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Abstract: This study explored the use of β-cyclodextrin (β-CD) as an additive to improve the
aqueous extraction of antioxidant polyphenols from peppermint (Mentha× piperita). For this purpose,
an initial single-factor screening was performed to test the effect of β-CD concentration on the yield of
polyphenol extraction. In the following step, the extraction process was optimized through response
surface methodology, considering β-CD and temperature as the process variables. The experimental
design included the yield in total polyphenols and total flavonoids, the ferric-reducing power and the
antiradical activity as the responses. The optimization showed that each response was maximized at
different levels of β-CD concentration, but in all cases, 80 ◦C was the optimum extraction temperature.
The composition of the extracts produced was profiled by high-performance liquid chromatography
(HPLC). A comparison of the β-CD extract with the aqueous and hydroethanolic extracts revealed
that the addition of β-CD at a specified concentration might boost aqueous polyphenol extraction.
On the other hand, the hydroethanolic extract exhibited the richest polyphenolic profile. It was also
shown that the β-CD extracts might possess improved antiradical activity. It was concluded that
β-CD-aided polyphenol extraction from M. piperita may provide extracts with enriched polyphenolic
composition and improved antioxidant characteristics, and this technique may be considered an
alternative to solvent extraction.
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1. Introduction

Medicinal and aromatic plants (MAPs) have been used globally for centuries by many
populations as folk remedies and food condiments. The scientific data accumulated to date
concur with the nutritional and pharmacological properties attributed to MAPs and have
substantiated several claims pertaining to their biofunctionality [1]. The ever-increasing
interest in MAPs and MAP-based products driven by consumer preferences and demands
for natural commodities with multifunctional characteristics has stimulated an important
trend for the development of novel botanical-derived ingredients for cosmetics, foods, and
pharmaceuticals [2,3].

Mentha × piperita L., collectively known as peppermint, is a plant species belonging
to the Lamiaceae family and occurs in temperate areas of Europe, Asia, North America,
Africa, and Australia. This species is exceptionally rich in polyphenolic phytochemicals,
which may account for up to 19–23% of its dry weight [4], and they are represented mainly
by hydroxycinnamates, flavanone, and flavone glycosides [5]. There is a significant body
of information evidencing the high biological potential of M. piperita, including cytotoxicity
activities, anticarcinogenic and antioxidant activities, antimicrobial activities, and anti-
inflammatory properties; several of these attributes have been ascribed to polyphenolic
substances [6,7]. However, to date, the development of sustainable extraction processes to
produce polyphenol-containing extracts from M. piperita is very limited.

The great interest in the polyphenolic composition of MAPs has currently led to the
development and implementation of sustainable, cutting-edge extraction methodologies,
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and in this direction, an assortment of low-cost, green techniques has been proposed as more
precise and efficient compared to conventional ones [8,9]. On the basis of Green Chemistry
principles, there is a dire necessity for the establishment of eco-friendly extraction processes
with bio-based alternative solvents to replace petroleum-based, conventional volatile ones.
Towards this direction, the utilization of a benign and environmentally friendly extraction
medium is imminent to the sustainable character of an extraction process. This medium
should be highly effective for polyphenol extraction, non-toxic, readily available, and
inexpensive and should be produced from recyclable materials [10,11].

Cyclodextrins (CDs) are a group of cyclic oligosaccharide supramolecules composed of
D-glucopyranose subunits linked with α(1→4) glycosidic bonds. The most commonly used
CDs are α-, β- and γ-CDs, comprised of six, seven, and eight glucose units, respectively.
These compounds are produced through enzymic degradation of starch, and they have
a shape of a truncated cone with the hydroxyl groups being oriented towards the outer
surface of the cavity. The major characteristic of this 3D configuration of the CD molecules
is the hydrophilic outer surface and the hydrophobic internal cavity. These structural
features endow CDs with water solubility but and the ability to encapsulate molecules of
appropriate polarity and suitable size to form inclusion complexes [12,13].

Although the use of CDs may have a spectrum of applications in chemical, pharmaceu-
tical, and other disciplines, there is a steady annual increase in uses related to food [14,15].
CDs in food products may serve to stabilize flavors, solubilize poorly water-soluble sub-
stances, protect labile additives, etc. However, over the last years, the utilization of CDs
for polyphenol extraction has attracted significant interest, making CD-based polyphenol
extraction a state-of-the-art trend, which might offer innovative opportunities in the de-
velopment of green processes. Despite the fact that conventional solvents routinely used
for polyphenol extraction (e.g., acetone, ethyl acetate, ethanol, etc.) may exhibit excellent
efficiency, their use may be restricted due to, e.g., cost, State laws, environmental concerns,
etc. Thus, aqueous CD systems may be viewed as alternative green extraction media, with
a high perspective in this regard [16].

This study investigated the efficiency of β-cyclodextrin (β-CD) aqueous solutions
on polyphenol extraction from M. piperita. The examination was based on an experiment
designed to include two critical process variables, the β-CD concentration and temperature.
The extracts’ produced characteristics were assessed by estimating their polyphenolic
load, antioxidant properties, and polyphenolic composition. To the best of the authors’
knowledge, this is the first report on the extraction of M. piperita polyphenols employing
aqueous β-CD. The sequence of the procedures followed is depicted in Scheme 1.
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2. Materials and Methods
2.1. Chemicals–Reagents

2,2-Diphenyl-1-picrylhydrazyl (DPPH) was obtained from Alfa Aesar (Karlsruhe, Ger-
many). Sodium acetate anhydrous, sodium carbonate anhydrous, and aluminum chloride
anhydrous were from Penta (Prague, Czech Republic). L-Ascorbic acid was purchased
from Carlo Erba (Milano, Italy). 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ) was from Fluka
(Steinheim, Germany). Gallic acid monohydrate, absolute ethanol, and Folin-Ciocalteu
regent were from Panreac (Barcelona, Spain). Iron (III) chloride hexahydrate (FeCl3) was
from Merck (Darmstadt, Germany). Rutin hydrate was from MP Biomedicals (Illkirch,
France). Luteolin 7-O-rutinoside, eriocitrin, rosmarinic acid, narirutin, caffeic acid, and hes-
peridin were from Sigma-Aldrich (Steinheim, Germany). β-Cyclodextrin (98%) was from
Acros Organics (Geel, Belgium). Acetonitrile and formic acid used for chromatographic
determinations were HPLC grade and obtained from Panreac (Barcelona, Spain).

2.2. Plant Material and Handling

Certified peppermint (Mentha × piperita) was purchased from a local store (Karditsa,
Central Greece) in dried form, in plastic, air-tight packaging. The material was pulverized
with a 1400 W domestic blender (Camry, Poland), at room temperature, at intermittent
periods of 15 s (2–3 repetitions), and then sieved using a Fritsch Analysette 3 device (Idar-
Oberstein, Germany). Powder with around 245 µm particle diameter was collected and
stored in the freezer (−40 ◦C).

2.3. Extraction Procedures

Extractions were accomplished with 10 mL of solvent and 1 g of dry mass (DM) to
provide a liquid-to-solid ratio of 10 mL g−1. The dried material and the solvent were
placed into a 25-mL Duran™ glass bottle immersed in an oil bath. Stirring and heating
of the mixture were carried out with a temperature-controlled hotplate (Witeg, Wertheim,
Germany) set at 500 rpm. For the single-factor experiments aimed at screening various
β-CD concentrations, extractions were accomplished at 40 ◦C. The design dictated the
extraction temperature for the extractions performed for the response surface methodology
(Table 1).

Table 1. Codified and actual values of the process variables employed to construct the experimen-
tal design.

Process Variables Codes Coded Variable Level

−1 0 1

CCD (mM) X1 0 1 2
T (◦C) X2 40 60 80

Aqueous β-cyclodextrin (β-CD) solutions were prepared in deionized water. Because
β-CD has a solubility of 18.5 mg mL−1 (approximately 15 mM) at 25 ◦C, β-CD concen-
trations tested were 1, 2, 4, 8, and 15 mM [17]. Extractions were then accomplished as
described above. Control extracts with 60% (v/v) ethanol and deionized water were pre-
pared at 70 ◦C, with extraction times of 60 and 180 min, respectively. These settings are
average values of extraction conditions reported in a previous thorough study [18]. All
extracts were centrifuged at 10,000× g for 10 min prior to chemical analyses.

2.4. Experimental Design and Response Surface Methodology (RSM)

Based on preliminary experiments and previously published data [19], two indepen-
dent variables—the β-CD concentration (CCD) and temperature (T)—were selected to study
their effect on four responses—the total polyphenol yield (YTP), the total flavonoid yield
(YTFn), the ferric-reducing power (PR), and the antiradical activity (AAR). The RSM used a
three-level, two-variable central composite design (Table 1) consisting of 11 experimental
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runs (design points) to investigate the response pattern and to determine the optimum com-
bination of independent (process) variables. Codification of the variables was accomplished
using the following equation:

xi =
Xi − X0

∆Xi
, xi = 1, 2 (1)

xi is the dimensionless value of an independent variable; Xi is the real (actual) value
of an independent variable; X0 is the real (actual) value of an independent variable at the
center point, and ∆Xi = step change. The data from the experimental design were elaborated
with second-order polynomial regression analysis employing the least square regression
methodology to determine the mathematical model parameters. The experimental data
were fitted to the second-order polynomial model using the equation shown below:

Yi = β0 + ∑k
i=1 βiXi + ∑k

i=1 βiiX2
i + ∑k−1

i = 1
i < j

∑k
j=2 βijXiXj (2)

where X1, X2, . . . , Xk are the independent (process) variables which affect the responses
Yi; β0, βi (i = 1, 2, . . . , k), βii (i = 1, 2, . . . , k), and βij (i = 1, 2, . . . , k; j = 1, 2, . . . , k) are the
regression coefficients for intercept, linear, quadratic, and interaction terms, respectively;
k is the variables number. The responses from the experimental design were subjected to
multiple nonlinear regression analyses to determine the second-order polynomial model
coefficients. Model evaluation was based on analysis of variance (ANOVA) and lack-of-
fit test. Three-dimensional surface response plots were constructed to provide a visual
projection of the model equation.

2.5. Spectrophotometric Analyses
2.5.1. Total Polyphenols

All measurements were performed with a Shimadzu UV-1700 (Shimadzu Europa
GmbH, Duisburg, Germany) spectrophotometer. For the analysis of total polyphenols (TP),
a micro-scale methodology was employed, as previously described [20]. In short, 0.1 mL
of Folin-Ciocalteu reagent was added to an equal extract volume and allowed to react for
2 min. Then, a 0.8 mL Na2CO3 solution (5% w/v) was added, followed by incubation of
the mixture in a water bath for 20 min at 40 ◦C. Total polyphenol content was calculated
from the absorbance at 740 nm, and a calibration curve was constructed using gallic acid
standard solutions (10–80 mg L−1). The expression of the results was as mg gallic acid
equivalents (GAE) L−1.

2.5.2. Total Flavonoids

For the analysis of total flavonoids, a protocol described elsewhere was implemented [21].
The sample (0.1 mL) was combined with 0.04 mL of a reagent containing 5% (w/v) AlCl3
and 0.5 M CH3COONa, and 0.86 mL 35% (v/v) ethanol. The mixture was left for 30 min
at ambient temperature before measuring the absorbance at 415 nm. Content in total
flavonoid was determined as mg rutin equivalents (RtE) per DM, using a rutin calibration
curve (30–300 mg L−1).

2.5.3. Antioxidant Activity

Two tests were used to evaluate the antioxidant activity of the extracts produced,
the ferric-reducing power (PR) and the antiradical activity (AAR). Briefly, AAR was mea-
sured by mixing a 0.025 mL sample with 0.975 mL DPPH solution and taking the absorbance
at 515 nm, at t = 0 and t = 30 min. AAR was expressed as a µmol DPPH g−1 DM, as de-
scribed elsewhere [22]. The ferric-reducing power was measured by incubating a 0.05 mL
sample with 0.05 mL of iron chloride, for 30 min, at 37 ◦C. Then, 0.9 mL TPTZ solution was
added, and the absorbance was read at 625 nm. Results were given as µmol ascorbic acid
equivalents (AAE) per g DM, employing a calibration curve (50–300 µM) with ascorbic acid
as standard [22].
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2.6. Quantitative High-Performance Liquid Chromatography (HPLC)

The liquid chromatograph used for the analyses was a Shimadzu CBM-20A (Shimadzu
Europa GmbH, Duisburg, Germany), equipped with a CTO-20AC column oven, a SIL-20AC
autosampler, and a Shimadzu SPD-M20A detector. The system was controlled by the
Shimadzu LC solution software. Details regarding the column used and other analytical
parameters have been provided elsewhere [22]. Quantification was performed at 280,
320, and 345 nm for flavanones, hydroxycinnamates, and flavones, respectively. For
the quantitative determinations, calibration curves of eriocitrin (R2 = 0.9990), narirutin
(R2 = 0.9999), hesperidin, caffeic acid (R2 = 0.9980), rosmarinic acid R2 = 0.9990), and
luteolin rutinoside (R2 = 0.9980) were constructed (1–50 µg mL−1), from standard solutions
prepared in HPLC-grade methanol.

2.7. Statistical Elaboration

The JMP™ Pro 13 (SAS, Cary, NC, USA) software was used to derive the experimental
design and the statistical analyses associated with the response surface methodology. Linear
regression analyses were conducted with SigmaPlot™ 12.5 (Systat Software Inc., San Jose,
CA, USA). The extraction procedures were performed at least twice, and the quantitative
analyses were run in triplicate. The values reported are means ± standard deviation.

3. Results and Discussion
3.1. The Effect of β-CD Concentration

Prior to setting up the experimental design, an issue of high significance was the range
of CCD that should be tested. Thus, a single-factor experiment was judged necessary in
the light of previous recent investigations, which indicated that CCD increases beyond
a certain limit did not provide significantly higher total polyphenol yield (YTP) [19,23].
Figure 1 depicts the results of the testing of the effect of CCD on YTP, and it can be seen
that for extractions with CCD higher than 1 mM, the increase in YTP was either lower or
statistically non-significant (p < 0.05). This was emphasized by the finding that a solution
with CCD of 15 mM afforded a YTP higher by only 5.4% compared to that with CCD of
1 mM. On this ground, it was evidenced that a range of CCD from 0 to 2 mM would actually
reveal a significant effect on YTP. Furthermore, considering recent kinetic studies, which
showed that extraction time longer than 180 min did not afford significant changes in YTP,
irrespective of the extraction temperature [17,24], this resident period was adopted for all
subsequent experiments.
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3.2. Extraction Optimization by Response Surface Methodology

The assessment of model fitting and the suitability of the response surface was based
on the analysis of variance (ANOVA) and lack-of-fit test (Figures S1–S4, supplementary file),
taking into consideration the closeness of the predicted and measured response values
(Table 2). The relevant statistical processing revealed the significance of the coefficients
obtained for each model according to the second-degree polynomial equations (Figure S1,
inset table “Parameter estimates”). These equations, composed only of the significant
terms, are presented in Table 3. The R2 determined in each case gave an indication of
the total variability around the mean, explained by the model. It can be seen that all R2

determined were higher than or equal to 0.97, and it could be supported that the models
displayed a good fit to the sample data. The p value for lack-of-fit (confidence interval of
95%) was also significant for all responses considered, indicating that the fitted models
may be very good predictors. For each response, the effect of the variables was depicted
as 3-dimensional diagrams, and it can be distinguished that the response pattern for YTP
and PR was very similar (Figure 2). This was also the case for YTFn and AAR. These trends
might indicate that the conditions that favored obtaining extracts with increased total
polyphenol concentration also displayed increased PR. A similar claim might hold true for
YTFn and AAR.

Table 2. The design of experiment used for the response surface methodology, including the design
points and the predicted and measured responses.

Design Point Process Variable Responses

X1 (C) X2 (T) YTP
(mg GAE g−1 DM)

YTFn
(mg RtE g−1 DM)

AAR
(µmol DPPH g−1 DM)

PR
(µmol AAE g−1 DM)

Measured Predicted Measured Predicted Measured Predicted Measured Predicted

1 −1 −1 32.66 32.85 17.95 17.23 402.93 368.26 241.17 238.46
2 −1 1 57.66 57.27 27.12 26.63 615.67 613.93 407.22 415.96
3 1 −1 33.02 34.25 18.05 17.97 259.87 272.60 260.55 247.96
4 1 1 54.83 55.49 26.94 27.09 700.70 746.26 355.52 354.46
5 −1 0 40.09 40.29 18.07 19.29 465.04 503.81 266.82 260.58
6 1 0 42.00 40.11 19.96 19.89 571.85 522.14 221.85 234.59
7 0 −1 33.46 32.04 23.00 23.80 522.50 544.14 207.76 222.58
8 0 1 55.14 54.87 32.72 33.06 946.79 903.81 373.28 364.54
9 0 0 38.37 38.69 26.53 25.79 729.40 736.68 245.48 226.95

10 0 0 37.02 38.69 25.05 25.79 733.12 736.68 234.56 226.95
11 0 0 39.04 38.69 27.02 25.79 739.16 736.68 223.24 226.95

Table 3. Equations (models) are constructed by the response surface methodology for each re-
sponse considered.

Response Equation (Model) R2 p

YTP (mg GAE g−1 DM) 38.69 + 11.42 X2 + 4.77 X2
2 0.99 <0.0001

YTFn (mg RtE g−1 DM) 25.79 + 4.63 X2 − 6.21 X1
2 + 2.64 X2

2 0.98 0.0005
AAR (µmol DPPH g−1 DM) 736.68 + 179.83 X2 − 223.71 X1

2 0.97 0.0009
PR (µmol AAE g−1 DM) 226.95 + 71.00 X2 + 66.63 X2

2 0.97 0.0006

The p value for each of the terms of the equations (models) was determined to in-
vestigate the contribution of the linear, cross (interaction), and quadratic effects of the
process variables on the responses. In this regard, the ANOVA showed that variable X1,
which corresponds to CCD, had a non-significant impact on YTP (Table 3). This finding
suggested that polyphenol extraction was not facilitated in the presence of β-CD. This was
in accordance with data on β-CD-aided polyphenol extraction from Salvia fruticosa, where
the concentration of β-CD was tested up to 13 mM [24]. On the other hand, it contrasted
results from earlier investigations on cyclodextrin-aided polyphenol extraction from solid
onion waste, where β-CD was demonstrated to have a significant effect [17]. The same
held true for polyphenol extraction from red grape pomace [25]. The addition of β-CD
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did not affect the reducing properties of the extracts produced, as implied by the model
(equation) given in Table 3. On the contrary, the role of CCD was significant for both YTFn
and AAR. This might indicate that flavonoid extraction was enhanced upon the addition of
β-CD, and so did the antiradical activity of the extracts.
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With reference to temperature, the optimization for all responses showed that the
values were maximized at 80 ◦C (Table 4). This was in line with a recent thorough in-
vestigation, which suggested 76 ◦C to be the optimum T for polyphenols extraction from
mint, using various solvents, such as water, aqueous ethanol, aqueous glycerol, and a deep
eutectic solvent [18]. Optimizing AAR and PR required 80 ◦C was also strong evidence
that no loss of antioxidant activity occurred at this temperature. However, an optimum
temperature of as low as 50 ◦C has also been reported for peppermint extractions performed
with water/glycerol mixtures [26].
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Table 4. Maximum values for each response considered and the optimal conditions, as predicted by
the desirability function (Figures S1–S4).

Response Maximum Predicted Value Optimal Conditions

C (mM) T (◦C)

YTP (mg GAE g−1 DM) 57.27 ± 3.38 0 80
YTFn (mg RtE g−1 DM) 33.07 ± 1.96 1.02 80

AAR (µmol DPPH g−1 DM) 908.70 ± 87.46 1.15 80
PR (µmol AAE g−1 DM) 415.96 ± 36.55 0 80

3.3. Extraction Yield and Antioxidant Properties

Considering that the level of CCD for optimization of all responses (YTP, YTFn, AAR,
and PR) did not coincide, a peppermint extract was prepared using a β-CD solution
with a concentration of 1.08 mM. This value represented an average of the optimum
required to achieve maximum YTFn and AAR (Table 4), and it was regarded as a fair
compromise to come up with an extract enriched in flavonoids with increased antiradical
activity. This extract’s composition and antioxidant characteristics were then compared
to those of extracts prepared with water and 60% aqueous ethanol. It can be viewed in
Figure 3A that the extract produced with β-CD had 22 and 31% higher YTP compared
to the aqueous and hydroethanolic extracts, respectively. On the other hand, the β-CD
extract displayed 15% lower YTFn than the hydroethanolic extract but 18% higher than the
aqueous extract (Figure 3B). Considering both YTP and YTFn, it could be argued that the
β-CD-aided extraction of polyphenols from peppermint may provide yields comparable to
those obtained with a green organic solvent (aqueous ethanol) and even more enhanced
than those produced with aqueous extraction.

With regard to AAR, the β-CD extract was the most active, exhibiting 11 and 27% higher
performance compared to the hydroethanolic and aqueous extract, respectively (Figure 3C).
However, the pattern seen for PR was different (Figure 3D) since both the aqueous and
hydroethanolic extracts were more powerful than the β-CD extract. This diversified
outcome indicated that the use of β-CD might contribute towards obtaining extracts with
enhanced AAR, but not PR. A similar phenomenon has been reported in polyphenol-
containing extracts obtained from onion solid wastes with various cyclodextrins, where an
enhancement was seen for AAR, as opposed to PR, which was found to be weakened [17].
Likewise, red grape pomace polyphenol extracts generated with β-CD were shown to
possess significantly higher AAR than aqueous or hydroethanolic extracts [25]. Studies
with coffee extracts were also in the same line [27], but a kinetic investigation on the
expression of AAR by olive leaf extracts suggested the presence of β-CD to be rather
inhibitory in this regard [28]. The explanation for these observations may lie in studies on
pure polyphenols, such as chlorogenic acid [29], quercetin [30], and rosmarinic acid [31].
These substances were proven to display enhanced antioxidant activity when encapsulated
in CDs compared to their non-encapsulated (free) state. This behavior was attributed to
the fact that polyphenol radicals may be more effectively stabilized when encapsulated
in a CD hydrophobic cavity, which in turn may endow polyphenols with higher radical-
scavenging ability.
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3.4. Polyphenolic Profile

The extract prepared using a β-CD solution with a concentration of 1.08 mM at 80 ◦C
was analyzed by HPLC to trace its polyphenolic profile and obtain quantitative information
regarding the principal constituents. The analyses were also accomplished for the aqueous
and the hydroethanolic extracts to evaluate the β-CD-aided extraction thoroughly. The
chromatogram monitored at 320 nm revealed the presence of eight major polyphenols
(Figure 4), which were tentatively identified by comparing their retention times and UV-vis
characteristics with those of original standards. Luteolin 7-O-glucuronide was identified
by liquid chromatography-mass spectrometry, as previously described [24].
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Figure 4. Chromatograms of M. piperita extracts were recorded at 320 nm. AqEt extract corresponds
to 60% aqueous ethanol. For the β-CD-aided extraction, a β-CD concentration of 1.08 mM was used at
80 ◦C for 180 min. Peak assignment: 1, caffeic acid; 2, eriocitrin; 3, luteolin 7-O-rutinoside; 4, luteolin
7-O-glucuronide; 5, narirutin; 6, hesperidin; 7, rosmarinic acid; 8, luteolin derivative.
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In Table 5, quantitatively, the principal metabolite in any extract analyzed was erioc-
itrin, followed by luteolin 7-O-rutinoside and rosmarinic acid.

Table 5. Analytical polyphenolic profile of the extracts obtained with β-CD and the control solvents.
AqEt denotes 60% aqueous ethanol. Values reported are means ± standard deviation.

# Compound Yield (mg g−1 dm)

Water AqEt β-CD

1 Caffeic acid 0.20 ± 0.01 0.18 ± 0.03 0.31 ± 0.00 a

2 Eriocitrin 25.65 ± 2.14 36.48 ± 2.97 a 29.22 ± 1.97
3 Luteolin 7-O-rutinoside 5.80 ± 0.80 9.16 ± 0.87 a 7.07 ± 0.37
4 Luteolin 7-O-glucuronide 2.89 ± 0.19 3.43 ± 0.01 3.29 ± 0.25
5 Narirutin 0.18 ± 0.00 0.30 ± 0.04 a 0.25 ± 0.04
6 Hesperidin 2.23 ± 0.21 3.24 ± 0.44 a 2.51 ± 0.05
7 Rosmarinic acid 3.30 ± 0.21 4.60 ± 0.29 a 3.44 ± 0.14
8 Luteolin derivative 2.53 ± 0.15 4.11 ± 0.08 a 2.61 ± 0.20

Sum 44.18 63.00 a 50.12
a Designate statistically different value within rows.

This was in line with previous examinations, which demonstrated these three com-
pounds to be dominant in M. piperita extracts [32,33]. Other studies showed that in organic
M. piperita, caffeic acid occurred at levels higher than 2.40–3.0 mg g−1 [34,35]. In this study,
the highest yield of caffeic acid was 0.31 mg g−1, achieved with β-CD-aided extraction
(Table 5), and it was 42% higher than that obtained with 60% ethanol. Furthermore, ros-
marinic acid was reported to occur at 54.52 mg g−1, but in this study, the highest yield of
4.60 mg g−1 was determined for the hydroethanolic extract.

In fact, for all other polyphenols considered, the hydroethanolic extraction was shown
to afford the highest yields, with the exception of luteolin 7-O-glucuronide, for which no
statistical difference was found between the yield attained with β-CD and aqueous ethanol.
Overall, the extraction with aqueous ethanol yielded 63 mg g−1, which was by almost
20% higher than that obtained with β-CD and 30% than that obtained with water.

4. Conclusions

This examination illustrated the effect of β-CD addition on the performance of aqueous
extraction of polyphenolic antioxidants from M. piperita. The implementation of response
surface methodology suggested that incorporation of β-CD at levels of approximately
1.02–1.15 mM and a temperature of 80 ◦C may effectively increase yield in total flavonoids,
which are some of the major M. piperita constituents, but also provide extracts with im-
proved antiradical activity. The chromatographic analyses revealed that extraction with
β-CD-produced extracts is enriched in antioxidant polyphenols, but extraction with a
hydroethanolic solution was even more effective. In every extract examined, the flavonoid
glycoside eriocitrin was the predominant constituent, followed by luteolin 7-O-rutinoside
and rosmarinic acid. The outcome of the study suggested the β-CD-aided aqueous extrac-
tion of M. piperita polyphenols to be an alternative to conventional organic solvents. It is
proposed that such processes may be improved, e.g., by considering other cyclodextrins
(i.e., hydroxypropyl β-CD). A similar investigation is currently in progress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/oxygen2040029/s1, Figure S1: Desirability function (graph A),
and plot of predicted vs. actual values of the response (YTP) (plot B), for the optimization of the
extraction of M. piperita polyphenols performed with β-CD. Inset tables provide statistics associated
with the assessment of the model derived. Values with color and asterisk are statistically significant;
Figure S2: Desirability function (graph A), and plot of predicted vs. actual values of the response
(YTFn) (plot B), for the optimization of the extraction of M. piperita polyphenols performed with
β-CD. Inset tables provide statistics associated with the assessment of the model derived. Values
with color and asterisk are statistically significant; Figure S3: Desirability function (graph A), and plot
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of predicted vs. actual values of the response (AAR) (plot B), for the optimization of the extraction
of M. piperita polyphenols performed with β-CD. Inset tables provide statistics associated with
the assessment of the model derived. Values with color and asterisk are statistically significant;
Figure S4: Desirability function (graph A), and plot of predicted vs. actual values of the response
(PR) (plot B), for the optimization of the extraction of M. piperita polyphenols performed with β-CD.
Inset tables provide statistics associated with the assessment of the model derived. Values with color
and asterisk are statistically significant.
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