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Abstract: Before fertilization, spermatozoa must undergo a process called capacitation in order to
fulfill their fertilization potential. This includes a series of structural, biochemical, and functional
changes before a subsequent acrosome reaction and fusion with the oocyte. However, low tempera-
tures during cryopreservation may induce a premature activation of capacitation-like changes, also
known as cryocapacitation, immediately after thawing, which may lead to a decreased viability,
motility, and fertilization ability of cryopreserved spermatozoa. Furthermore, cryopreservation is
responsible for the overgeneration of reactive oxygen species (ROS) such as superoxide, hydrogen per-
oxide, and hydroxyl radicals, which may result in the development of oxidative stress, cell membrane
damage, and lipid peroxidation. Despite that, both capacitation and cryocapacitation are considered
to be oxidative events; however, potential beneficial or detrimental effects of ROS depend on a wide
array of circumstances. This review summarizes the available information on the role of free radicals
in the process of capacitation and cryocapacitation of spermatozoa.
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1. Introduction

Free radicals (FRs) may be described as unstable molecules with an unpaired electron
in its atomic orbital. As a natural by-product of oxygen metabolism, they present with both
toxic as well as beneficial properties, which are involved in the regulation of a multitude
of intracellular pathways responsible for sperm capacitation, hyperactivation, acrosome
reaction (AR), and fusion with the ovum [1]. On the contrary, if the production of FRs
accelerates, the process may lead to the development of oxidative stress (OS). OS is a
condition primarily caused by an imbalance between the generation of FRs and the antioxi-
dant ability of cells to detoxify these highly reactive molecules [2,3]. This disproportion
negatively affects the structural integrity and functional activity of a wide range of cellular
components including carbohydrates, nucleic acids, lipids, and proteins [4].

Based on their backbone, FR can be divided into reactive oxygen species (ROS), reactive
nitrogen species (RNS), and other nonradical reactive species [5]. The most common FRs
belong to the family of ROS and include the superoxide anion (O2

•−), hydroxyl radical
(OH•), and hydrogen peroxide (H2O2). The group of RNS is presented by nitric oxide
(NO•), nitrogen dioxide (NO2

•), and peroxynitrite (NO3
−) [6,7]. In general, oxygen is

necessary for aerobic metabolism of spermatozoa, but it also plays the main role in the
generation of ROS, which could eventually cause a variety of anomalies such as head and
acrosome defects, mid piece abnormalities, cytoplasmatic droplets, or tail dysfunction [8].
Nowadays, seminal OS is one of the main reasons for the development of male sub- or
infertility [9,10].

Spermatozoa contain a high concentration of polyunsaturated fatty acids (PUFAs),
which make them vulnerable to lipid peroxidation (LPO) as lipid structures of the cell
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membranes are one of the primary targets for ROS. Naturally, male reproductive cells have
their own defense against ROS represented by the antioxidant enzymes present in the
cytoplasm; however, most of them are lost during spermatogenesis [11].

As mentioned earlier, a specific amount of ROS is important for the regulation of
biological events such as sperm capacitation. The capacitation process includes a cascade of
biochemical and structural transformations, which are necessary for spermatozoa to reach
their full fertilization potential [12]. Under physiological conditions, capacitation begins
immediately following ejaculation, or it may be induced under laboratory conditions by
using a specific capacitation medium enriched with heparin or L-arginine [13,14]. After
completing capacitation, spermatozoa are able to undergo AR and fertilize the oocyte. The
process includes changes in the membrane fluidity and composition, a higher concentration
of intracellular calcium, alkalization of cytoplasm, triggering of ion channels, and gener-
ation of a small amount of ROS, which work as molecular messengers for the initiation
of protein tyrosine phosphorylation modulated by the cAMP-dependent pathway [14,15]
(Figure 1).
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Over the years, cryopreservation has become a routine technique used for the long-
term preservation of fertile male gametes collected not only from domestic animals [16,17]
but also from humans [18,19]. Despite the benefits of cryopreservation, this technology may
cause irreversible changes to cellular compounds and structures. What is more important
is that cryodamage is associated with an increased generation of ROS such as O2

•−, H2O2,
and OH• [16,17,19]. It has been reported that the cryopreservation process including
dilution, cooling, and freezing/thawing protocols is responsible for the occurrence of
capacitation-like changes in spermatozoa, also known as cryocapacitation [17] (Figure 1).
The cryopreservation itself significantly reduces the quality of semen after thawing and is
characterized by the destabilization of the cell plasma membrane accompanied by the loss
of sperm movement and viability. Disruption of the membrane lipid architecture decreases
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the capability of spermatozoa to reach and penetrate the oocyte, which is a commonly
observed complication of premature capacitation and AR [20].

As such, the objective of this review was: (1) to summarize and evaluate the involve-
ment of free radicals in the process of capacitation and cryocapacitation, (2) to define
physiological and pathological roles of ROS in the sperm function, and (3) to describe the
negative effects of cryopreservation and suggest possible prevention strategies against
cryodamage.

2. The Origin of ROS in Semen

Several sources of ROS in semen have been identified such as seminal leukocytes,
abnormal spermatozoa, or mitochondria. The presence of leukocytes in ejaculate is often
associated with infection or inflammation [7,11]. According to Li et al., high concentrations
of ROS and inflammatory cytokines strongly correlate with the quantity of leukocytes in
semen collected from sub-fertile men [21]. Activated peroxide-positive leukocytes including
polymorphonuclear (PMN) leukocytes and macrophages are able to produce 100 times
higher levels of ROS when compared to inactive leukocytes [22]. Activated leukocytes are
also responsible for NADPH oxidase catalysis of free radicals by hexose for inflammatory
protection. Leukocytospermia is a condition characterized by a high concentration of white
blood cells in semen. According to the World Health Organization (WHO), it is defined
as the incidence of 1 × 106 leukocytes/mL in semen, which may depend on the presence
and/or range of a urogenital infection in men [23,24].

Based on previous studies, a positive correlation has been established between high
levels of seminal ROS and poor sperm morphology. Out of several different sperm abnor-
malities, cytoplasmic droplets or residual cytoplasm were identified as the most involved
in ROS generation. Usually, these cytoplasmatic residues appear attached to the elongated
spermatid released from the germinal epithelium and migrate away from the sperm neck
toward the end of the midpiece during epididymal transport [25]. The number of imma-
ture or morphologically retarded spermatozoa is expressed by the sperm deformity index
(SDI), which is a quantitative representation of the sperm morphological quality in human
andrology [26–28]. Cytoplasmic droplets mediate the production of ROS by the cytosolic
enzyme called glucose-6-phosphate dehydrogenase (G6PD) via two pathways. The first
one is catalyzed by the nicotinamide adenine dinucleotide phosphate (NADPH), which
is localized in the plasmatic membrane, while the second one is driven by the NADPH-
dependent oxido-reductase present in the middle piece of spermatozoa. Indeed, plasmatic
membranes of spermatozoa and mitochondria have been identified as two main producers
of ROS in human semen [29,30].

Despite most of the cytoplasm being reduced during spermatogenesis, mitochondria
remain in the midpiece of the sperm flagellum. The main role of these organelles lies in
the production of energy in the form of adenosine triphosphate (ATP) through oxidative
phosphorylation, which is elementary for the sperm movement [31]. The key to the
generation of ROS is associated with the activation of the mitochondrial electron transport
chain via five protein complexes (complex I–V), which can transport electrons from NADPH
to oxygen (O2). Positively charged protons and protein complex V (ATP synthase, 19
protein subunits) create the mitochondrial membrane potential, allowing the production
of ATP [31,32]. However, a potential leakage of electrons from the mitochondrial electron
transport chain caused by stress conditions leads to a partial reduction of O2 into O2

•−.
Following that, superoxide dismutases (SOD enzymes) will dismutate O2

•− to H2O2 in the
intermembrane space of mitochondria. Moreover, O2

•− has the ability to react with nitric
oxide (NO) and generate peroxynitrite (ONOO2

•−) [33,34].
On the other hand, high levels of PUFAs present in the membranes stimulate the pro-

duction of lipid aldehydes such as acrolein, malondialdehyde (MDA), or 4-hydroxynonenal
(4HNE), as well as lipid metabolites including lipid peroxyl or alkoxyl radicals [35]. These
substances are strong electrophiles that may disrupt the functionality of the mitochondrial
electron transport chain by their covalent binding into mitochondrial proteins (mainly to
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succinic acid dehydrogenase) and thus dysregulate the electron flow. The result of this
complex chemical event is a self-repetitive cycle where the amount of PUFAs positively
corelates with the generation of mitochondrial ROS and lipid aldehydes. Moreover, 4HNE
may bind to mitochondrial proteins, and subsequently induce electron leakage and ROS
overgeneration [35,36].

3. Relationship between Capacitation and ROS

The process of mammalian sperm capacitation was first mentioned in 1951 by Chang [37]
and Austin [38]. This molecular event combines a series of morphological and biochemical
changes, which allow spermatozoa to achieve their full fertilization potential. According
to Visconti et al., capacitation may be divided into fast and slow events. The fast or early
activation is characterized by a vigorous and asymmetric movement of the flagellum right
after ejaculation. Slow and late events include changes in the sperm motility patterns
and acquisition of the ability to fertilize the ovum [39]. The initiation of capacitation is
accompanied with an efflux of cholesterol from the plasmatic membrane by albumin, in-
creasing the membrane permeability. Subsequently, membrane translocation of bicarbonate
(HCO3−) increases the intracellular pH and influx of calcium (Ca2+). After that, activated
Ca2+ channels and secondary messenger systems including adenylyl cyclase (AC) lead into
the escalation of cAMP production and induction of protein phosphorylation, specifically
tyrosine phosphorylation [39,40]. This stimulates the complexes of protein kinases and
the generation of a specific amount of ROS necessary for this oxidative redox-regulated
process [41,42].

Under physiological conditions, a low concentration of ROS produced by spermatozoa
is required for the activation of signal transduction processes associated with capacitation.
More than 20 years ago, de Lamirande and Gagnon [43] suggested that capacitation is a
ROS-dependent process. According to the authors, the addition of superoxide dismutase
(SOD) had a capacitation-preventive effect on human spermatozoa, while the supplementa-
tion by exogenous O2

•− induced capacitation. SOD with other enzymes (catalase—CAT,
glutathione peroxidase/reductase—GPX/GSR) is a part of a complex scavenger system
provided by the mammalian seminal plasma for the protection against oxidative stress
or premature capacitation [44]. ROS, and particularly their dismutated products O2

•−,
H2O2, and hydroxyl radicals (OH•), are capable of trespassing the cell membranes and
disrupting the structure of various intracellular molecules such as proteins, lipids, and
nucleic acids. Nevertheless, a specific amount of ROS plays a pivotal role in the regulation
of cholesterol efflux, cAMP production, and tyrosine phosphorylation [41–43]. According
to de Lamirande [45], the concentration of O2

•− reached a peak after 15–25 min of in vitro
capacitation and constantly decreased for the next 1–2 h in human spermatozoa. This comes
along with the theory that ROS are important mainly at the beginning of the capacitation
process [40].

Spermatozoa themselves may produce ROS from sources such as NADPH oxidases
(NOX) such as NADPH oxidase localized in the plasmatic membrane or NADPH-dependent
oxidoreductase in the mitochondria, which plays a major role in high ATP generation. In-
creasing levels of O2

•−, H2O2, NO•, and peroxynitrite (ONOO−) produced constantly
during capacitation stimulate the activity of AC, cAMP, and protein kinase A (PKA), which
is elementary for late tyrosine phosphorylation [46–50]. The activation of PKA phospho-
rylates and protein phosphatase inhibition stimulate tyrosine kinase, which accelerates
actin polymerization that leads to hyperactivated sperm motility in humans [51]. Ghan-
bari et al. [52] demonstrated a key role of selected NADPH oxidase NOX5 in mammalian
spermatozoa, which is involved in O2

•− production. This isoform is different from other
members of the NOX family. The activation of NOX5 is Ca2+-dependent because of spe-
cial calcium-binding sites in the N-terminal region, which means that it does not need
any NADPH oxidase subunit [53]. Numerous authors proposed that NOX5-driven O2

•−

production initiates the activation of AC, the cAMP/PKA pathway, and tyrosine phospho-
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rylation associated with capacitation, as confirmed in human [43], ram [53], equine [54],
and rat spermatozoa [55].

It was suggested that the sperm oxidase is responsible for the production of O2
•−, right

after incubation with selected inductors of capacitation. This hypothesis was supported
by the fact that the generation of H2O2 under in vitro conditions is characteristic of the
production of diphenyliodonium (DPI), which acts as an inhibitor of NADPH oxidase and
a capacitation blocker. In general, O2

•− is known for a short life-span and spontaneous
dismutation into H2O2 by SOD. An increased consumption of H2O2 is associated with
acrosome reaction in bovine spermatozoa, where H2O2 is responsible for the activation of
protein kinases and phospholipase A2 [15,55]. Nevertheless, the exact role of the sperm
oxidase is still elusive; however, the presence of NADPH is crucial for the generation of
O2
•− as well as NO•. Nicotinamide adenine dinucleotide (NADH) is generated during the

oxidation of lactate into pyruvate by a specific isoform of lactate dehydrogenase C4 (LDH-
C4) localized in the cytosol, mitochondria, and the plasmatic membrane in spermatozoa
of different species, such as humans [41], bulls [56], or mice [57]. Subsequently, pyruvate
is translocated into the mitochondria and immediately converted to acetyl coenzyme A
(acetyl-CoA) as a part of the Krebs cycle and ATP production. The generated NADH is then
used to produce extracellular O2

•− through cytosolic oxidases [41,42]. Previous studies
reported a participation of LDH-C4 in the metabolic activity and capacitation process in
bovine or mouse spermatozoa. On the other hand, low LDH-C4 activity was characterized
by a limited or totally reduced sperm movement and concentration [57,58].

As mentioned before, another substantial ROS involved in the capacitation is NO•.
Lefiévre et al. [59] reported that NO• is able to regulate capacitation by protein S-nitrosylation
and activation of the cAMP/PKA pathway in humans, which leads to an increase in protein
phosphorylation, especially of serine, threonine, and tyrosine [60]. Another possible way
by which NO• could regulate protein phosphorylation is via soluble isoforms of guanylate
monophosphate (sGC). These isoforms increase the concentration of cyclic guanosine
monophosphate (cGMP) in human spermatozoa; then, cGMP stimulates the activity of
cGMP-dependent protein kinase (PKG), which supports the protein phosphorylation of
serine/threonine. The intracellular increase in cGMP concentration possibly ceases the
degradation of cAMP by the activity of cyclic nucleotide phosphodiesterase. In the end,
higher amounts of cAMP may stimulate PKA and protein phosphorylation of tyrosine,
which promotes the course of capacitation [15,61,62].

It was confirmed that several proteins associated with capacitation such as protein
kinase C (PKC), Ras protein, and AC undergo a process called redox signaling. The highly
reactive thiol groups of cysteine sulfhydryl (SH) residues interact with ROS or RNS and
create oxidative post-translational modifications. A continuous increase in SH groups is
associated with the reorganization of proteins in the sperm membranes at the beginning of
capacitation. The most common reversible redox signaling modifications include disulfide
bridges, S-nitrosylation, S-glutathionylation, and S-sulfenation, which may be reduced
back to thiols or stable oxidized products. However, a covalent sulphinylation of cysteine is
irreversible and leads to the formation of tyrosine, tryptophan, lysine, and histidine. These
substances may cause cell damage by the loss of a proper protein function [63,64].

4. Cryodamage and ROS Overproduction

Nowadays, cryopreservation is a powerful technique used for the stabilization of sper-
matozoa at cryogenic temperatures for their long-term storage. It plays a primary role in
the improvement of genetic resources in farm breeding programs, preservation of rare and
endangered animals, as well as management of infertility in numerous species including
humans [17,18,65]. Despite numerous benefits including the preservation of sperm motility,
metabolic activity, and fertility, the cryopreservation process may present with negative
effects on the sperm physiology and cause irreversible changes that may possibly lead
to cell death and a reduced quality of frozen-thawed spermatozoa. Cryopreservation is
essentially a three-step process consisting of cooling, the addition of cryoprotectant, and
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freezing/thawing. During freezing, spermatozoa are exposed to a wide spectrum of stress
conditions such as cold shock, osmotic imbalance, and oxidative stress. Male gametes are
protected by several membranes, which act as a natural barrier against external factors.
However, for their proper function, these membranes must remain intact to secure the
post-thaw viability of spermatozoa [66,67].

The generation of ROS during freezing/thawing procedures comes from mutual
interactions between NADPH oxidase in the plasmatic membrane and the mitochondrial
electron transport chain. Following cryopreservation, the antioxidant activity of the seminal
plasma is dramatically reduced because of dilution and a decrease in enzymatic and
nonenzymatic antioxidants such ascorbic acid, urate, vitamin E, and pyruvate [68].

In mammals, the plasma membrane of spermatozoa contains a high concentration of
PUFAs, particularly docosahexaenoic acid (DHA), which are highly susceptible to oxidative
damage. This process is also known as lipid peroxidation (LPO). Peroxidation of PUFAs is
characterized as an autocatalytic self-repeating reaction, which may evolve into the loss
of membrane integrity, fluidity, and functionality. The process is associated with electron
removal from lipids and the production of reactive intermediates [69,70]. Bouwers and
Gadella [71] observed that LPO occurs primarily in the midpiece and tail regions of the
sperm flagellum, indicating endogenous ROS production by mitochondria. Peroxidation
events significantly affect the mitochondria and cause an immediate decrease in the ATP
production and sperm movement as reported in stallions [66] and bulls [71]. Dietrich
et al. [72] suggested that specific forms of apolipoprotein A-I provide semen freezability by
supporting the membranous structures of carp spermatozoa. Due to freezing, membrane
proteins such as N-ethylmaleimide-sensitive fusion attachment protein α and anexin A4
were reduced in this study, which disintegrated the membrane integrity of spermatozoa
in carps [72,73] and rats [74]. Other contraindications associated with membrane damage
include the leakage of intracellular proteins needed for metabolism, cellular signaling, and
the organization of the sperm cytoskeleton, which increase the concentration of intracellular
enzymes in the extracellular space [73–75].

Due to oxidative stress, PUFAs are attacked by ROS and produce a wide spectrum
of lipid metabolites, as mentioned above. Destabilization of the sperm plasma membrane
is caused by the ability of lipid peroxyl radicals to take the hydrogen atoms from PUFAs.
Subsequently, carbon-centered lipid radicals will react with oxygen and increase the gen-
eration of peroxyl radicals, leading to a self-propagating cycle of hydrogen removal from
PUFAs and the promotion of LPO chain reactions [76,77]. These reactions will continue
until one of the substrates is consumed or the case of a reaction between two radicals. This
process is also responsible for the production of lysophospholipids that destabilize and
disturb the microarchitecture of the plasma membrane. The changed structure and function
of elemental membrane proteins has a negative effect on ATP-dependent ion pumps and
voltage-regulated ion channels, which manage the motility of spermatozoa. Intensive
peroxidative damage on the lipid membrane structures makes spermatozoa unable to
participate in the membrane fusion processes during fertilization, including capacitation
and acrosome reaction [70,76].

5. Capacitation-Like Changes of Spermatozoa during Cryopreservation

Over the years, various researchers have investigated specific changes in frozen–
thawed spermatozoa that shared similar characteristics with physiological capacitation.
Cryo-induced modifications or cryocapacitation destines spermatozoa to be more vulner-
able to their environment because of the reorganization and redistribution of membrane
phospholipids. The kinetics of cryocapacitation is not fully understood, because of numer-
ous similarities with physiological capacitation. Following cryocapacitation, the leakage of
membrane proteins from thawed spermatozoa is significantly higher in comparison to nat-
urally capacitated spermatozoa [73]. Alterations to the sperm membrane proteins during
the cryopreservation process include their segregation, inactivation of membrane-bound
enzymes, and a decreased protein diffusion, all of which may eventually lead to the loss of
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structural proteins and receptors located on the sperm surface [78,79]. As such, a premature
capacitation may reduce the fertilization potential and viability of cryopreserved spermatozoa.

The asymmetric phospholipid architecture from the outside of the plasmatic mem-
brane consists of phosphatidylcholine and sphingomyelin, while the inner side is made
from phosphatidylserine and phosphatidylethanolamine. During capacitation or cry-
opreservation, the asymmetric structure of phospholipids is disturbed by scrambling
phosphatidylserine and phosphatidylethanolamine, which could lead to membrane lipid
disorders [19], as observed in buffalo [79], equine [80], and boar spermatozoa [81]. Ac-
cording to Cross [82], this disarrangement and a subsequent efflux of cholesterol following
in vitro capacitation increases the permeability of the phospholipid bilayer and disrupts
phospholipid packing.

Cormier et al. [13] studied the differences of tyrosine phosphoprotein profiles in hep-
arin (HEP)-capacitated and -cryocapacitated bovine spermatozoa. The obtained results
revealed the presence of two phosphotyrosine proteins 56-PP and 114-PP in the HEP-
capacitated group; however, only 56-PP was found in the case of cryocapacitated spermato-
zoa. Cryopreserved spermatozoa presented with a characteristic tyrosine-phosphorylated
state, which resembled early/fast modifications of the membrane during physiological
capacitation. This hypothesis was postulated earlier by Bailey and Bérubé [83], according to
who cryopreserved bovine spermatozoa exhibited the evidence of phosphotyrosine protein
activity immediately after thawing. In contrary, fresh bull spermatozoa needed a minimal
4 h incubation with HEP for the detection of phosphotyrosine proteins [84].

Hyperactivation is a necessary part of capacitation, when the sperm proteins are
tyrosine-phosphorylated and regulated with cAMP by activation of PKA. Several tyrosine-
phosphorylated proteins have been localized in the sperm flagellum, which suggests their
involvement in sperm hyperactivation. After cryopreservation, male gametes collected
from buffaloes [46,79] and bulls [13,84] presented with a hyperactivated motility and weak-
ened Ca2+ mechanisms, which may lead to a significant accumulation of the Ca2+ ion. If
the intracellular Ca2+ concentrations reach critical levels, the acrosome reaction is activated
too early, even before any contact with the receptors located in the zona pellucida of oocyte
has occurred [13,19,78].

One of the most common signs of capacitation is the degradation of cholesterol from
the sperm plasma membrane. Previous studies have recorded a decline in cholesterol
concentration parallel to a higher content of phospholipids and triglycerol after freez-
ing/thawing as a consequence of a slow diffusion from cells. The membrane of cryocapaci-
tated spermatozoa may be characterized by disintegration and swelling, changes in fluidity
and permeability, phospholipid aggregation, and a decrease in the motility, viability, and
enzymatic metabolism as observed in bulls [20], stallions [66], and boars [81]. These cryo-
induced membrane modifications increase the amount of capacitated and acrosome-reacted
spermatozoa after thawing. While these do not affect the post-thaw motility, they decrease
the longevity of male gametes and their subsequent ability to fertilize the ovum [19,78,85].

6. Future Strategies against Cryodamage

Several strategies for the reduction in the negative impact of cryopreservation on sper-
matozoa have been developed through the years. Cryoinjury is a result of phase changes
of water at low temperatures between the intra- or extra-cellular space. It was observed
that spermatozoa are mainly sensitive to a fast temperature reduction between 5 and 25 ◦C,
which leads to cold shock [19,85]. Cryo-induced damage is often associated with osmotic
rupture of the cells due to the formation of intracellular ice crystals during cryopreservation,
which leads to the loss of semipermeable properties of the sperm plasmatic membrane,
release of intracellular enzymes, and ion redistribution. The cryotolerance and cold suscep-
tibility of spermatozoa depend on the lipid content of the plasmatic membrane, which is
composed mainly of omega-3/omega-6 fatty acids, especially docosahexaenoic (ω-3 PUFA)
and docosapentaenoic (ω-6 PUFA), which belong to the family of PUFAs [77,82]. However,
a difference in the lipid profiles between species has been observed. As a supplement for the
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protection of spermatozoa against cryogenic temperatures, cryoprotective additives such
as antioxidants, fatty acids, antifreeze proteins, and essential oils or bioactive substances
from plants may be used [86–88].

In general, cryoprotectants should have certain properties in order to secure the
protection against cryoinjury such as biological accessibility, cell penetration ability, and
low toxicity. Based on their ability to penetrate the cells, the cryoprotectants are divided
into membrane-permeable (dimethyl sulfoxide—DMSO, glycerol)—able to replace water
in the cell, and nonpermeable (egg yolk, raffinose, albumin)—unable to pass through the
membranes [89].

A possible antioxidant supplementation could provide protection against the genera-
tion of ROS and subsequent OS development. The antioxidants used in freezing extenders
may exhibit enzymatic or nonenzymatic activity. Glutathione peroxidase (GPx), superoxide
dismutase (SOD), and catalase (CAT) represent the major enzymatic antioxidants. SOD
has the ability to catalyze the dismutation of O2

•− into H2O2 [2,90,91]. The primary role
of GPx and CAT is the conversion of H2O2 to water and molecular oxygen. Nonenzy-
matic antioxidants include vitamin C (ascorbic acid), vitamin E (α-tocopherol), vitamin
B12 (cobalamin), and glutathione (GSH) [86,90,91]. This complex of free radical scavengers
works as an effective defensive system, which protects the membranes of spermatozoa
against ROS (vitamin E and C) [92,93] or cryodamage during the freezing/thawing process
(vitamin B12) [94].

To inhibit ice crystals formation and decrease the freezing point, antifreeze proteins
(AFPs) or glycoproteins are often used. The principle lies in the stabilization of phospho-
lipids and unsaturated fatty acids in the plasma membrane, which improves the membrane
integrity and osmotic resistance during the cryopreservation process [73]. According
to previous findings, AFPs have significant positive effects on the motility and viability
of frozen–thaw spermatozoa in a variety of species such as rams [95], rabbits [96], buf-
faloes [97], and chimpanzees [98]. Nevertheless, the use of AFPs depends on the type
and concentration of selected proteins. Zilli et al. [99] reported that the application of
AFPIII (antifreeze protein type III) preserved the sea bream sperm protein profile during
cryopreservation. Interestingly, supplementation with AFPIII and AFPI (antifreeze protein
type I) significantly increased the membrane integrity but had no effect on the motility in
fish [75,99].

Another possibility by which to protect spermatozoa against cryoinjury lies in the
application of bioactive molecules as supplements to the freezing extender. Substances such
as carotenoids, flavonoids, polyphenols, phytosterols, and phytoestrogens have a natural
origin and present with the ability to penetrate the cell membranes and modulate numerous
intracellular and metabolic processes [100]. Tvrdá et al. suggested a possible application of
various bioactive compounds such as curcumin (CUR), lycopene (LYC), or epicatechin (EPI)
to prevent cryo-induced oxidative stress in bovine spermatozoa. CUR is a bright yellow
phenolic compound that comes from Curcuma longa and is a member of the ginger family.
CUR acted as an effective ROS scavenger and inhibitor of LPO. Cryopreservation medium
enriched with 50 µmol/L of CUR preserved the structural and functional characteristics,
as well as the oxidative profile of cryopreserved bovine spermatozoa [101]. The flavonoid
compound EPI belongs to the family of catechins naturally found in green tea, cocoa, and
grapes. As with CUR, EPI was able to inhibit LPO and exhibited ROS scavenging properties
particularly against O2

•− and H2O2. The presence of 100 µmol/L significantly decreased
the generation of ROS, the amount of protein carbonyls, and the level of LPO [102]. LYC
was also considered as a potential cryosupplement because of its antioxidant effects. As
a natural bright red carotenoid, LYC may be found in a wide spectrum of plants such as
tomatoes, carrots, or grapefruits. Following the addition of 1.5 mmol/L of LYC into a
commercial semen extender, the production of ROS and intracellular O2

•− was decreased
in comparison to the control [103]. These findings confirmed the beneficial antioxidant
and ROS scavenging properties of selected natural bioactive compounds (CUR, EPI, LYC),
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which could at least partially eliminate oxidative damage during cryopreservation and
support the vitality of male gametes after thawing.

For the inhibition of capacitation-like changes, melatonin (MEL) was also considered
as a primary mitochondria-targeted antioxidant, which can detoxify cells at the mitochon-
drial level [104]. According to Carvajal-Serna et al. [105], ram semen samples incubated
with 100 pmol/L or 1 µmol/L of MEL presented with a significantly higher amount of
noncapacitated spermatozoa and a lower rate of male gametes undergoing capacitation.
MEL also worked as an inhibitor of phosphatidylserine translocation, which is indicative
of the initiation of apoptosis. In addition, MEL significantly decreased the level of protein
tyrosine phosphorylation and cAMP in capacitated ram spermatozoa by the presence of
cAMP-elevating agents in the medium [106].

7. Conclusions

In summary, we may conclude that capacitation as well as cryocapacitation are both
oxidative events. The physiological concentration of ROS may promote the capacitation
process. ROS are important primarily at the beginning of capacitation as regulators of
cholesterol efflux, activation of the cAMP/PKA pathway, tyrosine phosphorylation, or re-
dox signaling. However, the cryoinduced generation of ROS can accelerate OS by attacking
PUFAs, which may lead to a serious membrane damage and LPO. It is clear that capacitation
takes place mainly on the level of cell membranes. Meanwhile, cryo-induced capacitation
in combination with high concentrations of ROS destabilizes the plasmatic membrane and
reduces the fertility rate of thawed spermatozoa used for artificial insemination.

Nowadays, the application of supplements with antioxidant properties for the preven-
tion of potential detrimental effects of ROS is very popular. These may work as effective
ROS scavengers, which help to preserve the quality of cryopreserved spermatozoa in a
multitude of species. Despite all of this, there are still numerous questions in the field of
cryobiology, particularly regarding the process of cryocapacitation and changes associated
with it. The exact course of cryocapacitation is still unclear, which is the reason why it is
important to study this complex process of sperm metamorphosis from a molecular point
of view.
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