
Citation: Raymond, M.V.; Yount, T.M.;

Rogers, R.R.; Ballmann, C.G. Effects of

Acute Red Spinach Extract Ingestion

on Repeated Sprint Performance in

Division I NCAA Female Soccer

Athletes. Oxygen 2023, 3, 133–142.

https://doi.org/10.3390/

oxygen3010010

Academic Editor: John T. Hancock

Received: 19 February 2023

Revised: 22 February 2023

Accepted: 1 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Effects of Acute Red Spinach Extract Ingestion on Repeated
Sprint Performance in Division I NCAA Female Soccer Athletes
Mary V. Raymond 1,†, Taylor M. Yount 1,†, Rebecca R. Rogers 1,2 and Christopher G. Ballmann 1,*,‡

1 Department of Kinesiology, Samford University, 800 Lakeshore Dr., Birmingham, AL 35229, USA
2 Center for Engagement in Disability Health and Rehabilitation Sciences (CEDHARS), School of Health

Professions, University of Alabama at Birmingham, 3810 Ridgeway Dr., Birmingham, AL 35209, USA
* Correspondence: cballman@samford.edu
† Indicates co-first authors.
‡ Fellow of the American College of Sports Medicine (FACSM).

Abstract: Red spinach extract is high in inorganic nitrate/nitrite (NO3/NO2) which has been shown
to enhance vascular function, cognition, and physical performance. To date, there have been no
investigations as to whether red spinach extract serves as an effective strategy to improve repeated
exercise performance, which is applicable to many sports and activities. The purpose of this study
was to investigate the effect of acute red spinach extract ingestion on repeated sprint ability in female
athletes. Eleven Division I NCAA female athletes (ages 18–24) were recruited. In a double-blinded,
randomized, counterbalanced design, participants completed two separate visits each with a different
treatment: placebo (placebo; tomato juice) or red spinach extract (~400 mg nitrate). For each trial,
participants consumed their respective treatment two hours before exercise. Following a warm-up,
participants completed 3 × 15 s Wingate Anaerobic Tests (WAnTs) separated by 2 min of recovery.
A capillary blood sample was obtained pre-exercise to measure NO2 concentrations. Performance
outcomes, heart rate (heart rate), and rate of perceived exertion were measured following each
WAnT. Blood lactate (La-) was obtained prior to exercise (PRE) and after the completion of the
repeated sprints (POST). Each visit was separated by a minimal recovery period of 72 h. Mean power
(p = 0.204), peak power (p = 0.067), heart rate (p = 0.151), and rate of perceived exertion (p = 0.379)
were not significantly different between treatments. POST La- concentration was significantly higher
with red spinach extract when compared to the placebo (p = 0.030). Furthermore, the fatigue index
(p = 0.018) was significantly lower with red spinach extract. The results do not support the use of red
spinach extract for the enhancement of power output during repeated anaerobic exercise. However,
it may result in improved La-/H+ removal from the muscle, thereby combating physical fatigue.
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1. Introduction

Amaranthus dubius, also known as red spinach, is a flowering plant native to various
regions in Asia [1]. Anecdotally, the extract from red spinach has been purported to aid
in digestion, improve gastrointestinal health, enhance immunity, and aid in weight loss.
While red spinach extract is rich in essential minerals, it also contains high concentrations
of inorganic nitrate (NO3) which has been repeatedly shown to result in the production
and accumulation of plasma nitrite (NO2) [2]. Once consumed, NO3 is reduced to NO2 via
nitrate reductase by anaerobic bacteria in the mouth [3]. Once NO2 is metabolized, it is
reduced further in the gastric mucosa and gives rise to the formation of nitric oxide (NO).
As a biological messenger, NO induces hyperemia [4], increases metabolic efficiency [5],
and contributes to the regulation of blood pressure [6]. For an in-depth view of nitrate
metabolism, Lundberg et al. is recommended for greater insight, along with Figure 1 [7].
Recently, dietary enrichment with NO3-containing or NO precursor supplements has
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become more common in sports and athletics due to previous reports of increased exercise
performance [8–11]. However, red spinach extract has been studied little compared to other
inorganic NO3 sources, especially in regard to anaerobic exercise.
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Most of the literature regarding natural supplementation with NO3 has employed the
use of beetroot juice with widespread reports of performance enhancement [8–10]. Acute
beetroot juice ingestion has been shown to improve resistance exercise performance primar-
ily in the forms of increased velocity, power, and repetition volume [8,11]. Furthermore,
improvements in countermovement jump and agility performance have been noted with
beetroot juice supplementation [10,11]. Increases in sprint performance have also been
observed, manifesting in the enhancement of power and anaerobic capacity [12,13]. Our
lab has also shown that beetroot juice effectively attenuates morning-associated declines in
sprint performance and power output [9]. While still being elucidated, purported mecha-
nisms responsible for performance enhancement may include increased skeletal muscle
blood flow [14], greater metabolic recovery [9,15], and enhanced intramuscular calcium
release [16], which may act independently or synergistically. While intriguing, beetroot
juice has to be especially concentrated in order to provide the necessary NO3, which may
not be widely available or misleading to consumers if they are unaware of what is required
to receive the optimal dose. Thus, the identification of other feasible ways of obtaining
ergogenic doses of NO3 are needed.

Among other sources rich in inorganic NO3, red spinach extract has emerged as a
distinct alternative to beetroot juice that contains no carbohydrates or oxalates, and is rich
in minerals such as potassium and magnesium [17]. Indeed, red spinach extract has been
shown to increase plasma NO3 and NO2 [18]. Red spinach extract has been shown to
increase ventilatory threshold in active participants, likely indicating a greater ability to
sustain aerobic metabolism as exercise intensity increases [18]. Furthermore, red spinach
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extract has been reported to increase time to exhaustion during high-intensity exercise and
results in increased exhaled NO [19]. However, other studies investigating upper body
resistance exercise performance have failed to show performance enhancement with red
spinach extract [20]. Recently, Liubertas et al. showed that red spinach extract supplemen-
tation increased peak power output during a ramp cycling protocol [21]. However, no
investigations to date have investigated how red spinach extract may influence repeated
high-intensity exercise performance which is highly pertinent to sports and competition.
Since soccer and other sports require intermittent sprinting, the use of a natural nutritional
intervention to improve sprint ability could hold important implications for training and
performance. Therefore, the purpose of this study was to elucidate the effects of acute red
spinach extract ingestion on repeated sprint ability in Division I NCAA collegiate female
soccer players.

2. Materials and Methods
2.1. Participants

An a priori power analysis was employed to determine an adequate sample size
using Gpower 3.1.9.6 software (Open Access Software). Our lab recently showed that NO3
ingestion through beetroot juice prevents losses in relative power output during repeated
WAnTs [9]. The effect size of differences in performance between treatments was η2 = 0.257.
Accordingly, the following parameters were used: statistical test = repeated measures
ANOVA, η2 = 0.257, α = 0.05, β = 0.8, correlation among repeated measures = 0.5. This
yielded a minimum sample size of 8 participants. However, in order to have comparable
sample sizes to previous investigations on NO3 and exercise, a sample size of n = 11 was
selected. Female soccer players (n = 11; age = 19.9 yrs ± 1.2; height = 165.1 cm ± 4.8, body
mass = 69.1 kg ± 5.7) were recruited for this investigation. All participants were active on a
Division I NCAA soccer roster in the past year at the time of the investigation. Participant
suitability for exercise was determined using a Physical Activity Readiness Questionnaire
(PAR-Q) [22]. Individuals were excluded if they had a lower-body injury within 6 months
of initial testing and/or if they had previously been diagnosed with cardiovascular disease,
metabolic disease, or any other health-related issue. Participants were asked to refrain from
alcohol, nicotine, caffeine, and nitrate-rich foods (spinach, beets, etc.) for 12 h leading up to
testing [9,10]. They were also asked to not use antibacterial mouthwash rinse on the day of
testing to prevent the loss of oral bacteria needed for NO3 reduction [3]. All experimental
procedures were conducted in accordance with the Declaration of Helsinki and approved
by the Samford University Institutional Review Board (EXPD-HP-22-SUM-1; June 2021).

2.2. Procedures
2.2.1. Study Design

Using a double-blind, counterbalanced, crossover design approach, healthy female
college soccer players completed 2 visits each with a different experimental treatment:
placebo or red spinach extract. Following ingestion, blood collection to quantify plasma
NO2 and lactate (La-) was performed, followed by 3 × 15-s Wingate Anaerobic Tests
(WAnTs). The rate of perceived exertion and heart rate were recorded after each WAnT.
Immediately upon the completion of the last WAnT, blood La- was measured again. Mean
power, peak power, fatigue index, rate of perceived exertion, heart rate, La-, and NO2
were analyzed and compared between the placebo and red spinach extract. Each trial was
separated by a 72 h washout period [8,9].

2.2.2. Supplementation and Plasma NO2

For red spinach extract supplementation, ~4.4 g of a red spinach extract supplement
(Spin Boost, Nutrigardens; Portland, OR, USA) with a standardized NO3 content of ~400 mg
was dissolved in water (~100 mL). For placebo treatment, tomato juice (Campbells, Camden,
NJ, USA) was given in an identical manner and volume [23,24]. Treatments were ingested
2 h prior to testing. The entirety of the supplement had to be consumed within 5 min.
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Participants were not aware of any experimental hypotheses. Supplements were distributed
by an independent researcher not involved in data collection, and the distribution order
was only divulged to researchers at the completion of all data analyses.

Measurement of plasma [NO2] was completed as previously reported by our lab [10].
Briefly, ~500 µL of capillary blood was collected 2 h after the corresponding treatment
ingestion through a finger prick [25]. A 2.0 mm depth blade lancet (17 gauge) was used to
initiate bleeding on either the third or fourth finger. Blood lactate (La-) was measured using
a portable lactate meter (Lactate Plus, Nova Biomedical, Waltham, MA, USA) and a massage
method was used to generate a steady blood flow. Whole blood was collected via capillary
action into potassium EDTA-coated microvette® tubes (SARSTEDT, Newton, NC, USA).
Whole blood was then centrifuged at 10,000 rpm for 10 min. The plasma was decanted,
and subsequently frozen at −80 ◦C until the end of data collection was performed. Plasma
concentrations of [NO2] were determined using a commercially available enzyme-linked
immunosorbent assay (ELISA) kit (Cayman Chemical, Ann Abor, MI, USA) [26,27]. All
samples were analyzed in duplicate and according to the manufacturer’s instructions.

2.2.3. Protocol

For each visit, participants donned a chest strap heart rate monitor (Polar, NY, USA), and
completed a 5 min warm-up on a mechanically braked cycle ergometer (Monark, Varberg,
Sweden) to a metronome set to 60 bpm. Participants completed 3 × 15 s WAnTs on an
electronically braked cycle ergometer (Velotron, Racermate Inc., Seattle, WA, USA). The seat
height on the cycle ergometer was adjusted so that no more than 5 degrees of knee flexion was
present when the leg was fully extended, and their feet were secured to the pedals with toe
straps [12]. Seat height was recorded on the first visit and used subsequently for the next visit.
Pedal resistance was calculated using 7.5% of the participant’s body mass. Participants started
each WAnT with a 10 s lead-in phase to allow for the attainment of maximal revolutions per
minutes. Resistance was then immediately applied at 7.5% of the participant’s body mass and
they pedaled maximally for 15 s. Each test was separated by 2 min of active recovery pedaling
at 50 watts at their own pace. After each WAnT, power measurements, heart rate, and rate of
perceived exertion (1–10 scale) were collected. Upon the completion of the last WAnT, blood
La- collection was repeated and performance variable were obtained via Velotron Software
(Racermate Inc, Seattle, WA, USA) and documented for further analysis. The fatigue index was
calculated as [(Wmax − Wmin)/test duration].

2.3. Data Analysis

Data analysis was completed using Jamovi software (Version 0.9; Sydney, Australia).
Confirmation of data normality was conducted using a Shapiro–Wilk test. Plasma NO2 was
analyzed using a pairwise t-test. Blood lactate was analyzed using a 2 × 2 repeated measures
ANOVA [condition × time]. All other variables were analyzed using a 2 × 3 repeated
measures ANOVA [condition × test] to detect main effects. In this regard, data are shown for
individual WAnTs and all WAnTs are averaged which effectively represents main effects for
treatment. A Bonnferroni–Holm post hoc test was used to determine differences in means for
significant main effects.

3. Results
3.1. Anaerobic Performance

Mean power, peak power, and fatigue index are shown in Figure 2. For mean power
(watts; Figure 2a), there was a main effect for test (p < 0.001 η2 = 0.116) but not for treatment
(p = 0.204; η2 = 0.056). There was no interaction between test and treatment (p = 0.166;
η2 = 0.003). Mean power during WAnT1 was higher than WAnT2 (p < 0.001) and WAnT3
(p< 0.001). Peak power during WAnT2 was also higher than WAnT3 (p < 0.001). For peak
power (watts; Figure 2b), there was a main effect for test (p < 0.001 η2 = 0.048) but not
for treatment (p = 0.076; η2 = 0.037). No interaction between test and treatment existed
(p = 0.370; η2 = 0.003). Specifically, peak power during WAnT1 was higher than WAnT2
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(p = 0.003) and WAnT3 (p = 0.001). Peak power during WAnT2 was also higher than WAnT3
(p = 0.050). Peak power during WAnT2 was also higher than WAnT3 (p < 0.001). For the
fatigue index (watts/s; Figure 2c), there was a main effect for test (p < 0.001 η2 = 0.088)
and treatment (p = 0.034; η2 = 0.075). No interaction between test and treatment existed
(p = 0.771; η2 = 0.006). For treatment, the fatigue index was significantly lower for red
spinach extract versus placebo (p = 0.034). The fatigue index during WAnT1 was lower
than WAnT2 (p = 0.006) and WAnT3 (p = 0.019).
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Figure 2. Changes in (a) mean power (W), (b) peak power (W), and (c) fatigue index (W/s) for WAnT1,
WAnT2, WAnT3, and all WAnTs averaged together (AVG) between placebo (placebo; grey bars) and
red spinach extract (dark red bars). Data are presented as mean ± SD. * indicates significantly
different from WAnT1 (p < 0.05). # indicates significantly different from WAnT2 (p < 0.05).

3.2. Heart Rate and Rate of Perceived Exertion

Heart rate and rate of perceived exertion are shown in Figure 3. For heart rate (bpm;
Figure 3a), there was a main effect for test (p = 0.009 η2 = 0.064) but not for treatment (p = 0.151;
η2 = 0.051). There was no interaction between test and treatment (p = 0.520; η2 = 0.003). Heart
rate during WAnT1 was lower than WAnT2 (p = 0.043) and WAnT3 (p = 0.016). The rate of
perceived exertion (1–10 scale; Figure 3b) showed a main effect for test (p < 0.001 η2 = 0.432)
but not for treatment (p = 0.379; η2 = 0.009). No interaction between test and treatment existed
(p = 0.132; η2 = 0.004). The rate of perceived exertion during WAnT1 was lower than WAnT2
(p < 0.001) and WAnT3 (p < 0.001). The rate of perceived exertion during WAnT2 was lower
than WAnT3 (p = 0.002).
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Figure 3. Changes in (a) heart rate (bpm) and (b) rate of perceived exertion (1–10 scale) for WAnT1,
WAnT2, WAnT3, and all WAnTs averaged together (AVG) between placebo (placebo; grey bars) and
red spinach extract (red spinach extract; dark red bars). Data are presented as mean ± SD. * indicates
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3.3. Plasma Nitrite (NO2) and Blood Lactate (La-)

Plasma NO2 concentrations taken 2 h after the ingestion of the corresponding sup-
plement along with pre- and post-exercise blood La- are shown in Figure 4. For plasma
NO2 (µM; Figure 4a), the ingestion of red spinach extract resulted in significantly higher
NO2 levels compared to placebo (p = 0.018). For blood La- (mmol/L; Figure 4b), there was
a main effect for time (p < 0.001 η2 = 0.841) and treatment (p = 0.012; η2 = 0.005). There
was also an interaction between test and treatment (p= 0.026; η2 = 0.003). Blood La- was
significantly higher post- compared to pre-exercise (p < 0.001) and for red spinach extract
compared to placebo (p = 0.012). At the post time point, La- was significantly higher with
red spinach extract compared to placebo (p = 0.030).
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Figure 4. Changes in (a) plasma nitrite (NO2; µM) and (b) pre- and post-exercise blood lactate
(mmol/L; La-) between placebo (placebo; grey bars) and red spinach extract (red spinach extract;
dark red bars). Data are presented as mean ± SD. * indicated significantly different from pre-exercise
(p < 0.05). † indicates significantly different from placebo (p < 0.05).
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4. Discussion

Acute red spinach extract ingestion has been previously reported to instill ergogenic
benefits during high-intensity exercise [18,28]. However, no studies to date have investi-
gated the effects of acute red spinach extract ingestion on repeated exercise performance in
athletic populations. Currently, the results from this study suggest that despite marked
increases in NO2, red spinach extract does not increase power-generating capabilities dur-
ing repeated sprints. However, red spinach extract ingestion resulted in lower fatigue
indices and higher post-exercise lactate values compared to placebo. While underpinning
mechanisms were not comprehensively determined, present results from this study indicate
red spinach extract effectively increases plasma NO2 levels and may aid in attenuating
fatigue during repeated sprint exercises.

Red spinach extract has been repeatedly shown to result in increases in plasma NO3
and NO2, which the current results support. For example, Subramanian et al. showed
that increases in NO3 and NO2 levels may begin as soon as 30 min post-ingestion of
red spinach extract and last for 8 h thereafter [29]. Of particular importance is that red
spinach extract treatment currently resulted in increases in NO2 to similar concentrations
to those previously reported with beetroot juice [10]. NO2 is the direct precursor to NO and
likely the mediator of physiological benefits. However, power output remained unaltered
despite these changes. This is in contrast to prior studies which may in part be due to the
current mode of exercise. Previous studies utilizing red spinach extract during exercise
have investigated supplementation in the context of high-intensity aerobic exercise [18,28].
The high reliance on oxidative metabolism during these activities may have allowed
possible alterations in blood flow from red spinach extract to more optimally aid in energy
regulation during exercise. While increases in oxygen/blood flow to skeletal muscle may
aid in phosphocreatine recovery [30], this may not have been fully realized from red spinach
extract supplementation and, thus, did not enhance performance. However, it should be
acknowledged that other forms of nitrate supplementation (i.e., beetroot juice) have been
shown to improve repeated sprint ability [9]. Future studies directly comparing various
NO3 sources will be needed to elucidate possible differences in effectiveness.

Despite the lack of changes in mean and peak power, red spinach extract resulted in a
lower fatigue index compared to the placebo. This suggests that while red spinach extract
may not have enhanced power output, it may have allowed for a greater maintenance of
power over the course of the WAnTs. Furthermore, post-exercise blood La- was significantly
higher compared to the placebo. Taken together, this may suggest that red spinach extract
imposed attenuation in fatigue, possibly through alterations in muscle La- removal. Indeed,
La- removal from muscle is tightly linked with monocarboxylate transporter (MCT) capacity
and fatigue indices [31]. Sources of dietary NO3 have also been implicated in promoting
skeletal muscle blood flow even in the absence of increased oxygen uptake [32]. Although
purely speculative, red spinach extract may have resulted in an increased skeletal muscle
blood flow which could have allowed for a greater removal of La- from the muscle into
the circulation. In turn, the increases in post-exercise La- may reflect greater removal from
muscle to the blood during exercise, thereby resulting in a lower fatigue index. However,
the reader is cautioned that this cannot be deduced from current data alone, and future
studies quantifying glycolytic flux and MCT activity with red spinach extract will be
necessary to confirm the conclusions from the study.

While this study provides novel information regarding red spinach extract supple-
mentation and repeated exercise performance in athletes, there were limitations. As a
preliminary investigation, the sample size of athletes was small, albeit desirable from a
training status perspective. While adequately powered statistically, more comprehensive
studies with larger and more diverse samples (i.e., different sports, expertise, age, etc.)
will be needed in order to generalize findings through collegiate athletics. Additionally,
the menstrual cycle of athletes was not strictly controlled, and we cannot rule out the
possibility of it influencing the results. Baseline NO− levels in women may differ at varying
cycles, even without supplementation [33]. This could in turn partially indicate that the
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effects of RSE may be higher when NO− is already elevated at baseline. Thus, we cannot be
certain that plasma NO− was the same among all participants. However, it is worth noting
that our rationale for omitting this control was due to previous evidence showing that
anaerobic performance is unchanged regardless of the menstrual cycle phase in addition to
the fact that females are grossly understudied in exercise research [34,35]. Future studies
will need to consider this for their population and investigate if red spinach extract remains
efficacious throughout the entire cycle.

5. Conclusions

In conclusion, red spinach extract ingestion induced large increases in plasma NO2
but failed to improve mean and peak power during repeated sprints. Heart rate and rate
of perceived exertion were largely unaffected by treatment. However, red spinach extract
lowered the fatigue index and resulted in elevated post-exercise La- levels compared to
placebo. This may suggest an improved La- clearance and ability to sustain repeated
exercise. From a practical standpoint and related to the current population, soccer involves
long bouts of intermittent sprinting which may result in an increased risk of fatigue com-
pared to other steady-state exercises. Current data suggest that acute red spinach extract
ingestion may help to prevent fatigue during intermittent high-intensity sprinting, which
may translate to better competition and/or game-play. However, testing on sports-specific
skills is warranted to understand how current findings translate to the field of gameplay.
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