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Abstract: The availability of systematic drug response registries for hundreds cell lines, coupled with
the comprehensive profiling of their genomes/transcriptomes enabled the development of computa-
tional methods that investigate the molecular basis of drug responsiveness. Herein, we propose an
automated, multi-omics systems pharmacology method that identifies genomic markers of anti-cancer
drug response. Given a cancer type and a therapeutic compound, the method builds two cell line
groups on the antipodes of the drug response spectrum, based on the outer quartiles of the maximum
micromolar screening concentration. The method intersects cell lines that share common features in
their mutation status, gene expression levels or copy number variants, and a pool of drug response
biomarkers (core genes) is built, using genes with mutually exclusive alterations in the two cell line
groups. The relevance with the drug target pathways is then quantified, using the combined interac-
tion score of the core genes and an accessory protein network having strong, physical/functional
interactions. We demonstrate the applicability and effectiveness of our methodology in three use
cases that end up in known drug-gene interactions. The method steps into explainable bioinformat-
ics approaches for novel anticancer drug-gene interactions, offering high accuracy and increased
interpretability of the analysis results. Availability: https://github.com/PGxAUTH/PGxGDSC.

Keywords: computational pharmacogenomics; systems pharmacology; cancer; cell lines; afatinib;
trametinib; dabrafenib

1. Introduction

The advances in -omics technologies have led to the creation of high-throughput
and high-content resources, as essential tools upon experimentation in cancer research,
implementing systems pharmacology and molecular medicine approaches. The molecular
profiling of cells incorporates data at various levels of biological knowledge. The proper
integration of these structured data to uncover semantic similarities, complex relationships,
and patterns of pharmacological, pharmacogenomic and therapeutic relevance is stressfully
needed to pave precision medicine therapeutic decisions in cancer therapy and innovative
drug development [1,2].

In parallel with the advances been witnessed by the research community in genomic
technologies, during the last decades the research in anticancer drug discovery has led to
the approval of more than 100 agents by the US Food and Drug Administration (FDA) [3].
These agents have improved the overall patient survival, yet cancer remains the leading
cause of deaths, and the burden of cancer incidences and mortality is rapidly increasing
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worldwide [4]. One of the reasons is that the clinical benefit of anti-cancer agents is
limited by the presence of genomic alterations at functionally key loci that block the
cascading molecular events triggered by the administered drug and cause adverse drug
reactions or aberrant responses. Next-generation sequencing enabled the development of
predictive models that incorporate genomic and gene expression data in order to assess the
therapeutic potential of anti-cancer drugs [5]. These pharmacogenomic models have proven
highly accurate in several cases, implying the prevalence of strong interactions between
genomic profiles and drug sensitivity in the pre-clinical setting. However, to exploit this
evidence in a clinical environment, we first need to estimate the clinical risk-benefit in
standardized pharmacogenomically informed clinical procedures [6]. Additional obstacles,
such as the lack of extensive experimental validation and biological reasoning are also
limiting factors towards precision medicine. In the absence of wide-ranging in vivo studies,
researchers focus on the analysis of large-scale data that provide a public baseline of utmost
importance for multi-omics portraits of cancer cell lines in relation with their response to
multiple anticancer drugs. The Genomics of Drug Sensitivity in Cancer (GDSC) [7], the
Cancer Cell Line Encyclopedia (CCLE) [8] and the Cancer Therapeutics Response Portal
(CTRP) [9] are among the most popular resources for drug–cell line interactions. The
Connectivity Map (CMap), as part of the LINCS (Library of Integrated Network-based
Cellular Signatures) consortium [10], provides comprehensive catalogs of >1.3 million
cellular signatures representing systematic perturbation with genetic and pharmacologic
traits, and the Cancer Dependency Map is a large-scale project integrating various types
of information, such as gene expression, DNA methylation, loss-of-function screens, and
drug sensitivity [11].

Combined these public resources enabled the development of analytical methods
and predictive models for drug responses that most frequently involve specific drug-gene
combinations [12–14], while fewer present generalizable computational methodologies for
deciphering driver genes in pan-cancer drug resistance at large scale. Recently, Li et al.
performed predictions of the IC50 values using cell line transcriptomes concluding in about
half of the 473 GDSC drugs whose competence can be reasonably predicted using genetic
algorithms [15]. In other pan-cancer studies, machine learning methods predicted drug
sensitivity levels using gene expression data [16] and multi-omics data [17]. Tognetti et al.
developed single-cell-based models for breast cancer cell lines that accurately predicted
drug sensitivity and identified genomic features contributing to such behavior [18]. Kim el
al. found kinase mutations in protein substructures that induce different drug responses,
using GDSC and COSMIC (The Catalogue Of Somatic Mutations In Cancer) data [19].
A common obstacle in developing end-to-end solutions in pharmacogenomics is that
computational methods often overlook the interpretability of the models’ outcome for
the sake of improved prediction performance, while methodologies applied on specific
compounds, or cancer types, usually fail to generalize, and are difficult to reproduce in
similar research hypotheses.

To facilitate the extraction of molecular information associated with drug efficacy
in new drug development research efforts and consequently in the clinical setting, an
emphasis has been given to develop and integrate bioinformatics approaches, applicable to
systems pharmacology and precision medicine. In this work, we propose an automated
methodology that relies on public resources to explain the causal relationships between
genomic variants, copy number variations and gene expression profiles with drug efficacy
over various cancer cell lines and tumor types. The proposed design and implementation
rely on the differential analysis of multi-omics data from cell lines characterized by extreme
responses to an anticancer therapeutic compound resulting in mutually exclusive genes
that are prioritized based on the interaction level with the drug targets. The relevance of
each gene candidate with the drug compound is assessed using the core genes and their
accessory protein network, i.e., the protein products on a stringent interacting network
of the core gene set. Contrary to the drug sensitivity prediction methods, this work
aims at deciphering explainable and biologically meaningful associations of the molecular
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features that drive improved drug responses. Using three use cases, we demonstrate that
our method is able to prioritize key markers of known significance in various pairs of
therapeutic compounds and cancer types. The method is generalizable to a wide range
of cancer types and chemical compounds and offers a straightforward roadmap to detect
biomarkers of anticancer drug responsiveness.

2. Materials and Methods

The building blocks and connections of the proposed methodology are shown in Figure 1.

Figure 1. Schematic representation of the methodology. Given a pair of tumor type and chemical
compound, the cancer cell lines with extreme responses are first selected from GDSC1/GDSC2 and
the mutation (M), gene expression (GEx) and copy number (CNV) profiles from COSMIC and CCLE
are built into gene-level matrices for the sensitive (S) and resistant (R) cell line models. A vector of
genes with mutually exclusive alterations per data module and data source (M, GEx and CNV) is
built, and then merged into the core gene set containing rigorously defined dysregulated genes that
are shared among all S cell lines and are absent in the R cell models, and vice versa. On the periphery
on the core gene set, a broader spectrum of protein products (accessory protein network) is built to
enclose connected molecules that are known to interact with at least one protein of the core set. The
STRING interactions of the core and accessory gene products are assessed against the genes of the
drug target pathways (KEGG-DRUG).

2.1. Cancer Cell Line Selection

Cancer cell line and drug screening data were downloaded from GDSC, using phase 1
(GDSC1) and phase 2 (GDSC2) assays, keeping the data from the updated experimental
setup (GDSC2), when a drug is screened in both versions (Figure 1) [7]. Given the sensitivity
measures expressed in IC50 (half-maximal inhibitory concentration of cell growth) and a
research hypothesis involving an anticancer drug compound and a target tumor type, we
first build two vectors of length m and n for the cancer-specific sensitive (S) and resistant
(R) cell lines, respectively, based on the maximal micromolar concentration (maxCo). The R
group is built on the cell line models that belong to the upper quartile of the IC50 > maxCo,
while the S group includes the cell lines with IC50 in the lower quartile of the cancer
cell lines with IC50 ≤ maxCo. At least three cell lines must fulfill the selection criteria in
each group.
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2.2. Dinstict Mutation, Gene Expression and Copy Number Profiles

Drug responses are then associated with the genomic and transcriptomic profiles of
the S and R cell models, using whole exome screening data and array-based molecular
characterization from the COSMIC cell lines project v94 [20] and mutation, gene expression
and copy number variation (CNV) data from CCLE [8].

2.2.1. Mutation Profiles

The COSMIC single-point variants and short insertions/deletions at gene level that
consistently identified in all m or in all n subgroups of MS or MR matrices, respectively, and
those that are mutually exclusive between S and R models are considered of potential signif-
icance for drug response. An estimation of the damaging alleles burden is assigned to each
mutation, as a measure of its functional impact, using the FATHMM-MKL algorithm [21].
Genes with mutually exclusive alterations in MS and MR with at least one polymorphic site
of FATHMM-MKL score > 0.5 are considered pathogenic. For less stringent analyses, the
FATHMM criterion may be ignored in the subsequent drug–gene associations. The impact
of the CCLE mutations (DepMap, Public 21Q3) [22] is assessed based on the categorical val-
ues assigned to each polymorphic site, i.e., the damaging (nonsense, frameshift, splice site,
de novo out-of-frame start and SNP/insertion/deletions at start codon), non-conserving
(missense, in-frame deletions/insertions), and silent mutations. As for the COSMIC data,
the genes with mutually exclusive alterations that have at least one damaging mutation
in all S or R models are considered potential gene markers with functional relevance to
drug response.

2.2.2. Gene Expression Profiles

Gene expression analysis follows a similar two-step procedure. The normalized gene
expression levels from the COSMIC cell line repository are measured by Z-scores. Genes
with Z-scores greater than 2 and less than −2 are considered over- and under-expressed,
respectively. Over- and under-expressed genes that characterize exclusively all S or all R
models meet the selection criteria. The mRNA expression profiles from CCLE are quantified
as log2(TPM) (Transcripts per Million) values from RNA-seq data. The expression cutoffs are
set to 10 and 0.02 for the over- and under-expressed genes, respectively. Of these genes, only
those with average value across group’s cell lines above the 0.95 and below the 0.5 quantile
for the over-expressed and under-expressed groups, respectively, are finally selected as
candidate expression-based gene markers of drug response given that these are shared
among all R or S cancer cell lines. Then, the gene expression matrices of the sensitive GExS
and resistant cell lines GExR are built, and those fulfilling the criterion GExS ∩ GExR = Ø
for each data source are considered high-confidence factors for drug response.

2.2.3. Copy Number Profiles

Gene level copy number data of about 1000 cancer cell lines were downloaded from
COSMIC and CCLE. To define gene amplifications and losses, we followed the definition
of the COSMIC annotation. For CCLE, copy number data were log2 transformed with
a pseudo count of 1. We used 0.5 as a higher cutoff for copy number loss, and 5 as a
lower cutoff for copy number gain. The selection of the gene-level copy number alterations
that characterize the sensitive and resistant cell models follow the same steps, as for the
mutation and gene expression profiles.

2.3. Interaction Network with Anticancer Drug Targets

The outcome of the three data modules is a set of genes with distinctive mutation,
expression or copy number profiles between R and S models. These genes constitute the
core set of clinically pertinent markers that are further evaluated for their relevance with
the target pathways of the drug compound (KEGG-DRUG), using the STRING combined
interaction score [23]. The core genes are accompanied by a high confidence set of accessory
proteins that are known to be in strong interaction with the protein products of the core
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genes (interaction score > 0.9). Three levels of interactions are then defined in decreasing
strength: (a) a core gene is part of at least one target pathway of the drug, (b) a protein
coded by a core gene has high confidence interactions (interaction score > 0.9) with at least
one protein coded by a gene of the drug target pathways, and (c) an accessory protein has
high confidence interactions (interaction score > 0.95) with at least one protein coded by a
gene of the drug target pathways.

3. Results

We provide use cases for three pairs of drug and cancer types. Afatinib’s respon-
siveness is investigated against breast cancer cell lines, glioblastoma multiforme cell lines
are used to identify trametinib response markers, and dabrafenib is assessed against skin
cutaneous melanoma cell lines.

3.1. Breast Cancer and Afatinib

Afatinib (KEGG:D09724) is a second-generation, irreversible tyrosine kinase inhibitor
that downregulates the ERBB signaling pathway by covalently bound to epidermal growth
factor receptor (EGFR), human EGFRs, HER2, and HER4. It has been initially approved
in 2013 as first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC)
harboring known driving mutations of EGFR [24–26]. Afatinib is further investigated
for the treatment of multiple malignancies, e.g., head–neck squamous cell carcinoma
(HNSCC) and breast cancer. According to the KEGG-DRUG database, afatinib acts
over the MAPK (hsa04010) and ERBB (hsa04012) signaling pathways, and pathways in
cancer (hsa05200) [27].

3.1.1. Breast Cancer Cell Lines with Extreme Responses

The list of sensitive and resistant cell lines was selected, using the GDSC2 version
of the drug sensitivity data. Four resistant cell lines met the criteria, namely CAL-120,
MDA-MB-157, MDA-MB-436 and BT-483 and eight sensitive cell lines (OCUB-M, ZR-75-30,
AU565, BT-474, MDA-MB-330, HCC2218, MDA-MB-175-VII, UACC-893). Among the
sensitive cell lines, MDA-MB-175-VII was excluded from the COSMIC gene expression
analysis and OCUB-M and MDA-MB-330 from the CCLE gene expression analysis, due to
the lack of relevant data. CAL-120 mutation profiles were also not available in COSMIC.

3.1.2. High-Confidence Drug-Response Gene Markers

The analysis of each data module resulted in a set of candidate biomarkers that were fur-
ther evaluated for their relevance with the afatinib molecular targets (Supplementary Table S1).
The interaction network analysis filtered out irrelevant or loosely connected proteins and
exported two high confidence genes that most likely control drug sensitivity, ERBB2 (HER2)
and RAC3 (Figure 2). ERBB2 is a significant gene that is part of the afatinib target pathways
and, following the stringent cutoffs of the methodology, is over-expressed in all sensitive
cell lines, contrary to the resistant cell lines. Importantly, RAC3 mutations are identified in
all resistant cell lines in COSMIC, while all sensitive cell lines lack any type of mutation in
this gene. RAC3 is part of the MAPK signaling pathway and other pathways contributing
to cancer progression. RAC3 activity is also in strong interaction with the ERBB signaling
pathway through four gene members, PAK1, PAK2, PAK4 and SRC (Figure 2). Moreover,
three other genes, PRLR, GRB7 and RGL2, are also mutually exclusively over-expressed in
all sensitive cell lines; these genes also strongly interact with genes of the ERBB pathway.
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Figure 2. High confidence pharmacogenes (blue nodes) and their interacting proteins of the afatinib’s
target ERBB signaling pathway. Orange nodes are actively involved in the interaction network, and
yellow nodes are other target pathway proteins not directly interacting with the high confidence gene
products exported by our analysis. ERBB2 is a mutual exclusive gene that is over-expressed in all
sensitive cell lines (green contour) and is also a member of the afatinib’s target pathway. PRLR, GRB7
and RGL2 are mutually exclusive genes that are over-expressed in all sensitive cell lines and strongly
interact with genes of the ERBB pathway. RAC3 is mutated in all resistant cell lines (red contour) in a
mutually exclusive manner and is a strong interactor with proteins of the same pathway.

3.1.3. Interpretability of the Afatinib-Gene Interactions

By assessing preclinical data, the clinical significance of our method in unraveling
drug–gene pharmacogenomic correlations in the ERBB signaling pathway was verified
in the case of afatinib in breast cancer cell lines. The pharmacogenes and their directly
interacting genes of the afatinib’s target ERBB signaling pathway identified in this analysis
(Figure 2) correlate well with existing data, showing that overexpression of ERBB2 in cancer-
ous cell lines is positively correlated with increased sensitivity to afatinib treatment [24–26].
Similar data for HNSCC, has shown that afatinib’s increased efficacy was correlated with
EGFR amplification [28]. Furthermore, the importance of the heparin-binding EGF-like
growth factor (HBEGF) that acts through binding to EGFR, ERBB2 and ERBB4 has been
revealed in eliciting afatinib’s antimetastatic effects in gastric cell lines [29]. It is also
important that the acquired HER2T798I-mediated neratinib resistance upon the tumor
progression in a patient harboring an initial activating HER2L869R mutation could be
avoided by afatinib [30]. Moreover, Tamura et al. proposed that the in vitro responses to
afatinib and dacomitinib in bladder cancer can be pre-clinically evaluated by assessing the
sensitivity drug profiles in relevant cell lines [31].

Another crucial issue is that the small GTPase RAC3 gene, found to be mutated in all
resistant to afatinib breast cancer cell lines, has been previously shown to control invasion
and metastasis in breast cancer, by controlling adhesion and matrix degradation [32].
Moreover, the observation that in all sensitive to afatinib breast cancer cell lines, the
prolactin receptor (PRLR) gene has been found to be overexpressed, further validates
the obtained findings, since recent evidence supports that the PRLR and EGFR/HER2
signaling crosstalk play a crucial role in the development of mammary glands and breast
carcinogenesis, whereas their combined actions may be responsible for endocrine resistance
in breast cancer patients resulting in tumor relapse [33]. Similarly, the analysis of TCGA
molecular data revealed that the EGFR family MAP kinase adaptor GRB7 gene is co-
amplified with ERBB2/HER2 in five different tumor types e.g., GRB7 was amplified in
10 and 20 copies in lung adenocarcinoma and breast cancer, respectively [34]. Furthermore,
regarding the third gene Ral Guanine Nucleotide Dissociation Stimulator Like 2 (RGL2)
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gene that is found to be overexpressed in all the sensitive to afatinib breast cancer cell
lines, it has been recently shown that RGL2 modulates β-catenin and KRAS, by promoting
colorectal cancer cells metastasis [35]. Among all pharmacogenes targets, SRC is the only
gene in the ERBB signaling pathway whose protein product strongly interacts with proteins
coded by both resistant and sensitive gene markers (Figure 2). Specifically, the SRC protein
is in strong interaction with the protein coded by RAC3, which was found mutated in
all resistant cell lines in a mutually exclusive manner, and the proteins coded by ERBB2
and GRB7, which are mutually exclusively over-expressed in all sensitive cell lines. SRC
could therefore to play a mediating role in afatinib’s response through a different course of
action. Up to now, there has been significant evidence suggesting that SRC is a mediator of
resistance to afatinib and other HER-family member inhibitors [36–39].

3.2. Glioblastoma Multiforme and Trametinib
3.2.1. Glioblastoma Resistant and Sensitive Cancer Cell Lines

Sensitive and resistant cancer cell lines with extreme responses to trametinib (KEGG:D10175)
were selected based on the GDSC1 version of the drug sensitivity data. Three resistant
cell lines met the criteria (CCF-STTG1, LN-405, AM-38) and six sensitive cell lines (Becker,
DK-MG, KS-1, D-263MG, D-566MG and LN-229). Becker, DK-MG were excluded from the
COSMIC mutation analysis, due to the lack of relevant data.

3.2.2. High-Confidence Trametinib-Response Gene Markers

For trametinib, there were three mutually exclusive genes (Supplementary Table S2).
The copy number loss of CDKN2A was a common alteration in sensitive cell lines, while
this alteration does not exist in any resistant cell line. CDKN2A is part of the melanoma
pathway (hsa05218) and the pathways in cancer (hsa05200) which, according to the KEGG-
DRUG database, are target pathways of trametinib and thus could act as regulators of
drug response. In a case study for recurrent/progressive pediatric low-grade glioma, a
patient with loss of a copy of CDKN2A gene had responded to trametinib treatment, with
32.4% tumor reduction, being the best response, and his treatment continued for almost
30 months. These results were better than the other patients’ results [40]. Another study
used a luciferase-modified cell line from a CDKN2A deficient murine high-grade glioma
where trametinib was delivered orally daily. MAPK pathway was suppressed effectively
and resulted in a durable anti-growth tumor cell effect, as well as a significant survival
benefit of animals [41].

In the expression analysis, overexpression of the FLOT1 gene was found to be a
common alteration in the resistant to trametinib cancer cell lines, whereas there was no
such alteration in any of the sensitive ones (Figure 3). FLOT1 is not involved in the
drug target pathways, but the gene’s protein is in direct interaction with the CDH1 gene
(E-cadherin protein), which belongs to the target pathways of trametinib. Pudewell et al.
showed that a large number of proteins, called “accessory proteins”, take part in liquid–
liquid phase separation [42]. Accessory proteins connect with at least two components
to regulate their spatiotemporal localization and enhance their assembly by reducing
the dimensionality of interactions and/or increasing local concentrations of interacting
proteins. One subset of these are the anchoring proteins, such as the FLOT1 protein. In
this case, the PHB domain of FLOT1 protein is found to be membrane-associated, as it is
post-translationally modified by palmitoylation and binds lipid rafts of phagosomes and
the plasma membrane. Thus, the components of individual signal transduction pathways
are linked. Finally, in the mutation analysis, plectin (PLEC) gene was found mutated in
all the resistant cell lines, whereas there was no alteration in any of the sensitive ones
(Figure 3). Even though the mutation effect is considered neutral, it could be an important
biomarker, implying drug resistance. PLEC did not participate in the pathways of cancer,
yet plectin is in direct interaction with caspase 8; this finding is in line with previous studies
showing that the induction of apoptosis by chemical factors leads to active caspase 8 being
translocated to plectin [43].
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Figure 3. Network representation of the indirect interactions of FLOT1 and PLEC with proteins
involved in the MAPK signaling pathway. Overexpressed FLOT1 and mutant PLEC are found in all
resistant glioblastoma multiforme cell lines, contrary to sensitive cell lines.

3.3. Skin Cutaneous Melanoma and Dabrafenib
3.3.1. Dabrafenib’s Sensitive and Resistant Skin Cutaneous Melanoma Cell Lines

Dabrafenib is a BRAF kinase inhibitor that targets pathways in cancer and the MAPK
and ERBB signaling pathways. Skin cutaneous melanoma cell lines were selected from
the pool of GDSC2 cancer cell lines, following the selection criteria for IC50 extreme drug
responses against dabrafenib (KEGG:D10064). Three skin cutaneous melanoma cell lines
were found to be resistant to dabrafenib (SK-MEL-2, COLO-792, Mewo) and five sensitive
(M14, A375, C32, SH-4, IGR-37). M14 was excluded from the CCLE gene expression analysis
due to the lack of relevant data.

3.3.2. High-Confidence Dabrafenib-Response Gene Markers

The analysis resulted in a set of core and accessory genes that may act as potential
regulators of dabrafenib response (Table 1, Supplementary Table S3). Fibroblast Growth
Factor Receptor 1 (FGFR1) was found mutated exclusively in all resistant cell lines in
both CCLE and COSMIC. FGFR1 mutations are considered pathogenic in COSMIC, while
CCLE includes missense and silent mutations of FGFR1 in the three resistant cell lines,
classified as non-conserving/silent. FGFR and especially FGFR1 is a transmembrane
receptor connected with one FGF receptor, whereas FGF/FGFR signaling contributes to
intratumoral angiogenesis, melanoma cell survival, and development of resistance to
therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as
potential anticancer drugs in combination treatment schemes. As a result, it seems that the
FGFR1 mutations revealed by our method, that induce the resistance to dabrafenib, are
mutations that enhance the FGF/FGFR signaling pathway. The reduced drug sensitivity
of melanomas has been associated with increased expression or activities of multi-RTKs,
including FGFR1 [44,45]. FGFR1 can limit the antiproliferative effects of vemurafenib,
which is accompanied by the reduced ability of vemurafenib to inhibit pMEK. This effect is
reversed by the FGFR inhibitor PD173074 [46].
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Table 1. High confidence pharmacogenes that are part of (a), or strongly interact (b) with, the
dabrafenib’s target pathways.

(a)

Gene Cell Line
Status 1 Source Analysis Alteration Pathway Gene

FGFR1 R COSMIC
CCLE Mutation Pathogenic/non-conserving, silent MAPK signaling pathway,

Pathways in cancer
MAP4K4, ARRB1,
CACNA1H, IRAK4 R COSMIC Mutation Neutral MAPK signaling pathway

RET, ARHGEF1,
GSTO2, WNT7A R COSMIC Mutation Neutral Pathways in cancer

FASLG R COSMIC Mutation Neutral MAPK signaling pathway,
Pathways in cancer

CDK2 R COSMIC Expression Over Pathways in cancer
BIRC7 R COSMIC Expression Over Pathways in cancer

(b)

Gene Description 1 Interactions

DLG1 R/COSMIC/M CACNG2,CACNG3,CACNG4,CACNG8,HRAS,KRAS,NRAS,MAPK12,SRC,PIK3CA,PIK3R1,CDH1,
CTNNB1,CTNNA1,APC,PTEN,MDM2

COL1A2 R/COSMIC/M(P) VEGFD,FLT4,LAMA5,FN1,ITGA2,ITGAV,ITGB1,IL4,IL13,MMP2,CASP8

CDK2 R/COSMIC/E
MAPK1,MAPK3,MYC,CDC25B,TP53,ABL1,CDKN1B,CDKN1A,CCND1,RHOA,FOXO1,MDM2,CDK4,

CCNA2,CCNA1,CEBPA,E2F1,E2F2,E2F3,CDK6,CCND2,CCND3,CKS1B,CKS2,SKP1,CUL1,SKP2,
CCNE1,CCNE2,RB1,TERT,SMAD3,SMAD4,HDAC1,BRCA2

MAP3K9 R/CCLE/M RAC1,CDC42,MAP2K4,MAP2K6

1 R: Resistant, M: Mutation analysis, M(P): Pathogenic mutation, E: Expression analysis.

In melanoma cells, the RTK expression was reduced due to the strong endogenous
BRAF/NRAS mutation-driven activation of the MAPK-ERK signaling pathway, a fact that
prevents cell senescence; the opposite happens in cells with activated PTK signaling. Addi-
tionally, FGFR1 has been listed among the resistance-associated genes that are temporarily
expressed in melanoma cells. Moreover, the FGFR1 over-expression allows melanoma cells
to react immediately on ligands that are induced by anticancer drugs, resulting in resistance
to the chemotherapeutic treatment [47].

4. Discussion

The pharmacological effects are elicited in the body through the interaction of drug
molecules with their targets at the molecular level through a cascade of signaling pathways
relevant to the therapeutic outcome, as well as any accompanying adverse drug reac-
tions [48]. Given the existing molecular and cellular metabolism heterogeneity in diseases
pathophysiology, e.g., cancer, it is conceivable that we are capable to analyze and clinically
translate the relevant molecular information in terms of drug efficacy and safety [49,50].
Especially in oncology, such efforts are urgently needed since molecular traits are driving
forces of tumor cell development and progression [51]. The massive load of molecular
oncology data being available for analysis, as well as the interdisciplinary nature of the
efforts needed to be undertaken, stress out the importance for the development of suitable
bioinformatic methods towards pharmacogenomics and precision cancer medicine. To
this end, the research approaches aim to provide practicability of the translated molecu-
lar knowledge, both at the new drug development era and the clinical setting [1,52,53].
Our work focuses on unraveling drug–gene interactions from pharmacogenomic data to
advance systems pharmacology decisions in tumor therapeutics. The implementation of
our workflow also provides an efficient manner to extract pharmacologically and clinically
relevant knowledge from the generated -omics massive data deposited in biorepositories.
Multiscale systems–pharmacology models designed to predict efficacy of novel anti-cancer
drugs could be heavily influenced by approaches of this type [54,55]. Gene regulators of
anti-cancer drug response identified through our methodology can be used as predictive
biomarkers by such models in simulations exploring strategies for increasing the activ-
ity of drugs to guide future clinical studies and drive targeted clinical decision making.
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Consequently, the advancements provided by such systems pharmacology methodolo-
gies can be used to improve drug development productivity, as well as drug delivery
profiles [1,15,56–59].

The established cancer cell lines represent a cornerstone in oncology since their ap-
plication as suitable models mimicking the tumor development and progression mainly
support the preclinical new anticancer drug environment. Nowadays, the high-throughput
methodologies applied in the molecular analysis further permit the pharmacological ex-
ploitation of multi-omics data generated from the large number of cell-based anticancer
therapy research and clinical efforts. To this end, hypothesis-driven bioinformatics analysis,
capable to implement the methodology in the cell-based pharmacological experimentation,
largely reinforce the pre-clinical data productivity, the better clinical translation of the
generated data, as well as a more efficient clinical validation for molecular knowledge to
enter the clinical setting. The need, however, for better understanding of how accurately
the cell models represent the molecular features of patient tumors remains an unsolved
task in oncology. It is expected, however, that the application of high-throughput compu-
tational approaches and appropriate bioinformatics pipelines will enable the systematic
comparisons of the molecular features needed to better understand cell models behavior
versus patient tumor types, as well as to identify the druggable potential traits from the
current cancer preclinical models [1,2,54,55,60,61]

The pharmacogenomics-guided therapeutic decisions are the goal of precision medicine
in oncology, as a means to tailor therapeutics delivery for each patient individually using
genomic profiling data. Towards this direction, the pharmacogenomics datasets from
cancer cell lines are considered valuable resources for the prediction of drug sensitivity
capacity or complementary of drug resistance behavior, the latter representing a crucial
therapy task of precision oncology practice [51,57]. Moreover, the massive genomic and
transcriptomic screening of cancer cell lines provides a unique opportunity for targeted
therapeutic decisions, but also for deciphering the complete picture of a drug’s molecular
interactions. In this study, we provide novel insights into drug-gene interactions that
exploits our current knowledge of the underlying target pathways and protein–protein
interactions, in order to provide the basis for implementing novel experimental research
hypotheses. The methodology was tested for specific pairs of cancer types and drugs. Yet,
the interaction between cancer drugs and cell line profiles could be studied out of the tissue
of origin, enabling deeper investigation of the drug induced molecular reactions. The latter
is very important, since the so-called tumor-agnostic therapeutics have already entered the
market in oncology therapy, by targeting genetic features regardless of the tissue involved
in the tumor development and progression [62,63].

Still, the wide adoption of such methodologies is prone to the non-uniform genomic
and transcriptomic profiling of cancer cell lines across different pharmacogenomics plat-
forms and to the poorly described data for other molecular regulators of drug response.
Recent advances on variant calling in difficult-to-map regions, such as regions with segmen-
tal duplications and in HLA types of the major histocompatibility complex, are promising
towards in-depth and explainable pharmacogenomic studies [64]. To this direction, epige-
netic modifications are also important regulators of gene expression and drug response.
Although the involvement of DNA methylation to drug pharmacological effects remains
unclear, there is strong evidence associating cancer treatment resistance in altered DNA
methylation profiles [65,66]. Systematic analysis of DNA methylation profiles across cancer
cell lines will provide a valuable resource for comprehensive insights of the gene-drug
interactions. As a matter of fact, by suitably exploiting the -omics cancer cell line datasets,
the landscape of precision cancer medicine is enriched and progressed, implementing the
clinical setting to optimize treatments, and thus ensuring efficiency and safety outcomes in
tumor patients.
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5. Conclusions

The present systems pharmacology methodology is particularly suitable when in-
creased interpretability of the molecular evidence is needed to decipher the underlying
paths of drug responsiveness. This is offered by incorporating the information of the
molecular pathways of both the chemical compound and the candidate gene markers and
by filtering out low impact and poorly discriminated genomic features of cancer cell lines
exhibiting extreme responses. The methodology can be used to validate known pharma-
cogenomic interactions, but also to build novel research hypotheses on currently unknown
pharmacogenomic gene-drug associations.
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