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Abstract: This study investigates the shoreline dynamics of a Caribbean reef-lined beach by utilizing
a long-term satellite dataset spanning 75 years and a short-term, high-frequency dataset captured by
a fixed camera over 3 years. An array of statistical methods, including ARIMA models, are employed
to examine the impact of storms and potential cyclical influences on the shoreline dynamics. The
findings indicate that significant storm events trigger a substantial retreat of the vegetation limit,
followed by a slow recovery. Given the current frequency of such major events, complete recovery
may take several decades, resulting in a minor influence of cyclones on the long-term erosion trend,
which remains moderate. The short-term shoreline evolution is primarily driven by the annual
cyclicity of the still water level, which generates an annual oscillation—an insight not previously
reported. In the context of climate change, alterations to sea-level rise and cyclone frequency could
disrupt the observed dynamic equilibrium at different timescales. Such changes could result in an
alteration of existing cyclicities, disturbance of recovery periods, increased long-term shoreline retreat
rates, and potentially affect overall coastal resilience over time.

Keywords: shoreline monitoring; remote sensing; satellite imagery; video imagery; coral reef;
upperbeach vegetation; Caribbean

1. Introduction

Sandy beaches dynamically adapt to the wave climate, resulting in coastline retreat
or expansion. This change occurs both seasonally and interannually, a phenomenon well-
documented in the literature [1–9]. Provided there is no significant erosion or accretion
trend, the beach’s stability maintains a dynamic balance within a certain range of wave
conditions [10]. However, severe storms can disrupt this balance, inducing extraordinary
transformations in beach morphology [11–13]. Following these changes, the beach morphol-
ogy may either revert back to its pre-storm state under smaller, post-storm waves [14,15],
or the changes might become permanent [16]. In reef-lined beaches, up to 98% of incoming
wave energy can be dissipated by the reef system, attributed to the system’s shallowness
and intricate bottom structure [17–20]. Even if less attention has been received in the
literature, similar dynamics concerning the impact of major storms have been observed
in existing studies, with patterns of significant erosion followed by emerging recovery
periods [21–23]. However, a knowledge gap persists concerning the interannual and sea-
sonal dynamics of these reef-lined beaches. This study focuses on a reef-lined beach in the
Caribbean, a region often exposed to vigorous hydrodynamic events such as North Atlantic
winter swells [24] and cyclones [25]. These latter generate extreme waves, with significant
wave heights (Hs) reaching up to 12 m [26]. Past research in the Caribbean has examined
the erosional effects of tropical cyclones on coastlines. A decade-long study on the smaller
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islands of the Eastern Caribbean found that 70% of beaches underwent significant erosion,
with rates three times higher on hurricane-exposed shores than the usual background
rate [27]. As a result, understanding coastal processes affecting shoreline evolution in the
context of reef-lined beaches at different timescales is crucial. Direct shoreline monitoring is
challenging and resource-intensive. Remote sensing technologies are a good alternative to
direct observations, as the use of georectified images from aerial, airborne, and Unmanned
Aerial Vehicle (UAV) sources [14,28], as well as fixed-video systems [29–31] may be used
to study shoreline evolution over time. For this study, two image datasets were used to
monitor shoreline evolution: a historical collection of aerial and satellite images dating back
to the 1950s, and a more recent fixed-video system dataset that captured high-frequency
shoreline changes over three years. Although invaluable, such high-frequency, in situ
shoreline observations over extended periods are rarely available in reef environments.
Remote shoreline monitoring is common [4,32–34], and some preliminary studies have
been conducted in fringed reef environments [35]. However, to our knowledge, no study
has yet provided a continuous multi-year dataset that allows analysis of shoreline vari-
ability at daily to multi-annual scales on a reef-lined beach. Therefore, the present study
offers a unique insight into the complex interplay of factors influencing shoreline behavior
in a reef-fringed pocket beach setting. We analyzed the variables affecting the shoreline
over extended periods and linked them to short-term processes. This integrated approach
will enable a comprehensive understanding of the intricate processes affecting shoreline
dynamics in such environments. This research centers around two objectives: (a) to investi-
gate multi-decadal shoreline variability and the effect of cyclones on these dynamics; (b)
to explore the impact of various variables, such as sea-level variations or storm-induced
waves, on the short-term response of the shoreline.

2. Study Area and Methodology
2.1. Study Site Description

Located within the Lesser Antilles on Guadeloupe Island, France, lies the small beach
of Anse Maurice (Figure 1a,b). This stretch of coastline, approximately 200 m long and
between 5 and 20 m wide, has been subject to consistent erosion, resulting in an average
retreat of 20 m from 1950 to 2013, as highlighted by [36]. Following this study, the main
cause of erosion could be attributed to sand mining and the deepening of the coral reef,
which is associated with degradation and the resulting increase in remaining wave energy
on the reef flat [37]. These potential causes are regional, and no hypotheses specific to the
site were proposed. The beach is surrounded by a fringing reef primarily consisting of dead
Acropora palmata colonies draped in algae. While the reef has lost some of its structure, it
still displays several meter-high complexes. The reef flat is characterized by discontinuous
coral structures, each about 1 m high and several meters wide, interspersed with small
patches of living branching and encrusting corals. Notably, the southern region of the site
hosts a discernible channel where coral structures are less dense and extend deeper.

Vegetation on the upper beach constitutes an ecological succession, progressing from
crawling species to shrubs and finally to trees. The most widespread species include Ipomoea
pes-caprae, which forms the frontline, followed by Coccoloba uvifera shrubs, and a few non-
native coconut trees. However, human activity, specifically trampling and goat grazing,
has significantly impacted the vegetation at Anse Maurice. The lower vegetation layers
suffer the most, impeding the growth of crawling plants and seedlings, and consequently
disrupting the development of a new tree generation. Erosion becomes a more pressing
issue as the soil loses its protective cover.
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Figure 1. (a) Location of Guadeloupe Island in the Caribbean and (b) the Anse Maurice beach
(red star) on the East coast of the Island. The green square indicates the point of extraction of the
MARC model waves and the yellow triangle indicates the tide gauge. (c) Anse Maurice beach
orthophotography with the imagery system field of view and position, system coordinates: RGAF09
(EPSG: 5490) The color indicates the resolution of the data as a function of the position. (d) Typical
cross-shore profile at the Anse Maurice site with characteristic areas and position of the vegetation
limit and berm shoreline.

Anse Maurice is situated on a wave-dominated coast with offshore swells showing
significant annual variation, averaging around 1.2 m. The site is open to potent Atlantic
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swells, predominantly during the winter months (December to March), originating from
the north to east-north-east directions [24]. In addition, cyclonic events between July and
November can generate the most potent waves that can exceed 10 m in Hs. However, only
swells from the north to east direction directly impact the site due to its orientation. Apart
from these two high-energy wave regimes, trade wind-generated waves affect the area
throughout the year, with Hs fluctuating between 0.5 and 2 m [38,39]. The most significant
flooding risk comes with the occurrence of tropical cyclones [40]. The site experiences a
semidiurnal microtidal range with diurnal and mixed inequalities, with a mean range of
0.25 m, fluctuating between 0.1 m during neap tides and 0.6 m during spring tides [41]. The
still water level (η0) is also influenced by non-tidal forcings. At the event level, atmospheric
pressure and wind can contribute significantly (i.e., storm surge), while at the seasonal
level, forcings such as atmospheric pressure and steric expansion cycles may affect the
sea level. Annual fluctuations in atmospheric pressure in the Caribbean are linked to the
Inter-Tropical Convergence Zone’s (ITCZ) movement [42].

2.2. Hydrodynamic Conditions
2.2.1. Waves and Still Water Level

This research employed both η0 data and offshore wave conditions for two key reasons:
(1), to ensure the selection of images under similar hydrodynamic circumstances for the
detection of shoreline changes, and (2), to examine the impact of these variables on shore-
line alterations. The data for the η0 was acquired from the Pointe-à-Pitre tide gauge, which
is nearest to the study location. The French Hydrographic Service (SHOM) is responsible
for these data (which can be found at [43]). The astronomical tide was extracted from the
TPXO9-atlas (1/30° resolution) database [44], and anomalies were computed by determin-
ing the difference between the global η0 and TPXO tides. Offshore wave conditions were
derived from the MARC model’s outputs. The MARC model is a regional scale reanalysis
of the WAVEWATCH III® model, with simulation results provided in real-time by the
IFREMER (French Institute for Sea Exploitation Research) at [45]. Hydrodynamic variables
were condensed to daily values as higher frequencies are incompatible with shoreline
changes. η0, over this timescale, mainly fluctuates due to non-astronomical variability [46].
As a result, the anomaly of daily maximum η0, i.e., the deviation from the astronomical tide,
was denoted as ∆dη0. In addition, for each day, the cumulative wave power in kWh/m was
estimated following the method of [47]. This procedure provides data on the significant
wave height (Hs) and peak period (Tp) as a single variable, merging the temporal and
hydrodynamic dimensions. It is utilized to examine the wave power variation throughout
the year. It is defined as follows:

dΣP =
∫ h24

h1
P∆t (1)

where h1 and h24 are, respectively, the first and the last data extraction of the day and P is
the wave power per meter of wavefront length in kW/m, defined as:

P =
ρg2

64π
HsTp (2)

where ρ is the water density and g is the acceleration due to gravity.

2.2.2. Cyclones Tracks

The analysis of potential cyclones impacting the Anse Maurice beach employed the
HURDAT2 dataset [48,49]. It is essential to consider actual hurricane tracks, as numerical
models utilized for offshore wave condition extraction may not accurately replicate cyclonic
waves due to the speed, variability, and unpredictability of these events [50–52]. The
offshore wave dataset has only been available for about a decade, and no wave data exists
for the historic period. Therefore, this hurricane track dataset serves as a valuable resource
for interpreting shoreline changes. The exposure area is defined based on the location and
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geographical layout of Anse Maurice within the Guadeloupe archipelago. It was assumed
that any cyclone traversing this area could potentially generate waves reaching the shore.
The exposure area is defined as a circular arc spanning 900 km in radius, extending from 3°
to 93°. Its boundaries encompass the eastern coast of Grande-Terre in the north (culminating
at the Grande-Vigie headland) and the Pointe-des-Châteaux headland and Désirade Island
to the south. The 900 km arc limit was chosen due to the observed fact that no event beyond
this distance has exhibited a significant effect at the site. The most impactful distant event
noted was Hurricane Teddy. The eye of this Category 5 hurricane passed within 850 km of
the study area at its closest point. An intensity threshold was also set based on the sustained
wind speed within the exposure area. This threshold served to filter out cyclones from the
database that were deemed less likely to significantly impact the shoreline. In the historical
analysis spanning from 1947 to 2022, only events that demonstrated a sustained wind
speed exceeding 116 km/h while within the exposure area were taken into account. This
limit effectively separates tropical storms from hurricanes [53,54], and it aids in filtering
out events of milder intensity that are unlikely to result in observable shoreline alterations.
Therefore, both the exposure area and the intensity threshold were utilized to identify the
events most likely to significantly impact the shoreline.

2.3. Shoreline Datasets
2.3.1. Airborne, Satellite and UAV Derived Dataset

A collection of aerial and satellite images from the IGN (the French National Institute
for Geographic and Forestry Information) and the CNES (the French Center of Spatial
Studies) was used to assess shoreline changes at the study site over the historical period. The
collection includes black-and-white historical aerial photographs from the IGN, Pleiades,
and SPOT satellite images, and images from UAV surveys. A total of 24 shorelines were
extracted from 1947 to 2022 (See Table 1).

Rectified satellite imagery was utilized for the study. UAV images were processed
through the Agisoft Metashape software, with ground control points collected via real-time
kinematic global navigation satellite systems (RTK-GNSS) employed to create orthopho-
tographies [55]. Images acquired from aircraft surveys were rectified using the Qgis
geospatial data abstraction library (GDAL) Georeferencer. This process was grounded on
identifiable features shared between a calibrated image and the raw image sourced from
the aircraft. Given that this latter method of rectification is not as precise, due to the image
resolution and quality (such as sun and shades, and black and white images), we have taken
into account a reasonable margin of error of 5 m for the shoreline extraction process. This
value is based on the results of studies using similar resolution images [56,57]. Subsequently,
the position of the shoreline was digitized for each orthophotography using Qgis.

Table 1. Details of the images used for shoreline detection for the historic period, including date
taken, source, type of photography, capturing device, and image resolution. “??” is indicated when
the information about the day or the month where the picture was taken is unknown.

Id Date Source Photography Type Device Resolution
(m)

1 25 February 1947 IGN Argentic Aircraft 1
2 25 August 1948 IGN Argentic Aircraft 0.4
3 20 December 1950 IGN Argentic Aircraft 0.9
4 19 March 1954 IGN Argentic Aircraft 0.2
5 9 December 1955 IGN Argentic Aircraft 0.4
6 22 March 1964 IGN Argentic Aircraft 0.7
7 6 February 1969 IGN Argentic Aircraft 0.7
8 3 April 1975 IGN Argentic Aircraft 0.4
9 ?? March 1979 IGN Argentic Aircraft 0.5

10 1 January 1980 IGN Argentic Aircraft 0.5
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Table 1. Cont.

Id Date Source Photography Type Device Resolution
(m)

11 20 February 1984 IGN Argentic Aircraft 0.4
12 16 March 1988 IGN Argentic Aircraft 0.4
13 14 October 1989 IGN Argentic Aircraft 0.2
14 1 February 1999 IGN Argentic Aircraft 0.6
15 ?? ?? 2004 IGN Numeric Aircraft 0.5
16 21 February 2010 IGN Numeric Aircraft 0.3
17 ?? ?? 2014 CNES\IGN Numeric Pleiades satellite 0.5
18 ?? ?? 2015 CNES\IGN Numeric Spot 6-7 satellite 2
19 ?? ?? 2016 CNES\IGN Numeric Spot 6-7 satellite 2
20 ?? ?? 2017 IGN Numeric Aircraft 0.2
21 ?? ?? 2018 CNES\IGN Numeric Pleiades satellite 0.5
22 ?? ?? 2019 CNES\IGN Numeric Pleiades satellite 0.5
23 28 September 2020 BRGM Numeric UAV 0.1
24 21 October 2022 BRGM Numeric UAV 0.1

2.3.2. Fixed Video System Derived Dataset

The fixed-camera was installed in April 2019 and remained functional until December
2022, the period within which data for this research were collected. To provide the data on a
real-world scale, as we did for UAV, aircraft, and satellite imagery, the device was calibrated
using the method outlined by [58], using ground control points captured with an RTK-GNSS
system. This rectification process facilitated the conversion of image coordinates (U, V) into
world coordinates (X, Y, and Z), thereby enabling the quantitative analysis of coastal state
indicators. With respect to resolution, our installed device ranged from 0.03 m at the north
of the beach, the closest position to the camera, to 0.9 m at the southern end (as illustrated
in Figure 1c). It is worth noting that the resolution decreases markedly towards the south,
reaching several meters beyond the area of interest. Given that hydrodynamic conditions,
such as wave activity and η0, can significantly influence shoreline appearance, it is vital to
extract and compare images that share similar conditions. Without this standardization,
changes in the shoreline could be erroneously attributed to morphological shifts, rather
than the more likely influences of water level fluctuations or wave setup. As such, a filter
was applied to both Hs and η0 to select images that exhibited comparable levels of agitation
and η0. To establish the η0 filter, the mean η0 value over the duration of the study was
first computed. Subsequently, an acceptable tolerance of plus or minus 0.1 m was selected
around this mean value. On a daily basis, the filter sought out the image whose η0 value
was closest to the mean, but still within the acceptable tolerance. In cases where no such
value was found within the buffer, no image was selected for that day. Furthermore, images
captured under two specific conditions were excluded: those with Hs values below 0.7 and
those above 2 m. Rare instances of Hs values falling under 0.7 m could potentially overstate
the offshore positioning of the shoreline, while Hs values exceeding 2 m, indicative of
agitated conditions, could result in the erroneous estimation of an overly onshore shoreline.
The positions of the shoreline were then digitized using a specially developed MATLAB
tool, which enabled us to analyze and compare data with precision and consistency.

2.3.3. Shoreline Digitalization and Processing

To digitize the shoreline, we relied on two key markers (see Figure 1d):

• The vegetation limit: This represents the boundary between the last vegetated area
and the sandy beach. Serving as an indicator of the beach’s mid to long-term evolution
(ranging from monthly to multi-annual scales), the vegetation boundary is typically
affected only by storm events.

• The berm: This is identifiable either as a sedimentary vertical bulge on the beach or
through marine deposits. The berm offers a more dynamic perspective, which informs
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the beach’s evolution, from short to long term (from weekly to multi-annual scales)
changes.

Although these two markers provide different insights, their combined use offers a
more comprehensive understanding of the beach’s overall evolution over time. However,
for the images taken by the fixed camera system, only the berm shoreline was digitized,
because the vegetation limit could not be extracted from these images for the entire beach.
For each shoreline dataset, analyses were performed using a similar approach to the Digital
Shoreline Analysis System (DSAS), a widely used ArcGIS extension for assessing shoreline
position changes [59]. This involved generating transects every 5 m perpendicular to the
shoreline position, as seen in Figure 2. The intersection of each transect with the shoreline
was extracted and used for further analysis.

Figure 2. Transect (grey and black lines) used to assess shoreline changes, system coordinates:
RGAF09 (EPSG: 5490).

On each transect location, several key metrics were calculated, including the position
with the maximum retreat or advance, the rate of evolution, the net change, and the
deviation from the mean position on the transects as well as for the whole shoreline, as
in [1] or [4]. This deviation was computed using the following formula:

∆Si,t = Si,t −
∑N

t=1 Si,t

N
(3)

In this formula, ∆Si,t stands for the alongshore position of transect i at time t, ∑N
t=1 xi,t

N
is the sum of the alongshore positions of transect i across all time points, and N is the
total number of shorelines. Then, the derivative of ∆Si,t was calculated to evaluate the
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temporal trends of shoreline change (i.e., whether the shoreline was experiencing accretion
or erosion). This was done using the following formula:

∆S′i,t =
∂

∂t
Si,t −

1
N

N

∑
t=1

∂

∂t
Si,t (4)

In this formula, δ/δt represents the derivative with respect to time, indicating how the
associated variable changes over time. Values of ∂

∂t ∆Si,t that are positive suggest a tendency
towards accretion, while negative values imply a trend towards erosion. Furthermore, to
evaluate shoreline change across the entire beach, the alongshore average, which is the
spatially averaged shoreline position at time t, was compared with the global average
position of all shorelines, represented as St. The calculation is expressed as follows:

St = xt − t (5)

where

x =
∑N

i=1 xi

N
(6)

In this context, xt refers to the average alongshore position of a specific shoreline
(shoreline at time t), while x represents the mean of all the alongshore positions across all
shorelines. The sum runs over all transects (from i = 1 to i = N), and the result is divided
by the total number of transects (N) to get the average. In addition to the aforementioned
metrics for the satellite-derived dataset, the mean beach width was also calculated. This is
defined as the average of the distances between the vegetation limit and the berm shoreline
across all transects. This can be expressed as:

BW =
∑N

i=1(Vi − Bi)

N
(7)

Here, BW represents the mean beach width. Vi and Bi represent the positions of the
vegetation limit and the berm shoreline, respectively, on transect i. These variables, (St and
BW), aid in summarizing and evaluating temporal evolution. However, they provide the
most accurate results only when shoreline evolution is consistent across the entire beach
system, and there is minimal longitudinal variability. Therefore, the usefulness of this
approach may vary based on the inherent dynamics of the beach system under study.

2.4. Data Analysis
2.4.1. Interrupted Time Series Analysis and ARIMA Model

Several analyses were applied to the datasets in order to evaluate potential causalities
and dependencies. Due to the differences in time frequency, distinct processes were applied
for long- and short-term analyses. For the long-term analysis, an interrupted time series
analysis (ITSA) was used. ITSA is a statistical method employed to gauge the impact of a
single intervention or event on a time series of data. For instance, it can measure the effects
of policy changes, natural disasters, marketing campaigns, or any other event presumed to
cause structural changes in a time series [60,61]. Mathematically, the time series equation
can be expressed as:

Y = β0 + β1T + β2D + β3P + ε (8)

Here, Y represents the outcome variable, T is a continuous variable indicating the
elapsed time from the start of the observation period, and D is a Boolean variable that
takes the value 0 for observations collected before the intervention and 1 for those collected
after the intervention. P is a continuous variable indicating the elapsed time since the
intervention (P is equal to 0 before the intervention), and ε represents a zero-centered
Gaussian random error. As for the β coefficients (β0, β1, β2, and β3), they are explained as
follows: β0 represents the baseline level of the outcome variable Y at the start of the time
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series. In other words, it is the expected value of Y when all other factors (T, D, P) are zero.
β1 indicates the trend or rate of change in the outcome variable Y per unit of time before
the intervention. It shows how the outcome variable changes over time, independent of
the intervention. β2 represents the immediate impact of the intervention on the outcome
variable. It shows the difference in the level of the outcome variable immediately before
and after the intervention. β3 is the change in trend of the outcome variable after the
intervention. It indicates whether the intervention has caused the trend of the outcome to
increase or decrease compared to the pre-intervention trend.

Autoregressive Integrated Moving Average (ARIMA) models are particularly suitable
for ITSA due to several reasons. ARIMA models can model a variety of time series
structures, which includes autoregressive (AR) and moving average (MA) components,
as well as a trend component (the “integrated” part of ARIMA). AR and MA models
assume data are stationary. However, real-world data often violate this assumption, such as
trended or cyclical time series. The integrated (I) part of ARIMA transforms non-stationary
time series data into a stationary form by taking differences between observations. This
flexibility makes them an ideal choice for modeling complex real-world data [60,62]. The
autoregressive component (AR) is described as:

Yt = c + φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + et (9)

Here, Yt is the value of the time series at time t, φ1, ..., φp are the parameters of the
model, et are the values of the error term (white noise), c is a constant, and p is the order of
the model. The moving average component (MA) is described as:

Yt = µ + et + θ1et−1 + θ2et−2 + ... + θqet−q (10)

Here, et, et−1, ..., et−q are the values of the error term (white noise), µ is the expectation
of Yt (often assumed to be 0), and q is the order of the model. If the time series Y is
non-stationary, it can be differenced once to yield a new series:

∆Yt = Yt −Yt−1 (11)

If this differenced series is still non-stationary, it can be differenced again:

∆2Yt = ∆Yt − ∆Yt−1 (12)

and so forth. Each differencing step, however, results in the loss of one observation. The
following equation:

Φ(B)(1− B)dYt = Θ(B)Zt (13)

represents the full ARIMA model, where Φ(B) is the AR operator of order p, (1− B)d

represents the I operator of order d, and Θ(B) is the MA operator of order q. Yt is the time
series, and Zt is a white noise series. Moreover, ARIMA models include parameters that
allow the model to specifically account for the intervention. This is done by incorporating
a “dummy” variable that changes value at the time of the intervention and potentially an
additional variable to represent the cumulative effect of the intervention over time [60].

2.4.2. Cyclicity and Correlations

To extract insights from the high-resolution camera-derived shoreline dataset, several
statistical methods have been employed, starting with a simple linear correlation and
proceeding to more complex techniques, including sinusoidal fitting, autocorrelation, and
cross-correlation analyses. The initial step involved performing a linear correlation analysis
between the shoreline dataset and the two hydrodynamic variables: dΣP and ∆dη0. This
analysis helped quantify the degree of linear dependence between these variables. By
computing the Pearson R coefficient, a measure of the strength and direction of their linear
relationship was obtained. The insights derived from this simple yet powerful analysis pro-
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vided a foundation for subsequent, more complex techniques. Subsequently, a sinusoidal
fit was conducted on the daily time series to reveal potential annual cyclicities. This was
accomplished by fitting the dataset with a least-squares estimate of a sinusoid featuring a
periodicity of one year [63]. To gauge the strength of this cyclicity in the initial datasets,
the Pearson R coefficient between the dataset and its annual periodicity was calculated.
Furthermore, autocorrelation and cross-correlation analyses were performed to discern
causal relationships between the shoreline evolution and two particular hydrodynamic
variables, dΣP and ∆dη0. Autocorrelation was computed to detect any significant peaks
that might correspond to an annual cycle. Autocorrelation analysis plays a crucial role in
examining a variable’s reliance on its past values within a time series, facilitating the identi-
fication of recurring patterns [60]. The autocorrelation function (ACF) is mathematically
articulated as:

ρ(k) = ∑(xt − µ) · (xt+k − µ)

σ2 (14)

In this equation, xt signifies the data at time t, xt + k denotes the data k time periods
later, µ is the mean of the series, and σ2 is the series’ variance. An ACF plot will be
used to illustrate autocorrelations for various lags (k). To further probe the relationship
between shoreline evolution and the selected hydrodynamic variables, a cross-correlation
analysis was used. This method measures the similarity between two distinct time series
as a function of the lag applied to one, providing insights into the causal links between
variables [60]. The cross-correlation function (CCF) is mathematically represented as:

rxy(k) =
∑(xt − µx) · (yt+k − µy)

σx · σy
(15)

Here, xt and yt symbolize the data at time t for series x and y, respectively, xt + k and
yt + k represent the data k time periods later, µx and µy are the respective means of series x
and y, and σx and σy are their respective standard deviations. A CCF plot for various lags
was generated. Peaks in the CCF plot will suggest a correlation between the two series at
that specific lag. These correlations were evaluated for statistical significance, ensuring the
validity of the findings. The interpretation of the CCF plot will provide information about
the time lag at which the series are correlated. For instance, a peak at lag k means that the
x-series from k time periods ago is a good predictor for the current y-series. This could
indicate a causal relationship between x and y. The values of the ACF and the CCF range
from −1 to 1. A value of −1 indicates a perfect negative (or inverse) correlation, while a
value of 1 signifies a perfect positive correlation.

3. Results
3.1. Multi Decadal Shoreline Observations

Figure 3 displays all 24 shorelines, and their respective ages are illustrated in the
legend. The berm shoreline dataset appears very coherent, while the vegetation limit
dataset presents greater variability, with one shoreline located relatively far away from
the others.

For both shoreline datasets, the overall trend is one of a moderate retreat. The mean
shoreline changes between 1947 and 2022 are −8 m on the berm shoreline and −5 m on
the vegetation shoreline. Excepting on the southern extremity of the beach, which is less
eroded, the whole beach exhibits almost the same retreat on the berm shoreline. The
evolution of the vegetation limit is more chaotic. Two areas showed significant changes:
at the northern area of the site with a retreat that exceeded 20 m, and at the southern area
with up to a 20 m retreat. Notwithstanding the areas showing major changes, such as at
both extremes of the beach or at the center, the beach evolution is milder, with only a few
meters retreat. To further analyse the evolution between 1947 and 2022, several processing
techniques were applied on the datasets. Firstly, for both shoreline types, the deviation
from the mean was calculated on each transect over time (Figure 4a,b). Additionally, the
deviation of each shoreline mean to the overall mean (Figure 4c) and the mean beach width
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(Figure 4d) were calculated. In order to highlight those events that could potentially affect
the beach, the cyclonic events extracted were plotted on Figure 4a,b. Table 2 compiles the
wave characteristics of the events extracted from the MARC wave dataset. A total of 11
events were extracted using the methodology described in Section 2.2.2.

Figure 3. Shoreline collection extracted from satellite and airbone datasets, the figure gathers 24 shore-
lines. The position of the mean shoreline is plotted with a black dotted-line. Left: berm shorelines;
Right: vegetation shorelines (background: 2017 orthophotography from the ©IGN).

Figure 4. Interpolated deviation from the mean by transect of (a) the berm shoreline and (b) the
vegetation shoreline. (c) Averaged deviation from the mean (on all transects) for both shorelines.
(d) Mean beach width.
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Table 2. Cyclones characteristics for the historic period.

Event Date Hs (m) Tp (sec) Dp (°) Min. Distance (km)

Carol 1 September 1953 nd nd nd 440
Esther 1 September 1961 nd nd nd 830
Hugo 17 September 1989 10 7.5 90 4
Luis 15 September 1995 5.6 7.5 82.0 150

Edouard 8 August 1996 3.6 8.6 71.0 600
Gert 15 September 1999 3.9 8.5 91.0 780
Igor 1 September 2010 4.8 8.3 62.0 740

Erika 28 August 2015 4.5 7.0 70.0 10
Irma 5 September 2017 6.3 7.6 83.0 140
Jose 9 September 2017 4.1 9.3 78.0 190

Teddy 1 August 2020 5.1 12.5 69.0 850

The passage of Hurricane Hugo in 1989, known as the most destructive hurricane for
Guadeloupe Island in the second half of the 20th century, left a lasting impact on the study
site. Hurricane Hugo passed at a few kilometers from the site as a category 4 hurricane. An
aircraft image taken one month after the hurricane showed obvious signs of damage, such
as widespread sedimentary deposits and destruction of vegetation. The vegetation limit
retreated by 25 m, while the berm shoreline advanced by 5 m compared to the last shoreline.
Besides Hugo, the dataset shows two significant shifts of the shoreline dynamic occurring
after an identified high intensity event. One was associated with the passage of Hurricane
Erika in 2015 that passed 10 km north from the site as a tropical storm. The second was
observed after the passage of Hurricanes Irma and Jose in 2017 within an interval of a few
days. Irma and Jose passed at 140 km and 190 km, respectively, from the site as category 5
and 4 hurricanes. Overall, the site displays a trend of erosion with an average retreat rate
of 0.13 m per year.

An ITSA was conducted using an ARIMA model to evaluate the effects of Hugo, Erika,
and the combined events of Irma and Jose on the shoreline evolution, and also to determine
the duration in order to return to normal conditions (Figure 5). In the case of the berm
shoreline dataset, the deviations of the post-Hugo event observations from the predicted
trajectory, without the occurrence of the Hugo event, ranged from 9 m immediately after
the event to 0 m after a span of 25 years (i.e., in 2014). The Erika event, which occurred in
2015, triggered a retreat of 6 m compared to the prediction without the event. This was
followed by the Irma and Jose events in 2017, resulting in a retreat of the berm shoreline by
3.5 m from the last shoreline. This sequence of events was accompanied by an erosional
trend up to the end of the dataset. For the dataset with the vegetation limit, a deviation of
20 m was noted between the prediction excluding the Hugo event and the observations
immediately post-event. This difference gradually decreased over time, aligning with
the event-excluded prediction about 25 years after the event. The two events, Erika and
the Irma-Jose cluster, caused less pronounced changes. Post-Erika, a deviation of about 1
m was observed from the prediction without the event, while Irma and Jose resulted in
an additional retreat of 2 m compared to the last shoreline position (which had already
deviated 1 m from the event-excluded prediction, thus leading to a total deviation of 3 m).
The predicted and observed shoreline positions converged four years after the Irma–Jose
cluster event in 2021.

This dataset provides insights into the long-term impacts of major storm events on
the shoreline dynamics. Yet, its spatial and temporal resolutions limit comprehensive
understanding of the dynamics. To explore these dynamics with greater precision, a more
recent and higher resolution dataset was used, allowing for the assessment of factors
influencing the shoreline over shorter timescales.
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Figure 5. ITSA performed using ARIMA model on (a) the berm shoreline dataset and (b) on the
vegetation limit.

3.2. High Frequency Shoreline Observations

By applying the hydrodynamics filters followed by an image quality filter on the
full image dataset, a total of 60 shorelines were extracted between 13 April 2019 and
13 December 2022, which corresponds to a period of 3 years and 9 months. The initial
objective was to extract a shoreline every 15 days. However, a significant number of images
were discarded due to the presence of sea spray deposits, water droplets on the lens, or
poor lighting conditions. Additionally, periods of camera failure, either complete (camera
off for a few days) or partial (weak data transmission), further reduced the number of
usable images for shoreline detection. This resulted in a shoreline extraction frequency of
approximately one shoreline every 22 days, as shown in Figure 6. The shoreline dataset is
presented on a map in Figure 7.

Figure 6. (a) Corresponding η0 for images in the entire dataset. (b) Images filtered with the η0 filter.
(c) Images that passed both filter.
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Figure 7. Shoreline collection extracted from camera showing the 60 shorelines. The position of the
mean shoreline is plotted with a black dotted-line (background: 2017 orthophotography from the
©IGN).

Ten cyclonic events passed through the study area during the recent observation
period with the high frequency images from the fixed video system. Their characteristics
are presented in the Table 3.

Table 3. Cyclones extraction in the study area for the recent period.

Event Date Hs (m) Tp (sec) Dp (°) Min. Distance (km)

Jerry 20 September 2019 2.6 10.3 356.0 320
Sebastien 19 November 2019 2.0 11.2 343.0 500
Josephine 15 August 2020 2.9 9.1 40.0 300

Laura 21 August 2020 2.9 7.7 87.0 80
Teddy 18 September 2020 5.1 12.5 69.0 850
Grace 14 August 2021 2.7 7.4 78.0 7
Peter 20 September 2021 1.9 7.7 74.0 310
Sam 29 September 2021 2.5 9.3 85.0 610
Earl 3 September 2022 2.0 7.6 84.0 280

Fiona 16 September 2022 4.6 7.9 98.0 0.5

As with the satellite-derived dataset, several additional variables were calculated, such
as S′i and St, to assess shoreline evolution. To highlight events that can potentially impact the
beach, cyclonic events were identified as outlined in the prior section (Table 3). To analyze
the influence of storm events on Anse Maurice, the 10 events extracted were used and
incorporated into Figure 8. In addition, the winter events identified through extreme value
analysis were also added for context. The annual cycle of the daily hydrodynamic variables,
including the differential wave power (dΣP) and the anomaly in the maximum daily still
water level (∆dη0), were calculated. It was thought best to use ∆dη0 rather than dη0, as
it had been identified as having a more significant impact on η0 at this timescale [42,46].
Examination of the temporal evolution of transects showed no evident longshore drift
pattern emerging. Instead, the system displays a coherent alternation of erosion and
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accretion periods (Figure 8a). As no significant longshore variations were observed, the
mean evolution of all transects per shoreline provides a reliable representation of shoreline
changes. The shoreline variability exhibited a strong annual cycle (R2 = 0.70), characterized
by maximum erosion at the end of October, maximum accretion in late April, and an
amplitude of 3.73 m relative to the mean position across the entire dataset. Moreover, we
observed a trend of accretion at 0.05 m/year (Figure 8b). This trend was determined by
comparing a shoreline from June 2019, representing a neutral position in annual variability,
with a corresponding shoreline from June 2022. The annual cycle of ∆dη0 also displayed
a strong cyclicity (R2 = 0.69), with an amplitude of 0.18 m (Figure 8c). Conversely, the
cyclicity of dΣP did not show a good fit to the data (R2 = 0.33) (Figure 8d).

Figure 8. (a) Interpolated deviation from the mean over each transect, vertical dotted lines represent
the exact dates of shoreline extraction and bold vertical dotted lines the dates of DEM extraction
by GNSS. (b) Averaged shoreline deviation (on all transects) from the mean, (c) ∆dη0, and (d) dΣP.
On graphs (b–d), vertical red lines represent cyclonic events and blue vertical lines represent winter
storms.

To assess the dependence of St on the hydrodynamic variables dΣP and ∆dη0, linear
regression was performed (Figure 9). The relationship between St and dΣP was found
to be statistically insignificant, with an R² value close to 0 and a p-value >0.05. A weak
relationship was observed with ∆dη0 (R2 = 0.22 and p-value <0.05). This suggests that if
any dependence exists between St and these hydrodynamic variables, it is likely not linear.

Next, the Autocorrelation Function (ACF) of the three variables were computed
(Figure 10a). All variables exhibited an autocorrelation peak at 365 days, implying a strong
similarity in the same variable from one year to the next. This is particularly notable for
St and ∆dη0, which demonstrated correlation peaks around one year of 0.45 and 0.35,
respectively. However, dΣP only exhibited a peak of 0.16. These findings validate the
significant annual cyclicity of St and ∆dη0 that was identified using the sinusoidal fit.
Lastly, the Cross-Correlation Function (CCF) between St and both dΣP and ∆dη0 were
determined (Figure 10b). The CCF with dΣP was low across all lags, remaining under 0.2.
Conversely, the CCF with ∆dη0 was substantial, peaking at a lag of −135 days (CCF = 0.4).
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This suggests that St exhibits a robust positive correlation with ∆dη0 when a lag of 135 days
is considered. It means that there is a lag of 135 days between the maximum values of ∆η0
and the maximum values of St.

Figure 9. Linear regression of St against (left) dΣP and (right) ∆dη0.

Figure 10. (a) Autocorrelation Functions (ACF) of variables St, dΣP, and ∆dη0. The autocorrelation
value corresponding to a year (i.e., 365 days) is represented by a black dotted line. (b) Cross-
Correlation Function (CCF) of variables St against dΣP and ∆dη0.

Insights from this analysis underscore a notable time-dependent relationship between
St and ∆dη0. A consistent delay of approximately 135 days is observed in the response of
St to fluctuations in ∆dη0. This lag, calculated to be 139 days based on the sinusoidal fit
(derived from the difference of the phase between both annual fits), translates to a temporal
offset of roughly 4.5 months. As such, over an annual cycle, the variables demonstrate a
relationship that closely approximates a negative correlation (which would be observed
with a 6-month offset between maxima). The residual 1.5 months in an approximate
negative correlation is indicative of the continued trend in St post the peak (or trough) of
∆dη0. Specifically, once ∆dη0 reaches its peak, St persists in its downward trend for an
additional 1.5 months. Conversely, when ∆dη0 is at its lowest, St continues its upward
trend for another 1.5 months. The identified trend exhibits an asymmetrical nature, contrary
to what might be expected if the offset in maxima were closer to 3 months, which would
denote a symmetric phase relationship. This discrepancy indicates that the transitions in
St, from increasing to decreasing values, and vice versa, do not correspond to consistent
values of ∆dη0 at the corresponding times. This means that for equivalent levels of ∆dη0,
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the tendencies in St display distinct behaviors depending on whether it is on an increasing
or decreasing trend.

4. Discussion

This study illuminates the mechanisms that influence shoreline dynamics across
different timescales on a reef-lined pocket beach. It underscores the importance of high-
resolution, long-term data for advancing our understanding of shoreline dynamics and the
impacts of major storm events. Three main drivers of shoreline evolution were identified at
three different timescales: the scale of a major event (e.g., Hurricane Hugo), the seasonal
timescale, and the long-term timescale.

4.1. Short-Term Shoreline Evolution: Drivers and Processes

The analysis of the dataset used in this study allowed the discernment of two main
processes that act on the shoreline. Extreme storms have induced significant effects lasting
up to 20 years on the retreat of vegetation due to high runup and energy dissipation.
Interestingly, these storms have little effect on the berm shoreline because of beach flattening
and sediment transfer from the upper beach to the beach and reef flat, as cited in previous
studies [10,64,65]. On the other hand, less intense storms induced a mild retreat of the
vegetation limit and significant erosion on the berm shoreline, with a recovery period of
1–2 years. These less intense storms may also play a role in the reconstruction of the upper
beach sedimentary stock [21–23] by transportation of sediment from the nearshore area to
the beach and upperbeach by swash processes [66].

The seasonality of the shoreline is forced by the annual cycle in eta0, which impacts
the depth over the reef and thus the wave filtering over the year [67–70]. This plays a
significant role in the wave energy and runup reaching the shoreline [46], manifesting in
a global cycle of ±4 m. Notably, a lag exists between the peak of eta0 and the peak of
erosion, and the cycle is not symmetric. This may be attributed to a nonlinear relationship
or the involvement of other parameters that imply a threshold. This aspect requires further
investigation.

While the response to different storms is quite well-described for open sandy beaches,
it has not been extensively studied in the context of reef-lined beaches [21,22]. On the other
hand, the influence of eta0 cyclicity on the shoreline is a novel observation. In most cases,
seasonality is attributed to wave intensity and/or direction variations over the year [1,2,4,5].
The observations on the historical period were limited by the heterogeneous resolution in
time of the images. Nowadays, new techniques are used to monitor shoreline evolution
(satellite, video, etc.) with better resolution in time and space, and future observation will
provide a better resolution around the passage of events, allowing further interpretation
and quantification on the impact on the vegetation limit and berm shoreline as well as on
recovery time.

The recent observations obtained using a fixed camera could be complemented with
direct measurements, such as regular beach profile measurements utilizing a GNSS-RTK
device. Conducting further research to accurately quantify the volume of sediment transfer
would be beneficial. This research could also evaluate whether the change occurs at a
constant volume or if a portion of the sediment is lost, potentially explaining a long-term
erosion trend.

4.2. Long-Term Shoreline Evolution

The accumulated residual effect of the aforementioned processes may be the cause of
the long-term evolution of the shoreline [71]. The time required for a beach to fully recover
between storms is pivotal to long-term stability [72,73]. This study verified that with
sufficient time between storms, the shoreline could return to a pre-storm state. Additionally,
the balance between the net changes of the retreat and advance phases induced by the
annual fluctuation is crucial to stability over time. A null balance would indicate that this
process does not affect the shoreline dynamics on greater timescales than a year.



Coasts 2023, 3 257

Any deviation from this equilibrium may lead to long-term shoreline advance or
retreat. As the site exhibited a trend toward shoreline retreat in the historical dataset
(−0.13 m per year), this suggests an imbalance in short-term processes or possibly the effect
of an external influence, for example, human-induced factors such as sand mining, which
the site has been exposed to during the second half of the 20th century [36].

Through a synthesis of observations, a conceptual model of the beach shoreline evolu-
tion has been formulated (see Figure 11). This model delineates both shoreline markers,
highlighting the impacts of major storm events and less intense storm events (Figure 11b,c),
along with the annual variations observed in the berm shoreline (as depicted in Figure 11b).
Furthermore, the relationship between the changes in the berm shoreline and the η0 is
represented (Figure 11a), allowing for a clear visualization of the phases of erosion and ac-
cretion.

Figure 11. Conceptual models of berm shoreline (a) seasonal change and (b) longterm evolution.
(c) Vegetation limit longterm change.
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5. Future Expectations and Potential Solutions

Anticipating and mitigating future changes is crucial, especially considering the
potential impacts of SLR and changes in storm intensity and frequency. The sea level rise
(SLR) is a major consequence of climate change that will affect oceans globally [74]. By
influencing the depths over the reef, SLR will diminish the filtering effect that coral reefs
have on waves [75–77]. This could lead to a prolonged retreat phase in the annual shoreline
cycle, resulting in an asymmetric pattern that may generate a continuous erosion trend. It
has been evidenced that a healthy coral reef’s growth rate could counter SLR [78,79], but the
current state of most Caribbean reefs [80–82] prevents this possibility. Nevertheless, recent
studies focusing on coral reef restoration as protection against flooding have demonstrated
that this solution is relevant and efficient [83,84] in combating SLR.

Moreover, several studies indicate a possible change in future cyclonic activity, with a
tendency to increase in both the frequency and intensity of cyclonic events [85–90]. Even
though the trend in cyclonic activity is still a subject of discussion, this projection could
have serious implications for all coasts impacted by such events. More frequent and intense
storms will likely result in less time for recovery between storms, leading to accumulated
erosion over time.

A subsequent conceptual model evaluating the transformations associated with cli-
mate change is introduced (Figure 12). This model primarily illustrates the impact of SLR
on the annual berm shoreline cycle, specifically how it narrows the accretion window and
expands the erosion window. Additionally, it highlights the effect of recurrent storm events
occurring with insufficient recovery periods. Both these processes contribute to an acceler-
ated trend of erosion, marking a significant divergence from the current-day dynamic.

Figure 12. Conceptual models of future shoreline change taking into account (a) the effect of SLR on
shoreline seasonality and (b) the longterm effect of the increase in cyclones frequency.
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6. Conclusions and Perspectives

Through the integration of long-term, low-frequency (75 years) and short-term, high-
frequency (3 years) datasets on shoreline dynamics, this study has elucidated the various
processes at play across different timescales on a typical reef-lined Caribbean beach.

• Storms have a limited impact on long-term shoreline change, as sufficient recovery
time allows a return to the pre-storm state. Extreme storm events have a significant
influence on the vegetation limit shoreline, causing a retreat that may exceed 20 m
and take several decades to recover, but that have little impact on the berm shoreline.
More frequent and less intense storms, while having little influence on the vegetation
limit, may strongly influence the berm shoreline.

• The annual cyclicity of η0 is the driver of shoreline fluctuation, which is a novel
observation. The wave attenuation by reefs is depth-dependent; η0 seasonality trig-
gers changes in the efficacy of the filter over the year, leading to significant annual
fluctuation of the shoreline.

• Climate change, specifically SLR and potential changes in storm intensity and fre-
quency, will affect shoreline dynamics. SLR may increase the depth over the reef,
extending the retreat period and shortening the accretion phase within the η0 cy-
cle. Additionally, more frequent and intense storms could reduce the recovery time
between events, possibly culminating in a future trend of increased shoreline retreat.

The findings of this study provide new insights into the complex dynamics of coastal
processes. Future research must explore the underlying relationship between η0 and
shoreline change, quantify the morphological thresholds of storms, and identify the pa-
rameters that differentiate extreme storms and their impact on both advance/retreat and
erosion/accretion.

Recent studies have proved that ecosystems are essential in hydrodynamic dampening,
and thus in protecting the coastline. The effects of ecosystems such as coral reefs or upper
beach vegetation on erosion and shoreline retreat are still fields of work but could be
relevant solutions to address the challenges faced by our coastal environments when it
comes to climate change.
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