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Abstract: Cyclones are a key disturbance in mangrove ecosystems, but it is challenging to assess
post-storm impacts over large areas, along with the recovery of these systems at broad temporal
scales. Given the high frequency of these events in the Sundarbans region, prompt and consistent
assessment of vegetation conditions is an important research need. Several studies have assessed
the impact of an extreme cyclone event in 2007 (Sidr); however, there is little agreement between the
extent and severity of the disturbance footprint of the cyclone, and very few studies attempted to
assess vegetation recovery. We used a MODIS (Moderate Resolution Imaging Spectroradiometer)
time series (2001–2010) to calculate monthly plant productivity anomalies in Google Earth Engine. We
summarized dry season anomalies to assess post-storm vegetation change and evaluate the recovery
time. Approximately 2100 km2, primarily on the east side, were impacted by Sidr. The number of
damaged pixels was reduced by 55% the following dry season (2008) and 93% in the dry season of
2009, indicating a near-full recovery 26 months after the event. Our results provide an additional
line of evidence to provide a rapid assessment of the post-storm vegetation damage. The simple
framework used can provide a comprehensive view of the extent of the damage, including lag effects
on vegetation, in just a matter of months after the event.
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1. Introduction

The Sundarbans are the largest, continuous mangrove ecosystem in the world and are
considered a globally unique ecosystem [1]. The area provides abundant ecosystem ser-
vices such as habitat and biodiversity [2], carbon storage [3], storm damage buffering [4–9]
and mitigation of coastal erosion [10]. Cyclones originating in the Bay of Bengal [11] and
associated storm surges are the most influential disaster events on the southern coast
of Bangladesh [12]. Thus, the proximity of the Sundarbans along the southern coast of
Bangladesh provides coastal safety to millions of people in this region as it acts as a vegeta-
tive shield in the direction of storm surges to help minimize adverse impacts [9,13]. As such,
cyclones are a key disturbance in this part of the world, but it is difficult to assess the post-
storm impact over large areas, along with the recovery of these systems at broad temporal
scales. Given the high frequency of cyclones in the Sundarbans, assessment of vegetation
conditions in a prompt and consistent manner remains an important research need.

Tropical cyclones are a natural disturbance in mangrove ecosystems as these discrete
events change the physical environment and in turn disrupt the organization of the system,
plant communities, and populations in it [14]. Severe cyclones cause extensive vegetation
damage, including fractured crowns or blowdowns, often resulting in tree mortality [15,16].
Strong winds also remove foliage and branches from smaller mangrove trees, resulting
in canopy cover loss and lower photosynthetic capacity [17]. This phenomenon disrupts
the typical seasonal growth phenology of surviving mangrove trees, which can extend for
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several seasons. Cyclone-induced disturbance can impact forest structure, biogeochemical
cycles and regeneration for years after the storm event [15]. Satellite remote sensing has
been used to assess post-storm forest damages [18]; however, subsequent studies on post-
storm forest recovery and comparative analysis on the performances of vegetation indices
are limited.

Remote sensing is the most effective tool to monitor change in forests over large areas
and has been employed in a number of forest structure studies that measure the loss of
photosynthetic material due to defoliation events [19], blowdowns [20], and windstorm
damage [21]. Given the link between biological events and climate, vegetation phenology
has been a focus of recent mangrove remote sensing research [22,23]. Mangrove phenology
is an important metric to assess changes in mangrove ecosystem productivity and the
subsequent response to climate-induced disaster events [24]. This metric is influenced
by vegetation morphology, species composition, and microclimate variability. Phenology
phases are spatially intricate and temporally dynamic in tropical forest regions and display
numerous periods of growth and senescence in a single annual cycle [25]. Satellite observa-
tions provide broad coverage of mangrove ecosystems at periodic time intervals to assess
phenology, whereas traditional field methods are untenable at that scale [25]. Knowledge
of spatial and temporal variability from episodic disturbances is necessary to understand
mangrove forest dynamics at the landscape scale and these systems are often monitored
using satellite-derived vegetation indices [26–29].

Many of the post-cyclone remote sensing studies in the Sundarbans have involved
object-based image analysis, where a post-classification comparison is used to measure area
change in mapped classes [30–32]. For example, Mandal and Hosaka [32] used Landsat-
derived classifications to assess the damage of Sidr. This approach is very effective for
measuring change from a forested class to a non-forested class; however, it is not possible
to measure a change in condition within the same class [33]. Alternatively, pixel-based
approaches consider the reflectance of individual pixels over time, and therefore, allow for
a more direct approach to monitor the severity levels of a disturbance [34]. Dutta et al. [35]
used temporal means of MODIS time-series derived disturbed pixels to determine the
impact of Sidr (2007), Rashmi (2008), and Aila (2009) over the Sundarbans region but did not
explicitly consider post-disturbance recovery. Zhang et al. [29] used a pixel-based approach
to measure the relative condition and recovery of mangrove forest in south Florida using
the satellite-derived Normalized Difference Moisture Index (NDMI) and found recovery
rates from two to six years post-hurricane. However, few studies have directly focused on
mangrove forest recovery in the Sundarbans.

The main objective of this study is to assess the impact of cyclone Sidr on the
Bangladesh portion of the Sundarbans to better understand the impact on the vegeta-
tion condition and the post-disturbance dynamics. The motivation for this study was in
part driven by a review of several other highly relevant, pixel-based studies that assessed
the impact of cyclone Sidr [32,35–38]. We found little agreement between the extent and
severity of the cyclone, and very few attempted to assess the vegetation recovery. Therefore,
we sought to contribute a new approach and in doing so, provide another line of evidence
of the impact of Sidr on the vegetation in the Sundarbans. First, we determined which freely
available satellite sensors provided the necessary observations for this retrospective, rapid
approach. Then we applied the framework to address the following questions: (a) What
was the extent and severity of the cyclone in the Sundarbans with respect to vegetation
condition? (b) How long did it take the forest to return to its pre-disturbance condition?

2. Materials and Methods
2.1. Study Area

Sundarbans mangrove forest is located in southwestern Bangladesh (60%) and eastern
India (40%) [12,36] (Figure 1). In this study we focus on the Bangladesh side as the path
of cyclone Sidr intersected the eastern side of Sundarbans. The Bangladesh Sundarbans
constitutes 44% (nearly 6300 km2) of the forest cover in the country and contains 65 man-
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grove species [1]. Heritiera fomes is the most influential and tallest (over 15 m) plant in the
Sundarbans and several other common mangrove species include Xylocarpus mekongensis,
Excoecaria agalocha, Ceriops decundra, Sonneratia apetala and Avicennia officinalis [1]. The
distribution of plants in the Sundarbans is primarily controlled by elevation and salin-
ity [39]. The seasonal climate of the Sundarbans is characterized as pre-monsoon (March
to May), monsoon (June to September), post-monsoon (October to November), and dry
winter (December to February) [40]. They also noted rainfall fluctuates between 1600 mm
and 2000 mm (with over 80% received during the May–September monsoon season), while
temperature varies between 11 ◦C to 37 ◦C. Cyclonic storms frequently occur during May
to June and October to November along the coast of Bangladesh [39].
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Figure 1. (A) Location of Bangladesh in South Asia region with cyclone tracks (2003–2023) (Sidr in
red line), (B) Location of the Sundarbans in Bangladesh, (C) Upazila (a regional administration unit
of Bangladesh) boundaries of the Sundarbans and Sidr trajectory in red line [41].

2.2. Cyclone Data

Cyclone data was collected from the International Best Track Archive for Climate
Stewardship (IBTrACS) database [41] and the Indian Meteorological Department [42]. We
followed the Saffir-Simpson hurricane wind scale to categorize the cyclones. The categories
are divided into five groups: Category 1 (119–153 km h−1), Category 2 (154–177 km h−1),
Category 3 (178–208 km h−1), Category 4 (209–251 km h−1), Category 5 (≥252 km h−1) [43].
The southern coastal region of Bangladesh is the most cyclone prone area in the country,
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with storms typically striking during the post-monsoon period (October–December) [42].
Sidr was a category-4 equivalent tropical cyclone that made landfall in Bangladesh on
15 November 2007, with recorded wind speeds over 213 km h−1 and waves of 6 m [12,36].
It was considered the second strongest cyclone since 1877 [1] and caused an estimated
10,000 deaths and $1.7 billion worth of damage [44]. The storm surge associated with Sidr
overtopped the coastal area and caused massive damage to the vegetation [36]. Biotic
communities of the Sundarbans were severely affected by soil erosion and winds uproot-
ing plants, broke stems and branches of trees, and removed leaf area [1]. Of the recent
cyclones that have made landfall in Bangladesh, the wind speed associated with Sidr was
substantially higher (Table S1).

2.3. Satellite Data

Although Landsat data is a primary resource for remote sensing in disturbance stud-
ies, MODIS data is becoming more prominent in recent studies due to its short revisit
time [45]. We utilized the MODIS Terra Surface Reflectance 8-Day Global 250 m product
(MOD09Q1.006) in Google Earth Engine (GEE), a multi-petabyte open-source catalog of
satellite imagery and geospatial datasets by Google. This product provides an estimate of
the surface spectral reflectance and a State QA band to perform quality assurance. Surface
reflectance band-1 (620–670 mm) and surface reflectance band-2 (841–876 mm) were used
to calculate the Normalized Difference Vegetation Index (NDVI). We used the 8-Day com-
posite product instead of daily reflectance because there is an additional quality assurance
band available. The state QA Bitmask was used to screen the quality of pixels (bit levels
0–1 (cloud state), 2 (cloud shadow), 3–5 (land/water)).

2.4. Cloud Considerations & Minimum Observations

Collecting cloud-free images over the given study period is critical for tropical regions
like Bangladesh. The southeast monsoon is the predominant feature of the Sundarbans
climate, which divides the year into three distinct seasons: (i) monsoon season—June to
October, (ii) cool-season—November to February, and (iii) spring season—March to June.
An important consideration of the study is to collect cloud-free images in order to accurately
measure vegetation productivity across a given time period. The MODIS product provided
a higher temporal frequency of clear observations compared to Landsat, hence the primary
rationale for using MODIS in this study. We acknowledge the tradeoff between these
two sensors. Although MODIS has a lower spatial resolution compared to Landsat, the
higher temporal resolution is critical for our method that has not yet been applied to this
disturbance event. Monthly mean NDVI composites were generated in GEE. Clouds, cloud
shadows, and water pixels were masked out from the study area before generating the
monthly composites for the entire study period. A minimum observation threshold of
four clear sky observations per month was enforced. This indicates the minimum number
of clear sky observations needed for a given pixel to be considered in the analysis. If a
pixel failed to meet the minimum valid observations within a month, it was considered
insufficient data and dropped from the analysis [46]. Composites were generated for every
month within the study period between 2001–2010. Monthly mean NDVI composites were
exported from GEE for further processing in the R statistical software [47] using the raster
package [48].

2.5. Anomaly Calculations

The selection of the optimal window of study (e.g., a month or a series of months
with the highest productivity) is important for assessment of mangrove phenology and
dynamics. This window is the ideal annual timeframe when the vegetation of interest
is considered to be most stable. Data collected during this time is used to compare the
performance of the vegetation during a given window against the long-term vegetation
conditions of a reference period [49,50].
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MODIS images from 2001 to 2010 were used to establish the reference period. A sum
of 120 NDVI mean images were generated using GEE, where each image indicates the mean
of an individual month collection. Reference periods are selected from this time series.
Specific months of 2001–2007 (except November and December of 2007) were selected as
reference periods because, at that time, there were no significant cyclones (last cyclone
before 2001 made landfall in 2000 as per IBTrACS cyclone track) over the Bangladesh side
of the Sundarbans.

NDVI anomalies were calculated for specific months between 2006 and 2010, defined
as the deviation from the long-term mean of the reference period. Reference periods were
selected on a monthly basis; for example, only the November months before November
2007 (November 2001, November 2002, November 2003, November 2004, November 2005,
and November 2006) were used as the reference period for November 2007. However, no
months after November 2007 were used; for example, the reference period for December
2008 included: December 2001, December 2002, December 2003, December 2004, December
2005, December 2006. This specific selection is essential to maintain uniformity among the
reference periods considering Sidr made landfall in early November 2007. Anomalies were
calculated until 2010 due to another cyclone that made landfall in Bangladesh in 2011. We
did not want this to complicate our analysis which was focused solely on Sidr. An anomaly
is calculated for the selected month of a year (January 2006–December 2010) by taking the
difference between the chosen month and reference period means, then dividing by the
standard deviation of the reference period [49]:

NDVI anomaly =
NDVImean of a specific month − NDVImean of reference period

NDVIstandard deviation of reference period
(1)

Since the anomaly values are normalized by the reference period standard deviation,
they are referred to as z-scores [49]. Upon classifying the z-scores at a later step, these
values ultimately represent the severity of the event.

2.6. Reclassification and Summary Analysis

To facilitate area calculations, anomaly composites were summarized and reclassified
into seasonal groups. The dry seasons included the months of November, December, and
January. The mean of the seasonal composites was calculated and classified into four zones,
High (z-scores < −5), Moderate (z-score > −5 and < −2.5), Low (z-score > −2.5 and < −1),
and Neutral (z-score > −1 and < +1) (positive scores were classified using the same thresh-
old). This classification indicates the severity of the damage (e.g., the lower the z-score
the more severe damage sustained). Areas greater than +1 indicate positive anomalies,
representing an increase in vegetation/photosynthetic activity compared to the reference
period, and were omitted from further consideration. Areas that are between −1 to +1 are
considered as neutral which indicates a vegetation condition within the long-term mean.

After the monthly MODIS anomaly z-scores were classified, they were categorized
into different dry seasons based on the months included. The dry season represents the best
window to obtain clear sky observations in this region of the world; therefore, multispectral
image availability is substantially higher during the dry season in Bangladesh. Given our
consideration of minimum satellite observations (we enforced four minimum observations
per month), we believe these composites provide the most accurate assessment of satellite-
derived vegetation productivity. Finally, the extent of the storm’s impact was calculated by
tabulating the area of classified severity zones based on the z-scores.

3. Results
3.1. Extent and Severity

The dry season anomaly of 2007 highlights the extent of the damage that occurred
immediately after the cyclone (Figure 2A–C). South-eastern areas were most affected,
south-western areas were moderately affected, and northern most areas least affected.
This is consistent with the approximate path of Sidr (Figure 1C). The south-western and
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northern-most areas recovered more quickly than the south-eastern areas, as those areas
were impacted more severely (Figure 2G). It is likely the November 2007 anomaly showed
less damage than the December 2007 and January 2008 anomalies because November
2007 contains some pre storm pixels, as Sidr made landfall in the middle of November.
The deviation in severity is more clear in the December 2007 and January 2008 anomalies
compared to the November 2007 anomaly.
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Figure 2. Monthly dry season anomalies: (A) November 2007, (B) December 2007, (C) January 2008,
(D) November 2008, (E) December 2008, (F) January 2009, (G) November 2009, (H) December 2009,
(I) January 2010. Negative anomalies represent damage compared to the reference period; whereas
positive anomalies represent areas that performed higher than the reference period.

The dry season 2009 showed less variability in the high severity zone than the dry
seasons of 2007 and 2008, indicating recovery of the areas heavily affected by Sidr (Figure 3).
During this same time, neutral zones increased in area from dry season 2007 to 2009. The
median z-score of neutral pixels was −0.32 in dry season 2007. However, it increased to
0.17 by the dry season 2009, although the high severity pixels increased at a slower rate.
The median values of high severity pixels for dry season 2007 was −5.83 while the value
remained similar (−5.98) in dry season 2009. However, moderate and low severity pixels
showed improvement in median values over the dry seasons which adds consideration
to the recovery question. The median of the moderate pixels decreased from −3.62 in
dry season 2007 to −2.86 in dry season 2009 (Figure 3A–C). During that same period,
the median of the low severity pixels also decreased from −1.6 to −1.28. These changes
collectively indicate continuous post-Sidr recovery during that time period.
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Figure 3. Dry season anomalies based on severity zones, (A) 2007 dry season, (B) 2008 dry season,
and (C) 2009 dry season.

A total of approximately 2100 km2 were impacted by cyclone Sidr during dry season
2007, which is 35% of the total Bangladesh Sundarbans area (approx. area 6000 km2).
The amount of damaged area was reduced to approximately 945 km2 by dry season 2008
and 137 km2 by dry season 2009 (Figure 4), a reduction in impacted area of 55% and 93%
respectively. This decline indicates that damaged areas were slowly recovering from the
cyclone’s impact. An increase in the number of neutral areas (z-score > −1 to <+1) was also
observed during the three consecutive dry seasons. There were 1460 km2 of neutral pixels
during dry season 2007. This increased to 2415 km2 in dry season 2008 and 3040 km2 in dry
season 2009 (Figure 4C).
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3.2. Post-Sidr Recovery

The recovery of z-scores, leading to a decrease in the size of high severity areas,
coupled with an increase in area of with neutral z-scores, are all considered as recovery
measures from Sidr. The number of high severity pixels decreased by 96% and 99% from
dry season 2007 to dry season 2008 and 2009 consecutively (Figure 5). The mean area of high
severity pixels was approximately 325 km2 in dry season 2007, 11 km2 in dry season 2008,
and 750,000 m2 (<1 km2) in dry season 2009. A decline in the high severity pixels was also
observed between the months in each season. This downward progression indicates slow
recovery of highly impacted areas of the Sundarbans. Initially, the Sundarbans witnessed
a severe loss in the eastern side of the Bangladesh side Sundarbans which recovered
continuously with other severely affected areas in the whole Sundarbans (Figure 5).
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Figure 5. Recovery progression of areas that were impacted the greatest (high severity areas shown
in red pixels) during the dry season: (A) November 2007, (B) December 2007, (C) January 2008,
(D) November 2008, (E) December 2008, (F) January 2009, (G) November 2009, (H) December 2009,
(I) January 2010.

In our review of the literature, we found little agreement between previous pixel-
based studies of the impact of Sidr on the Sundarbans. Few studies attempted to assess the
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vegetation recovery from the event, and again, there was little agreement between findings
(Table 1).

Table 1. Comparison of previous assessments on the extent of Sidr’s impact. The delineation of
severity and recovery period were included if assessed in the respective study.

Author Sensor/Information Source Approx. Affected Area (km2) High Severity Area (km2) Recovery Period

[51] Expert opinion (based on site visit) 2400 NA 10–15 years

[52] Expert opinion 1400 NA 30 years

[37] ASTER 1330 149 NA

[36] Landsat 2500 NA 3 years

[35] MODIS
>8000 km2 of the total

Sundarbans has a disturbance
severity of <10% a

NA NA

[30] SPOT-5 96 b NA NA

[38] Landsat 726 NA 11 years (still ongoing at
completion of study)

[32] Landsat 1292 NA NA

This study MODIS 2090 325 2–3 years
a Highly impacted areas (eastern Sundarbans) identified spatially in their study area consistent with this study.
b Approximation based on the total study area (151 km2) considered in the study.

4. Discussion

In this study, we considered disturbance as changes in forest structures due to cyclone
which can cause high rate of tree mortality. We consider recovery as an increase in NDVI
from a negative anomaly back to a neutral level. On the ground, this reflects a recovery
of the photosynthetic capacity, through regrowth of leaves and branches. To explore the
disturbance and recovery events, we employed a remote sensing approach to assess cyclone
Sidr’s impacts through a comparison of post-storm seasonal anomalies of vegetation
condition compared to a reference period. Sidr impacted nearly 2100 km2 (35% of the
vegetated area) of the Bangladesh Sundarbans, with approximately 325 km2 classified as
high severity. Although we were unable to calculate a continuous monthly timeline due
to extensive cloud cover in the region, the Sundarbans vegetation recovered substantially
within three years from the event. After the third post-storm dry season (November 2009–
January 2010), over 1950 km2 (93% of the vegetated area) had recovered to the pre-storm
reference period condition.

4.1. Extent and Severity of Cyclone Sidr

The most impacted landscape feature during a strong tropical cyclone is vegetation.
Disturbances are a natural component of this ecosystem [53], but the high wind power
of a tropical cyclone can cause extensive damage to vegetation. Sidr damaged 2090 km2

of the total area of the Bangladesh Sundarbans during November 2007–January 2008;
approximately 35% of vegetated areas. Our study identified severe vegetation damage in
the vicinity of the cyclone trajectory on the south-eastern side of the Sundarbans (compare
Figures 1 and 5), while the northern part was less affected. Vegetation outside of Sidr’s
direct path were likely damaged from the high winds associated with the storm event, with
less damage at increasing distance from the storm’s path (Figure 2).

These findings are spatially consistent with several other studies [36,37]. Akhter et al. [37]
reported less damage to the vegetation (1330 km2) however, this study only covered part of
the Sundarbans and used imagery from a single day (21 November 2007) and was not able
to capture delayed tree mortality from Sidr. The broader spatiotemporal resolution of our
study enabled the long-term impact of delayed tree mortality across the entire Bangladesh
Sundarbans to be assessed. Bhomik and Cabral [36] reported a similar amount of damage as
our study (2500 km2) and highlights the compatibility of different approaches and sensors
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(Table 1). Although MODIS has reduced spatial resolution, it is consistent with Landsat
based results [37], yet offers the additional temporal resolution for rapid assessment using
monthly anomalies for immediate post-storm assessment. Awty-Carroll et al. [38] estimated
the damage at just 726 km2, however, they note their approach, using the Continuous
Change Detection and Classification (CCDC) method was impacted by the Landsat 7 SLC
error, which likely contributed to their lower damage estimate. They report most of the
recovery occurred between 2013 and 2018, and 345 km2 had not yet recovered by mid-2018,
which is not consistent with our results or those of [36] (Table 1). There were 17 cyclones
that made landfall in Bangladesh during their study period (1988–2018) [54], which could
have impacted their results. Our results were consistent with a recent study using the
MODIS Global Disturbance Index (MGDI), which uses Enhanced Vegetation Index (EVI)
and Land Surface Temperature (LST) as inputs [35]. However, the MGDI did not appear
to be as sensitive to vegetation damage as the EVI, likely due to moist soil reducing the
impact on LST. Their EVI findings (50% decrease from pre-Sidr EVI in the eastern portion
of the Sundarbans) spatially parallel to our NDVI results, which suggests that a vegetation
index might outperform the MGDI in a mangrove ecosystem. Samanta et al. [55] observed
deterioration in mangrove health in the Indian Sundarbans over the last 20 years using
EVI and NDVI from Landsat and MODIS due to an increase in salinity and temperature,
and decrease in pre- monsoon and post-monsoon rainfall. Such factors can influence
post-cyclone mangrove recovery length.

The aforementioned studies did not consider a change based on a season, rather they
focused on months or days. We focused on a season-based analysis, e.g., the primary
months from dry-to-dry season, to depict the changes. Due to the tropical climate, it’s not
possible to obtain consistent clear sky images over the Sundarbans area, which may skew
the results if not taken into consideration. Our results are mostly consistent with studies
that used single date imagery at key points in time; however, the use of MODIS imagery in
this study enabled season-based analysis with a robust reference period-based comparison
and provides another line of evidence on the impact of Sidr.

The calculation of vegetation anomalies compares any study period (e.g., a month)
with a known reference period, in a rapid, repeatable way [49]. In the context of climatic
variability, a cyclone’s impact on vegetation is a temporary condition, so anomalies are one
of the most effective ways to explore the deviations from a given reference period [50]. Time
series analysis is an effective method to show the trend in vegetation condition; however,
we employed the anomaly analysis for two primary reasons. First, the analysis is rapid,
highly repeatable, and easily interpreted. Second, it is more robust to the issue of missing
observations than curve fitting. Missing observations in multispectral data are prevalent
in this region given the extensive cloud cover during the wet season. Furthermore, we
enforced a minimum observation threshold for a given composite period to minimize
spurious values dependent on a single observation. Many studies do not account for this
phenomenon, which could inaccurately portray the mean of a pixel over the time period
of study.

4.2. Post-Sidr Recovery and Long-Term Vegetation Dynamics

Here, we report approximately 2100 km2 (35% of the total area) of damage on the
Bangladesh side of the Sundarbans. Over 1950 km2 recovered by the dry season 2009
(November 2009, December 2009, and January 2010), a decline of 93%. The recovery is
visible from November 2007 to January 2010 (compare Figures 2 and 3). Although we
were unable to calculate a continuous monthly timeline due to extensive cloud cover, the
Sundarbans vegetation recovered substantially within three years from the event.Bhomik
and Cabral [36], using a Landsat and species-based approach, found the vegetation in
the Sundarbans recovered by 2010 (Table 1). Conversely, Awty-Carroll et al. [38] reported
approximately 345 km2 of damaged pixels had not yet reached pre-Sidr level NDVI values
by 2018. They noted a more rapid increase among the pixels between 2013 and 2018 than
between 2007 and 2013 using their CCDC model. The authors note quick recovery of less



Coasts 2023, 3 290

exposed pixels and positive biasness of Landsat 8 NDVI, beginning in 2013, as reasons for
this recovery difference, along with impacts from several other cyclones.

Divergent recovery estimates are possible as studies use different methods, spatial
extents, time periods and imagery or expert opinion [51,52]. We found an approximate
three-year recovery period, which is in agreement with [36] but differs from others (Table 1).
Tropical cyclones can enhance mangrove forest growth by delivering nutrient-rich sed-
iments [56] and soil accretion [57] which can aid in faster recovery. However, frequent
cyclones can compound the recovery period of a single disaster event (e.g., Rashmi and Aila
struck within three years of Sidr) (Table S1). Compound impacts of subsequent cyclones
are often not considered in landscape scale studies [40,41]. Our results may also have been
impacted by other unaccounted disturbances as evidenced by the spatial patterning of
mapped high severity areas (compare Figure 5A–C with Figure 5D–F and Figure 5G–I). The
east side of the Sundarbans has higher photosynthetic nitrogen use efficiency which could
result in quicker recovery of damaged vegetation, whereas higher salinity on the west
side might dampen recovery time [58]. Taken collectively, compound impacts likely reflect
both a challenge and future need of landscape disturbance assessment in these systems.
Estimates from remote sensing studies of mangrove recovery in other parts of the world
vary from two to six years [31] to over a decade [17]. Numerous micro and macro factors
govern recovery time and regional precipitation patterns are likely the primary difference
at the global scale [14].

These issues, along with the range in the reported results of the extent and severity of
Sidr, were a motivation for our analysis. Each approach offers strengths and weaknesses,
however, our anomaly framework would allow analysts without advanced statistical
training to detect vegetation change associated with cyclonic storm events could hold great
value for rapid post-damage assessment. We acknowledge the coarse spatial resolution of
MODIS data makes it more difficult to determine the precise rate of vegetation recovery due
to spectral mixing of numerous ground elements. Therefore, this study provides another
line of evidence about this historic ecosystem disturbance which could hold important
clues about future disturbance impacts [59].

4.3. Limitations and Future Needs

In a MODIS pixel of approximately 250 × 250 m, many ecological processes are
occurring at the same time and data misinterpretation is a possibility. For example, a low
NDVI anomaly value might not represent decreased greenness of all the trees in a pixel;
maybe only a portion is in decline. In the same way, a high NDVI anomaly value does
not necessarily indicate the vegetation condition is uniformly higher across a given pixel.
Some parts of it can be damaged but did not reflect in the main pixel analysis due to the
coarse nature of the MODIS pixel. Furthermore, this issue could mask recovery processes at
broad spatial scales and oversimplify ecological recovery processes. For example, high and
moderate severity areas in the eastern portion of the study area in dry season 2007 appear to
recover by dry season 2008 (compare Figure 2A–C with Figure 2D–F). Without timely field
surveys, it is not possible to validate these results at this time given the retrospective view
of this disturbance [59]. However, the temporal resolution of MODIS provides a robust
series of observations for change detection analysis, particularly for areas like Sundarbans,
where the inter-annual climate and cloud coverage is a huge obstacle for multispectral
remote sensing. Fusion of medium-scale satellite imagery with fine-scale imagery collected
by UAV holds great promise at local scales [17].

Climate change and anthropogenic factors are not addressed in this study since we
focused on a single cyclonic event. Climate change influences tropical cyclone frequency
and intensity [15]. Therefore, the relationship between climate change and mangrove forest
recovery is a research need, as potential impacts are expected to increase in the future. This
information would be a valuable contribution in better understanding the role of recover-
ing mangrove forests in storm surge scenarios associated with future cyclone events [44].
Although the focus of our study was a single, cyclonic event, many anthropogenic dis-
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turbances are occurring in parts of the forest (e.g., fire, harvest, etc.) which is difficult
information to obtain. However, future assessments should incorporate this information
where possible to more accurately determine the recovery of cyclonic disturbances at local
spatial scales. Recovery patterns and lag-effects likely differ by mangrove species and local
environmental setting. A consideration of the influence of each of these aspects is a future
research need, especially at local scales.

5. Conclusions

Remote sensing assessments provide key insights into the vegetation condition of an
area after a severe disturbance. Furthermore, it is rarely possible to achieve such landscape
scale insights in the absence of an extensive network of long-term ground monitoring
data. Our results indicate Sidr impacted nearly 2100 km2, 35% of the vegetated area in the
Bangladesh Sundarbans. Given challenges with cloud-free observations during wet season
months, we were unable to calculate a continuous timeline to evaluate vegetation recovery
on a monthly time step. However, by the end of the third post-storm dry season (late
January 2010) we documented 93% of the vegetated area had recovered to the pre-storm
reference condition. Our results provide an additional line of evidence, consistent with
some of the previous studies; however, it utilizes a methodology where it is possible to
provide a rapid assessment of the vegetation damage shortly after the storm event. For
example, our method can provide a comprehensive view of the extent of the damage,
including lag effects on vegetation, in just a matter of months after the event. The ability to
provide this information to natural resource managers in a timely fashion can be critical to
select field monitoring locations and/or areas for restoration at local scales.

Supplementary Materials: The following supporting information can be downloaded at: https:
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