation with TPP seems to compromise the antioxidant effect [78].

Despite the great potential of TTP conjugates, there are some shortcomings, such as
transportability, as TPP can only transport electroneutral and small molecules. Furthermore,
some adverse effects on mitochondrial function of TTP conjugates have been reported, such
as decreased ETC activity and reduced membrane potential [79]. For this reason, more
research is needed to improve transportability and reduce the toxicity of TPP. For example,
it has been proposed that phenyl rings of TPP could be modified by trifluoromethyl groups
that function as electron withdrawers to abrogate adverse effects [44].

2.2. Rhodamine Conjugates

Rhodamines, such as fluorescein, are xanthene derivatives that have been extensively
used as fluorescent probes. Depending on the chemical modifications, there are several
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rhodamine types, such as rhodamine B, 6G, 19, 101, 110, 116, 123, and tetramethyl rho-
damine [80]. Among these, rhodamine 123, tetramethylrhodamine methyl ester (TMRM),
and tetramethylrhodamine ethyl ester (TMRE) possess mitochondrial affinity and has been
used as mitochondrial membrane potential probes [81,82].

Rhodamine 19 has also been demonstrated to target mitochondria, acting as a mild
uncoupler, and has been used as a carrier of the antioxidant molecule plastoquinone, a
compound named SkQR1 [83,84].

SkQR1 Has Been Proven in Neurological Disease, Kidney Disease, and Aging Models.
In AKI models, the renoprotective effects of SkQR1 have been demonstrated in rhabdomy-
olysis and I/R-induced AKI in rats, in which its IP administration previous and after
damage induction decreases oxidative stress markers, lowers tubular epithelial necrotic ar-
eas, and reduces tubular dilatation, thus resulting in improved renal function and increased
animal survival rate [85,86]. Similarly, in a model of gentamicin nephrotoxicity-induced
AKI in rats, SkQR1 administrated IP improves kidney function and increases animal sur-
vival rate; moreover, the hearing loss associated in this model is also abrogated by SkQR1
treatment [87]. In addition, in the sepsis-associated AKI model in rats, the pre-treatment
with SkQR1 IP reduces the damage markers kidney injury molecule-1 (Kim-1) and neu-
trophil gelatinase-associated lipocalin 2 (NGAL) levels, improves kidney function, and
reduces mortality [88].

Although pyelonephritis is not considered a cause of AKI, its presence is a risk factor
for AKI development [89]. In an acute pyelonephritis model in rats, the IP administration
of SkQR1 after bacterial inoculation and followed by four IP administrations every 12 h
reduces neutrophil infiltration and oxidative damage in the kidney; moreover, it impacts
systemic inflammatory status by reducing tumor necrosis factor-alpha (TNF-α) in serum,
reducing neutrophil numbers in blood and increasing animal survival rate [90].

SkQR1 has not been tested in CKD and DN models, opening a new field to explore.
Rhodamine B also targets mitochondria and has been conjugated with the antioxidant

enzymes superoxide dismutase (SOD) and catalase (CAT) [91] which have been proved
in vitro, suggesting the potential use in kidney disease models.

A summary of proven and not proven mitochondria targeting small molecules in
kidney disease models is shown in Figure 2.
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mitoTEMPO molecules, respectively. On the other hand, rhodamine conjugated with plastoquinone
generates the SkQR1 molecule. Figure created with BioRender.com.
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3. Mitochondria Targeting Peptides

Peptides as therapeutics have emerged recently and show several advantages over
other molecules, such as their chemical synthesis, selectivity, and minimal side effects.
These could be used alone or conjugated with another bioactive compound [92,93].

Nowadays, the peptide peginesatide, an antagonist of the erythropoietin receptor, is
used to treat CKD-associated anemia in humans [94]. Hence, other experimental approaches
focused on mitochondria have been explored; for example, using a peptide to block the
interaction of nucleophosmin with Bcl-2-associated X protein (Bax) inhibits apoptotic cell
death; thus, resulting in decreased renal damage caused by ischemia [95] and suggesting
that mitochondria targeting peptides could also be a potential therapy for kidney diseases.

Therapeutic peptides are classified as cell-targeting peptides (CTP) if they are directed
specifically to a receptor or as cell-penetrating peptides (CPP) if they pass the plasma
membrane to reach the cytoplasm [92,93]. Mitochondria targeting peptides require CPP
characteristics to enter cells, and to reach mitochondria requires CTP characteristics harbor-
ing a mitochondria targeting sequence (MTS) or possessing cationic charges.

Although only one kind of cationic mitochondrial penetrating peptides named Szeto-
Schiller (SS) peptides has been proven in kidney diseases, here we review some MTS-
containing peptides and other cationic mitochondrial penetrating peptides with poten-
tial use.

3.1. MTS-Containing Peptides

Mitochondrial proteome mainly is constituted by nuclear-encoded proteins that once
synthesized possess an MTS to reach mitochondria through the recognition by the mi-
tochondrial TOM complex eliciting the integration to mitochondrial membranes. The
conserved pattern residues on MTS are ϕχχϕϕ, where ϕ represents an aromatic or hy-
drophobic residue, whereas χ represents any kind of residue, for example, the pattern
LSRLL; additionally, MTS acquires an alpha-helix conformation that facilitates the insertion
to the mitochondrial outer membrane. Once inside, MTS is degraded by mitochondrial
processing proteinases (MPP) [3,96,97]. Considering those mentioned above, synthetic
MTS-containing peptides have been developed and used as carriers of other compounds to
facilitate their delivery into mitochondria to exert biological functions. The construct of a
CPP with an MTS improves cellular and mitochondrial uptake [98], as has been demon-
strated in vitro with peptides conjugated with DNase, human metallothionein 1A (hMT1A),
and manganese-porphyrin [99–101]. Moreover, the cell-penetrating artificial mitochondria
targeting peptide (CAMP)-hMT1A conjugate has been tested in a Parkinson’s disease
model in rats and demonstrated to restore tyrosine hydroxylase levels in striatum and
substantia nigra resulting in improved motor coordination when it is administrated intrac-
erebrally [100]; similarly, using a recombinant MTS-containing mitochondrial transcription
factor A (TFAM) IV injected in mice also improves motor coordination, although it could be
by the increase in complex I of the ETC [102]. MTS-containing TFAM has also been proven
in a septic shock model, increasing animal survival and, in healthy mice, increasing the
brain and muscle complex I level of the ETC [102,103].

Although for kidney diseases, there are no reports of the use of MTS-containing
peptides, the conjugation of these with antioxidant molecules such as the mentioned metal-
lothionein and manganese–porphyrin could have promising results, since both molecules
have been reported to reduce renal damage in aristocholic acid-induced CKD and I/R-
induced AKI, respectively [104,105]. Moreover, recombinant MTS-containing TFAM could
also help maintain mitochondrial DNA and increase complex I levels in kidney tubular
epithelial cells.

One advantage of MTS-containing peptides over other molecules that target mitochon-
dria is that cationic charges are expendable to enter mitochondria; hence, their insertion
mechanism is independent of mitochondrial membrane potential.
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3.2. Cationic Mitochondrial Penetrating Peptides

Positive charges and alpha-helix structures are basal characteristics of these peptides,
and they differ from each other due to other structural features. Among this category, we
found the cationic amphiphilic polyproline helix (CAPH) peptides, the cationic cysteine-
rich peptides, the hexapeptides, the structurally modified peptoids, and the SS peptides.

CAPH peptides possess the ability to enter the cell through endocytosis and reach
mitochondria due to enriched proline residues in their structures, such as P11LRR and
P14LRR peptides [106,107]; moreover, the addition of a dimethyl tyrosine (Dmt) residue to
P11LRR structure exert antioxidant functions demonstrated in vitro [106,107].

As mentioned above, oxidative stress is a hallmark of kidney diseases, in which
mitochondria are the primary sources of ROS [108]. Ergo, the use CAPH-Dmt has excellent
potential to explore in AKI and CKD models.

The plant derivate roseltide rT1 is a cationic cysteine-rich peptide recognized by the TOM
complex in an MTS-independent way; interestingly, roseltide rT1 by itself can bind ATP synthase
and enhance ATP production in different cell lines [109]. During AKI and CKD, ATP production
is compromised, as demonstrated in experimental models [11,16–18,26,31,110,111], and for this
reason, roseltide rT1 by itself without conjugation with another bioactive compound could be
helpful in the treatment of kidney disease.

Hexapeptides with delocalized lipophilic cations contain the modified residue cy-
clohexyl alanine in their structure to bring hydrophobicity and facilitate cellular uptake;
positive charge residues such as lysine and arginine also are incorporated. In addition to
these characteristics, cationic moieties of pyridyl salts in alanine residues bring mitochon-
drial selectivity [112]. Although these peptides are not proven in any disease model, it
seems to have great potential as a drug delivery system to mitochondria. As described
above, non-peptidic cationic molecules are a comprehensive system to target mitochondria
due to the charge affinity.

Peptoids resemble backbone peptide structures but are resistant to proteolysis due to
structural modifications, in which side chains are attached to the nitrogen atom instead
of the alpha carbon [113]. These peptoids also require the lipophilic, cationic, and alpha-
helix structure characteristics to enter the cell and mitochondria [114]. Although peptoids
conjugated with any kind of drugs are not assessed in any disease models in animals,
they represent a vast field to explore in kidney diseases, in which the conjugation with
molecules that require more stability, such as transcription factors, bioactive lipids, or
proteins involved in mitochondrial dynamics.

SS peptides are aromatic and cationic tetrapeptides able to enter mitochondria and,
if they possess a tyrosine or Dmt residue in their structure, also function as antioxidants
themselves. SS-01 and SS-20 that lack tyrosine or Dmt residues can enter mitochondria but
lack antioxidant activity, whereas SS-02 and SS-31, which possess any of those two residues,
enter mitochondria and are potent antioxidants.

Among SS peptides, SS-31 (also known as MTP-131, Bendavia, and elamipretide) has
gained great attention for the potent antioxidant activity and safety demonstrated in exper-
imental models; in fact, SS-31 has been proved in clinical trials for human mitochondrial
myopathies, Barth syndrome, cardiovascular diseases, and renal arterial stenosis [115–119].

In AKI, SS-31 IP administration reduces structural and functional damage induced
by cisplatin in mice; moreover, it decreases oxidative damage and NLPR3-derived IL-1β
synthesis [120]. Similarly, in I/R-induced AKI in rats, SS-31 subcutaneous administration
reaches a high concentration in kidneys and reduces epithelial and endothelial damage;
at the subcellular level, it avoids mitochondrial swelling, maintains cristae structure by
its binding with cardiolipin, and recover ATP levels [121–123]. SS-31 peptide has been
modified with CPP characteristics or encapsulated in nanopolyplexes to increase its cellular
uptake and mitochondrial accumulation, thus resulting in enhanced antioxidant capacity
demonstrated in vitro [124,125]. Moreover, the efficiency of SS-31 encapsulated in nanopoly-
plexes has been demonstrated in lipopolysaccharide (LPS)-induced AKI model in mice,
showing better results than SS-31 alone [125]. Although cisplatin, I/R, and LPS-induced
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AKI SS-31 have demonstrated promising results, for other models such as aristocholic
acid (AA) and adriamycin-induced AKI, there are controversial results [126] that could be
explained by the specific physiopathology induced by these compounds or even by their
chemical interaction with SS-31. It is known that AKI predisposes to CKD development; as
has been reported in CKD development induced I/R, in which the treatment with SS-31 for
six weeks and started four weeks after ischemic injury reduces the structural damage of
kidneys, fibrotic damage, and mitochondrial swelling; surprisingly, this protective effect
persists even nine months after I/R induction [127].

On the other hand, during diabetic nephropathy, the IP or subcutaneous administra-
tion of SS-31for at least four weeks of SS-31 does not affect glycemic levels; however, it
improves kidney function, preserves podocyte structure, diminishes inflammatory and
fibrotic markers, and reduces oxidative stress [128–133].

SS-02 and SS-20 peptides in conjugation with deferoxamine have also been demon-
strated to possess mitochondrial antioxidant properties in vitro [134], suggesting their
potential use.

A summary of proven and not proven mitochondria targeting peptides in kidney
disease models is shown in Figure 3.
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4. Nanocarriers

Nanocarriers serve as a platform to deliver different compounds to the target tissue.
Several nanocarrier systems targeting mitochondria have been developed and proven
in disease models other than kidney diseases; among the most known are mitoPorter,
DQAsomes, and PEG-based nanoparticles.

MitoPorter is a liposome-based system composed of 1,2-dioleoyl-sn-glycerol-3-phosphatidyl
ethanolamine, phosphatidic acid, and sphingomyelin; its surface also contains octarginine moieties to
facilitate its cellular uptake [135]. MitoPorter has been used for nucleic acids delivery [136–139] with
potential use in mitochondrial diseases; however, has recently been used to deliver ubiquinone in an
I/R model in the liver, showing protective effects even compared to ubiquinone treatment alone [140],
suggesting that this delivery system of antioxidants also could be helpful in kidney diseases.

DQAsomes are made from dequalinium chloride molecules, which form a liposome-
like structure in an aqueous solution [141], serving as a delivery system for anti-cancerogenic
compounds [142–144]; DQAsomes have also been proven to deliver curcumin without
toxic effects [145], a natural antioxidant that ameliorates damage in kidney diseases.

Polyethylene glycol (PEG)-based nanoparticles are molecules coated with PEG to
improve their biodisponibility, a process called PEGylation [146]. Some strategies to use
PEGylation and target mitochondria include the combination of PEG by itself with TPP
moieties to improve doxorubicin delivery [147]; in addition; other strategies such as the
using PEGylated nanoparticles of poly (lactic-co-glycolide acid) (PLGA) with TPP moieties
has been proven as nanocarrier systems for curcumin, lodinamine, α-tocopheryl succinate,
and dinitrophenol [148].

Some mitochondria targeting nanocarriers based on PEGylation incluiding nanoce-
ria, PEG-polycaprolactone (PCL) nanoparticles; and the encapsulation of SS peptides in
hyaluronic Acid (HA)-Chitosan nanoparticles have been proven in kidney disease models.

4.1. Nanoceria

Cerium oxide nanoparticles, also known as nanoceria, are metal-based nanoparticles
sized from 5 to 36 nm with antioxidant capacity by themself [149]; in addition, the for-
mulation of nanoceria with vitamin C has been demonstrating renoprotective effects in
rhabdomyolysis-induced AKI model in mice [150]. In LPS-induced AKI in mice, nanoceria
has been modified by adding a TPP moiety to target mitochondria, loaded with atorvastatin,
a drug that improves kidney function, and covered with methoxy PEG-thioketal-PLGA as
stabilizers, showing that its IV administration reduces oxidative damage and inflammation;
moreover, preserves mitochondrial structure [151].

4.2. PEG-PCL Nanoparticles

PEG-PCL nanoparticles with TPP moieties and carrying ubiquinone molecules have
been proven in I/R-induced AKI, demonstrating a marked reduction of tubular damage
and inflammation compared to ubiquinone alone [152].

4.3. Hyaluronic Acid (HA)-Chitosan Nanoparticles

As mentioned above, SS-31 is a mitochondria targeting peptide with renoprotective
functions; to increase its biodisponibility, this was encapsulated in nanoparticles made of
HA and chitosan, demonstrating better results than SS-31 alone in an LPS-induced AKI
model in mice [125].

A summary of proven and not proven mitochondria targeting nanocarriers in kidney
disease models is shown in Figure 4.
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Figure 4. Mitochondria targeting nanocarriers. Nanocarrier systems targeting mitochondria include
mitoPorter, DQAsomes, hyaluronic acid (HA)-chitosan nanoparticles, and polyethylene glycol (PEG)-
based nanoparticles. PEG-based nanoparticles could also be subdivided into cerium oxide nanoparti-
cles (nanoceria) harboring triphenylphosphonium (TPP) moieties and PEG-polycaprolactone (PCL)
nanoparticles. Figure created with BioRender.com.

5. Mitochondrial Replacement

Mitochondrial replacement, also known as mitochondrial transplantation, is a novel
experimental therapeutic strategy to transfer healthy mitochondria to the target tissue to
recover mitochondrial function (Figure 5). This strategy has already been used in pediatric
patients after cardiogenic shock, in which mitochondria isolated from their muscles are
directly injected into the myocardium, demonstrating that patients with mitochondrial
transplantation do not suffer short adverse effects and show fewer cardiovascular events
several months after the intervention [153,154].
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Only AKI models have explored the effect of mitochondrial replacement. In the
doxorubicin-induced AKI model, the transplantation of mesenchymal stem cell (MSC)-
derived mitochondria to the renal subcapsular region results in improved kidney function
and increased antioxidant enzyme levels; however, although tubular regeneration was
increased, tubular dilation persists [155]. Similarly, in I/R-induced AKI in rats and pigs, the
intra-arterial administration of muscle-derived mitochondria improves renal function in
the first 24 to 48 h [156,157] and even promotes proliferation of renal cells [156] and reduces
inflammation [157]. However, for CKD, mitochondrial replacement remains unexplored.

Although the primary mechanism described for internalization of transferred mito-
chondria to the tissue is micropinocytosis [158], some strategies that improve the uptake
in vitro include mitochondria harboring CPP, such as Pep-1 [159–161] and transactivators
of transcription (TAT) peptides [162].

6. Concluding Remarks

Mitochondria targeting strategies have been explored in different diseases and rep-
resent a suitable additional therapeutic option for AKI and CKD. Taking advantage of
some clinical trials that have tested some of these strategies, drug repositioning facilitates
their scaling to be used in other diseases [39], including kidney diseases, based on the
experimental result with the same molecules. In this context, mitoQ, SkQ1, SS-31, and
mitochondrial replacement are the most suitable therapeutic strategies already proven in
clinical trials (Table 1) with potential use in kidney diseases.

Table 1. Mitochondrial targeting strategies have already been tested in clinical trials.

Mitochondrial
Targeting Strategy Clinical Trial Administration Route Duration Ref.

MitoQ

Patients with chronic
hepatitis C Oral intake 28 days [51]

Aging healthy
volunteers Oral intake 28 days [48]

Healthy volunteers Oral intake 28 days [49]

Healthy volunteers
under high-intensity

exercise
Oral intake 21 days [50]

SkQ1 Dry eye syndrome Ophthalmic solution 4–6 weeks [61,62]

SS-31

Barth syndrome Subcutaneous
administration 36 weeks [116]

Mitochondrial
myopathy Intravenous 5 days [115]

Heart failure Intravenous/subcutaneous 3/28 days [117,118]

Renal artery stenosis Intravenous 3 days [119]

Mitochondrial
replacement Cardiogenic shock Intracardiac During surgical

intervention [153,154]

On the other hand, here, we present some other mitochondria targeting strategies
already proven in kidney disease models with great potential to be used in clinics (Table 2),
such as the case of mitoTEMPO and SkQR1. Additionally, some other mitochondrial
targeting strategies not explored already in kidney disease models, such as peptides (other
than SS peptides) and the nanocarriers mitoPorter and DQAsomes, have been tested in vitro
or other disease models, opening a field to explore them in kidney diseases models.
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Table 2. Mitochondria targeting strategies tested in kidney disease models.

Mitochondria Targeting Strategy Kidney Disease Model Ref.

Small molecules

TPP-based

MitoQ
(TPP-ubiquinone)

AKI
I/R in mice [53]

Cisplatin in mice [54]

CKD

Aging in mice [55]

Angiotensin II
infusion in mice [23]

DN in db/db and
Ins2+/-AkitaJ mice [37,57–59]

SkQ1
(TPP-plastoquinone)

Aging-associated
CKD Aging in mice

MitoTEMPO
(TPP-2,2,6,6-

tetramethylpiperidine-
N-oxyl)

AKI

I/R in mice [15]

Cisplatin in mice [66]

Sepsis in rats and
mice [67–69]

CKD

5/6 nephrectomy in
mice [70–72]

UUO in mice [74]

DN in mice [75,76]

Rhodamine-based

SkQR1
(Rhodamine

19-plastoquinone
conjugated)

AKI

I/R and
rhabdomyolysis in

rats
[85,86]

Gentamicin in rats [87]

Sepsis in rats [88]

Pyelonephritis in rats [90]

Peptides Cationic lipophilic SS-31

AKI

I/R in rats [121–123]

Cisplatin in mice [120]

Sepsis in mice [125]

CKD I/R in rats [127]

DN in mice [128–133]

Nanocarriers PEG-based

NanoCeria

AKI

Rhabdomyolysis in
mice [150]

Sepsis in mice [151]

PEG-PCL I/R in mice [152]

HA-chitosan Sepsis in mice [125]

Mitochondrial
replacement AKI

I/R in rats and pigs [156,157]

Doxorubicin in rats [155]

Abbreviations: AKI, acute kidney injury; CKD, chronic kidney disease; DN diabetic nephropathy; HA, hyaluronic
acid; I/R, ischemia/reperfusion; PCL, polycaprolactone; PEG, polyethylene glycol; TPP, triphenylphosphonium;
UUO, unilateral ureteral obstruction.

Most of the mitochondria targeting strategies used in AKI and CKD models rely on
antioxidant function by the conjugation with scavengers; however, most of the described
mitochondria targeting molecules possess the ability to carry more complex compounds such as
enzymes or transcription factors, as the mentioned metallothionein and TFAM [100,102]; hence,
we open the possibility that mitochondria targeting molecules could exert other functions, such
as promoting the mitochondrial biogenesis, stimulating ETC components transcription, and
enhancing enzymatic reactions, among others.

Despite all the beneficial effects described above, some points must be considered. For
example, the efficiency of many of these molecules depends on mitochondrial membrane
potentials, such as small molecules, cationic peptides, and some nanocarriers; in this
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context, only MTS-containing peptides, some nanocarriers, and whole mitochondria could
be helpful in the loss of membrane potential during kidney diseases.

For the case of safety in terms of immunogenicity, small molecules and peptides
represent the strategies with lower risk; conversely, nanocarriers have immunogenicity
potential [163] to take into consideration; similarly, if the whole mitochondrial for trans-
plantation is damaged this could induce a proinflammatory response due to the exposure
of danger-associated molecular patterns (DAMPs) [164].

In terms of obtention, small molecules, peptides, and whole mitochondria isolation
seem to be the more suitable options, followed by nanocarrier systems.

Additionally, for each one, pharmacokinetic and pharmacodynamic studies are neces-
sary; in this context, SS-31 is the most advanced option for AKI and CKD treatment.
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