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Abstract: The effects of iron, manganese, zinc, copper, and lead on the chlorophyll content, carbon
assimilation, and the antiradical activity of Rhizophora mangle and Laguncularia racemosa were evalu-
ated in regions affected by the Fundão dam disruption in Brazil. The mine waste which settled and
accumulated in the sediments could represent long-term contamination. It can be expected that the
iron oxyhydroxides deposited in the sediments will be solubilized, leading to chronic contamination
by trace metals and the accumulation of these metals in the biota. In this sense, biological indicators
prove to be important tools to assess this type of damage. The different bioaccumulation of metals by
the species revealed that R. mangle was more impacted by Mn and Cu and that L. racemosa showed
alterations in its physiological responses in the presence of Cu, Zn, and Fe. The concentration of these
metals in the leaves, with values above previous local reference limits, was associated with reductions
in the chlorophyll-a and chlorophyll-b content and carbon assimilation, mainly in L. racemosa. The
antiradical activity was also altered, suggesting a lower ability of both species to eliminate reactive
oxygen species (ROS). A possible reason for the symptoms of oxidative stress may be due to the
reduced efficiency of antioxidant defense by Cu2+ and Zn2+. In addition, the presence of Pb in the
leaf tissue may be toxic to the fauna and the bioaccumulation of this metal and trace elements can be
a way to transfer them into the food web by biomagnification.

Keywords: chlorophyll; DPPH•; mangrove; Rhizophora mangle; Laguncularia racemosa; potentially
toxic metal; bioaccumulation; bioconcentration factor

1. Introduction

The mangrove ecosystem is one of the main types of natural wetlands along tropical
and subtropical coasts and has considerable ecological and commercial value [1,2]. Al-
though mangroves cover only 0.1% of the Earth’s continental surface (~81,485 km2), they
can store large amounts of carbon from the soil because they sequester it faster than most
terrestrial ecosystems, in addition to storing more of this chemical element per unit of
area compared to terrestrial forests. Therefore, mangrove forests are viewed as one of the
most productive and efficient long-term natural carbon sinks [3,4] and are an important
ecosystem for storing blue carbon. Despite their importance, Brazilian mangroves have
faced serious environmental problems such as the rupture of the Fundão Dam (2015) in
Minas Gerais, southeast Brazil. The Fundão rupture is considered the greatest environ-
mental disaster in Brazilian history, with approximately 50 million m3 of mud spilled. The
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intense flow of water and iron ore tailings was transported over 650 km before reaching
the Atlantic Ocean (Figure 1), spreading a plume of turbidity over a large area, mainly to
the southern coast of Brazil [5–7]. Tailings mud can directly or indirectly affect the Atlantic
coastal ecosystems of other states such as Espírito Santo (southeastern Brazil) and Bahia
(northeastern Brazil) [8,9]. According to Tognella et al. [10], this environmental disaster is
the first opportunity to understand the effect of mining tailings on tropical coastal areas
and to identify the damage caused to mangroves.
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natural or anthropogenic sources. Thus, they potentially become bioavailable and toxic to 
the biota at high concentrations [12] due to their potential for bioaccumulation and 
biomagnification [13], which affects physiological behavior. The highly specific 
mechanisms and biotic responses of mangrove plants to capture, translocate, and store 
toxic metals within their physiological ranges are generally selective [14]. However, non-
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Piraquê-Mirim River (PM) in the states of Bahia and Espírito Santo and the cities affected by the mud
from Fundão dam—Brazil.

Naturally, mangroves play an important role in preventing contamination of the
estuarine ecosystem. Around the world, some studies that have taken into account the ac-
cumulation of metal and nutrients in sediment failed to register toxicity in mangroves [11].
However, metals remain present in the environment for a long time, whether from natural
or anthropogenic sources. Thus, they potentially become bioavailable and toxic to the biota
at high concentrations [12] due to their potential for bioaccumulation and biomagnifica-
tion [13], which affects physiological behavior. The highly specific mechanisms and biotic
responses of mangrove plants to capture, translocate, and store toxic metals within their
physiological ranges are generally selective [14]. However, non-essential elements are also
captured by the same transport systems [15]. In this way, essential and non-essential metals
are worrying pollutants and represent a threat to mangroves as they are able to cross the
entire ecological cycle and can be involved in the ecosystem for a long time [16].
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Monitoring the metal levels in these environments provides useful indicators for
assessing metal pollution and predicting ecosystem impact [17]. Although some mangrove
species demonstrate a relatively high tolerance to trace element pollution [18,19], studies
report high concentrations of these elements accumulated in their tissues [20], with a
variety of metabolic reactions that cause damage at the cellular level or lead to broader
phytotoxic responses [21]. A major consequence is the increased production of reactive
oxygen species (ROS) which alter the functional processes of photosynthesis and damage
cell membranes, nucleic acids, and photosynthetic pigments [22], especially in the presence
of free iron in the cell [23]. The mobility and bioavailability of metals depend not only on
their total concentration but also on their association with the solid phase to which they are
linked [24]. In addition, soil pH, cation exchange capacity, and salt content also affect these
processes [25]. Concomitantly, trace element cycling is a potentially serious problem in
mangrove environments [26] since the excessive transfer of heavy metals from sediments
to mangrove plants can lead to contamination of the food chain [27].

In this context, the objective of this study was to evaluate the absorption and accu-
mulation of metals as well as their effect on the concentration of photosynthetic pigments,
carbon assimilation, and antiradical activity in two mangrove species (Rhizophora mangle
and Laguncularia racemosa) located in three different impacted estuaries that experienced
disruption from the Fundão dam in 2015 [28]. After this damage, monitoring should answer
some questions about the flora: (1) Will the trace elements from Fundão tailings affect
the mangrove ecosystem since they are essential to life? (2) Is there interference of these
elements in the physiological performance of the mangrove? (3) Do mangrove species
behave similarly to these trace elements?

To answer these questions, the research considers how sediment characteristics influ-
ence the concentration of sedimentary metals and trace elements, which in turn determine
different patterns of accumulation and translocation in different mangrove species. Our
great challenge is the lack of defined baseline levels for the foliar concentration of trace
elements and the flora contamination level. Consequently, alterations in the photosynthetic
apparatus and the oxidative metabolism of plants must be considered and may be useful
tools to monitor the damage caused by metals in the long term, in addition to acting as
biological indicators of physiological disorders as these disorders can decrease mangrove
productivity on the coast.

2. Materials and Methods
2.1. Study Area

The areas affected by the ore tailings from the Fundão Dam studied here were the
estuaries of Piraquê-Mirim (PM), São Mateus (SM), and Caravelas (CR) (Figure 1). Piraquê-
Mirim is an estuary located in Aracruz at 19◦55′ S, 40◦12′ W within a protected area on
the SE Brazilian coast [29]. This estuary has a Y-shaped morphology and about 12 km2 of
preserved mangroves mostly dominated by Rhizophora mangle L. (about 84%), followed
by Laguncularia racemosa (L.) C.F. Gaertn and Avicennia schaueriana Stapf & Leechman ex
Moldenke, within tidal flats under a semi-diurnal micro tidal system (<2 m) (Figure 2). The
estuary is classified as a tidal domain and presents ebbs (spring tide ebbs = 0.7 ms−1 versus
spring tide floods = 0.54 ms−1) with a current velocity greater than the floods [10].

The São Mateus River basin is approximately 103.351 km2. It is located at 18◦42′ S,
39◦51′ W and it bathes ten cities in the states of Minas Gerais and Espírito Santo, flowing
into the Atlantic Ocean from Conceição da Barra city (Figure 2). According to the Instituto
Nacional de Pesquisas Espaciais (INPE), in 2013, only 15.425 km2 (7%) of the entire area
of the city was covered by native vegetation. Of these, 1.452 km2 were mangroves. The
dominant plant species were R. mangle and L. racemosa [30]. The flooded river dominates
the ocean during the rainy season, and, in the dry months, the estuary is dominated by
waves and tides, which strongly influence the local salinity. In addition, neap tides have a
higher ebb flow, i.e., 427.0 m3s−1 [10].
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Figure 2. Caravelas River in Caravelas city, Bahia; São Mateus River in the São Mateus and Conceição
da Barra cities, and Piraquê-Mirim River in Aracruz, Espírito Santo—Brazil.

The Caravelas River estuary (17◦43′ S, 39◦15′ W) is located on the southern coast of
the state of Bahia, in the city of the same name. It extends itself towards the continent,
where it forms the second most complex mangrove system in northeast Brazil, with an area
of 66 km2. This estuary behaves like a typical tidal channel governed by coastal waters,
is associated with the Peruípe River mouth, and features an entrance bar approximately
2 km long (Figure 2). The dominant plant species are R. mangle and L. racemosa. For
detailed descriptions of the area and the damage caused by the dam rupture, consult
Tognella et al. [10].

The collection and handling of all material followed the current Brazilian legislation
with a license from the Ministry of the Environment, under process number 75435/1.
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2.2. Sediments

Sediment samples were collected in the intertidal zones within the mangroves using
50 cm collectors built with a polyvinyl chloride (PVC) tube. Twenty-four sediment samples
were collected at points previously described [10] in the Piraquê-Mirim, São Mateus,
and Caravelas Rivers at a depth of 0–5 cm. After collection, the samples were placed in
previously identified plastic bags and stored at −10 ◦C.

2.3. Granulometry, Organic Matter, and Calcium Carbonate

The granulometry analysis determined the fractions of sand, silt, and clay in the
sediment samples. Approximately 50 g of the crude sample was washed with water to
remove the salts; then, the analyses were performed according to Dias [31]. First, the sample
was washed with water to remove the salts, using the decantation technique, three times.
Subsequently, the coarse (sand + gravel) and fine (silt + clay) fractions were separated.
The beaker containing the fine fraction was left to rest until the complete deposition of the
suspended sediment occurred. After decanting, the excess water was carefully drained with
a hose and the total removal of organic matter in the sample was conducted by burning
it with hydrogen peroxide (H2O2) at 30%. After the firing, the sample was washed three
times in the beaker itself. In these samples, the mud fraction was analyzed using a laser
granulometer, Mastersizer 2000 from Malvern Instruments, according to the methodology
adapted from Dias [31]. The beaker containing the coarse fraction (after the water was
drained) was placed in an oven at 40 ◦C to dry the sample. After drying, the sediment was
weighed and proceeded to dry fractionation. The sand fraction was passed through dry
sieving, which consists of using a set of sieves with mesh screens from 2 mm to 0.063 mm
placed in a mechanical shaker for 15 min. After sieving, each portion of the sediment,
according to its granulometry, was weighed and spread out. The grain size scale used
was that of Wentworth [32], in which fractions greater than 0.063 mm are classified as
sand/gravel and the smallest as silt/clay [33].

The content of total organic matter (OM) present in the sediments was measured
using the calcination method, which consists of burning the OM at high temperatures.
The samples were subjected to a temperature of 450 ◦C in a muffle for 4 h. The OM mass
is defined by the weight of the sediment before burning minus the weight after burning,
according to the modified Walkley–Black method [34].

For the determination of calcium carbonate (CaCO3), about 20 g of the lyophilized
crude sample was weighed and dried. The dry sample was placed in a fume hood for the
slow and gradual addition of HCl (30%). The procedure continues until the addition of
HCl causes no further reaction (bubbling). After the carbonate burning, the sediment was
washed three times with water and dried in an oven at 40 ◦C. After drying, the sample was
weighed again and the calcium carbonate content was considered as the pre-burn sediment
subtracted from the post-burn sediment, corrected for percentage.

2.4. Metals in Sediments

The analysis of metals in the sediments was performed according to the USEPA
3051A method [35]. The elements analyzed by ICP-MS (inductively coupled plasma mass
spectrometry; Agilent, CX7500) were Cu, Fe, Mn, Pb, and Zn (mg kg−1). The mean value of
the depths 0–5 cm was used in this study. The TEL (thresholds effectslLevels)—NOAA was
considered the reference point of contamination when possible [36]. For Fe and Mn, the
apparent effect limit (AET) value was used.

2.5. Salinity

The salinity measurements of the interstitial water were performed concomitantly
with the leaf collections. The salinity of the interstitial water was obtained after percolating
the water into the polyvinyl chloride (PVC) tube, previously installed, using a Hach
multiparameter sensor calibrated with a standard solution before each sampling.
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2.6. Leaf Samples

Twenty fully expanded mature leaves were collected from five individuals of the
species R. mangle (Rh) and L. racemosa (Lg), according to their existence in the plots in the PM,
SM, and CR estuaries. After collection, the leaves were packed in paper bags and identified
according to each sampling station, for further analysis of leaf metals and antiradical activity.
The same number of leaves was collected for the analysis of photosynthetic pigments. These
samples were stored on ice before arriving at the Mangrove Ecology Laboratory, where
they were frozen at −30 ◦C until the analysis.

2.7. Leaf Analysis of Macro and Micronutrients

For the determination of macro and micronutrients and antiradical activity, the leaves
were dried at 65 ◦C in a forced circulation oven until constant weight. Then, the samples
were ground in a Wiley mill (Tecnal brand; model TE-650/1) with 20 mesh sieves. For leaf
analysis, the following nutrients were considered: iron (Fe), manganese (Mn), zinc (Zn),
copper (Cu), and lead (Pb), all in mg kg−1.

Fe, Mn, Zn, and Cu were analyzed by atomic absorption spectrophotometry [37]
and Pb was analyzed according to Malavolta et al. [38]. Past data from Cuzzuol and
Campos [39], Machado et al. [40], and Souza et al. [41] were our referential baseline. The Fe
and Mn were evaluated due to their contribution to the dam sediments; the other elements
are toxic to the biota and associated with Fe and Mn oxyhydroxides. The analyses were
carried out by a certified company, with reference to the Quality Management System,
corresponding to the ISO 9001:2015 Standard with Environmental License and Registration
with the Ministry of Agriculture (MAPA).

2.8. Carbon Assimilation

To measure CO2 assimilation (A—µmol m−2s−1) portable photosynthesis meters
(Infrared gas analyzer, IRGA), models LCi, LCi T, and Lcpro T (ADC, Bio Scientific Ltd.
Hoddesdon, UK), were used. The number of samples was the same as in the other fo-
liar analyses.

2.9. DPPH• (2,2-Diphenyl-1-picrylhydrazyl)

Tests with DPPH• were performed to assess antioxidant activity, with all solutions of
the dry extracts diluted in methanol. Solutions that had already been diluted were referred
to as working solutions (WS). The tests were performed by adding 15 µL, 25 µL, and 35 µL
aliquots of each WS in cuvettes containing 3.0 mL of DPPH• in a 0.2 mmol L−1 methanol
solution, and keeping the reaction in the dark for 60 min before spectrophotometric mea-
surements. These were performed on a Lambda 16 spectrophotometer, from the Perkin
Elmer brand, by monitoring the absorbance of the samples at 517 nm. The blank consisted
of 3.0 mL of methanol containing 15 µL, 25 µL, or 35 µL of the respective WS. The negative
control was a solution containing only DPPH• 0.2 mmol L−1 in methanol. The calculation
of the DPPH• scavenges percentage was performed according to Dal Prá et al. [42] and
represented as IC50 values (concentration necessary to inhibit 50% of the DPPH• radical).

2.10. Photosynthetic Pigments

The samples frozen at −30 ◦C (fresh mass) were processed in liquid nitrogen (N2) and
transferred to test tubes containing 15 mL of a 90% acetone solution + 0.5 g L−1 of calcium
carbonate (CaCO3). After this process, the test tubes were stored at a temperature of 2 ◦C
for 48 h for complete pigment extraction [43]. Thereafter, the samples were filtered and the
supernatant was stored in amber flasks at −30 ◦C until analysis.

An aliquot of the supernatant was clarified in a 0.45 µm syringe filter and injected into
a reverse phase column. The pigment separation was performed by high-pressure liquid
chromatography (HPLC) on Waters “e2695 Alliance” equipment, Waters photographic
diode spectrophotometric detector “2998 Photodiode Array Detector” (PDA 2998), Wa-
ters columns “XBridge C18” (3.5 µm, 4.6 mm × 50 mm), and “Symmetry C18” (3.5 µm,
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3.9 mm × 5 mm). The chromatographic data analysis system used was the Waters Em-
power 3 software. The mobile phase was composed of a linear gradient of methanol
(eluent A), 0.5 M ammonium acetate (eluent B), and acetone (eluent C) with the follow-
ing gradient: 0 min (80:20:0 v/v/v), 2 min (80:20:0), 15 min (80:0:20), 17.5 min (80:0:20),
22 min (0:0:100), 25 min (80:20:0), and 30 min (80:20:0). The flow of the mobile phase was
constant at 1 mL min−1 and the column temperature was adjusted to 25 ◦C. The injection
volume was 50 µL. The chlorophyll absorption spectrum was adjusted between 380 and
750 nm, with a wavelength of 440 nm. Isolated pigments were identified by comparing
their absorbance spectra and retention times with those of chlorophyll-a (Sigma C5753) and
chlorophyll-b (Sigma C5878). The peak areas found in the extracts were interpolated in the
standard curves to quantify the concentration of pigments in the analyzed samples. The
values are presented in µg g−1.

2.11. Bioconcentration Factor

The bioconcentration factor (BCF) was assessed according to MacFarlane et al. [18] and
is defined as the ratio of the metal concentration between the leaf tissue and the sediment.

BCF =
Metal concentration in Plant

Metal concentration in Sediment

2.12. Statistical Analysis

The analyzed data addressed the three estuaries and the species R. mangle and
L. racemosa. All data were subjected to an analysis of variance (ANOVA) and Tukey’s
test, when necessary, at a level of 5% probability using the Genes 3.1 software [44]. The
Principal Component Analysis (PCA) was performed with the aid of the R Core Team
software [45], using the packages “ggplots” [46], “FactoMineR” [47], “Factoextra” [48],
and “FactoInvestigate” [49]. The results correspond to samples collected from February
2019 to February 2020. Leaf collections were performed every two months and sediment
collections every six months.

3. Results

The granulometric characteristics and metal concentrations of the sediments were dif-
ferent, depending on the predominant species in the sampling sites and the oceanographic
conditions such as tides, waves, and salinity distribution in the estuaries. Higher values of
clay, silt, CaCO3, manganese (Mn-s), zinc (Zn-s), and lead (Pb-s) were found in Caravelas
for sediments dominated by R. mangle and L. racemosa (Figure 3A,B,E,H,I,K) where there
was also a lower concentration of sand (Figure 3C). Concerning organic matter (OM), there
was a higher percentage in the sediments from the Piraquê-Mirim and Caravelas estuaries
with a predominance of R. mangle and the sediments of the São Mateus and Caravelas
estuaries with L. racemosa (Figure 3D). The salinity variable showed similar behavior in
sediments dominated by both species (Figure 3F). The iron content (Fe-s) was higher in
sediments of R. mangle in Piraquê-Mirim and Caravelas (Figure 3G), although sediments of
L. racemosa showed high values of the metal in Caravelas. The copper (Cu-s) concentration
was similar between the sediments of both species located in the Piraquê-Mirim estuary,
with higher values compared to the other two estuaries (Figure 3J).
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In the comparative analysis between the mangrove species, a significant difference was
observed between R. mangle and L. racemosa when compared to each other and the behavior
of each species in the evaluated estuaries. Figure 4A,B show the photopigment data,
with a significant difference between the estuaries. There was a higher concentration of
chlorophyll-a (Chla) and chlorophyll-b (Chlb) for both species located in the Piraquê-Mirim
estuary. The R. mangle located in Caravelas also showed higher values of Chla (Figure 4A)
while a lower ratio between chlorophyll-a and chlorophyll-b (Chla/Chlb) and lower values
of Mg-f were observed in L. racemosa (Figure 4C,K). Carbon assimilation (A) was lower in
both species located in the São Mateus and Caravelas estuaries (Figure 4D). The lowest
scavenging activity against the DPPH• radical (high IC50) was observed in R. mangle in the
São Mateus estuary, while for L. racemosa, high IC50 values were found in São Mateus and
Caravelas (Figure 4E). Regarding metal concentrations in the leaves, L. racemosa had a higher
concentration of iron (Fe-f) compared to R. mangle, mainly when analyzed in the São Mateus
River (Figure 4F). The Fe-f values found for R. mangle were similar between the estuaries,
with no statistically significant difference. A different behavior was observed for the metal
manganese (Mn-f) which presented higher values for the species R. mangle. Comparing
the estuaries, there was a lower concentration of Mn-f in Piraquê-Mirim for R. mangle and
Piraquê-Mirim and Caravelas for L. racemosa (Figure 4G). There was a significant difference
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between species concerning leaf zinc (Zn-f). The highest concentrations occurred for
L. racemosa in all estuaries, except in Piraquê-Mirim. For R. mangle, there was no significant
difference in zinc concentration between estuaries (Figure 4H). A higher concentration of
copper (Cu-f) was observed for L. racemosa in São Mateus and Caravelas. Similar results
were observed in R. mangle (Figure 4I). The species R. mangle had the highest lead value
(Pb-f) in the São Mateus estuary; the metal concentration did not vary between estuaries
for L. racemosa (Figure 4J).
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(IC50) (E), and the leaf metals iron (Fe-f) (F), manganese (Mn-f) (G), zinc (Zn-f) (H), copper (Cu-f) (I),
lead (Pb-f) (J), and magnesium (Mg-f) (K) in Rhizophora mangle (Rh) and Laguncularia racemosa (Lg)
species, located in the Piraquê-Mirim (PM), São Mateus (SM), and Caravelas (CR) estuaries. Values
are expressed as the mean ± SD. Means followed by the same letter do not differ statistically by
Tukey’s test (p < 0.05). Capital letters represent the species and lowercase letters represent estuaries.
Yellow lines represent the values used as a reference for the species R. mangle; blue lines represent
values used as a reference for L. racemosa; and a dashed black line represents the value used as a
reference for both species. References: [39–41].

All data from Figures 3 and 4 represent the mean values of the metals analyzed in
the sediments and the leaves. However, considering the raw values of each metal in
the respective estuaries and mangrove species, it was observed that a percentage of the
sediment samples presented values above the NOAA AET limits [36]. This also occurred
for leaf samples, with raw data above the values used as a reference, as reported by Cuzzuol
and Campos [39], Souza et al. [40], and Machado et al. [41]. A summary is presented in
Table 1.
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Table 1. Percentage of samples of sediments and leaves of Rhizophora mangle (Rh) and
Laguncularia racemosa (Lg) collected in the Piraquê-Mirim, São Mateus, and Caravelas rivers with
values above the reference. Reference values for sediments: National Oceanic and Atmospheric
Administration—NOAA reference limits (TEL and AET) [36]. Reference values for mangrove
species: [39–41]. Fe: iron; Mn: manganese; Zn: zinc; Cu: copper; Pb: lead; PM: Piraquê-Mirim;
SM: São Mateus; and CR: Caravelas.

Percentage (%)

Sediment 1 Leaf 2

PM SM CR
PM SM CR

Rh Lg Rh Lg Rh Lg

Fe 36 7 46 76 0 93 60 78 0
Mn 9 0 21 0 20 0 53 0 0
Zn 0 0 0 37 0 23 60 58 50
Cu 2 0 0 52 20 70 100 56 40
Pb 0 5 14 100 100 100 100 100 100

1 Sediment reference values (mg kg−1)—Fe: 22,000; Mn: 260; Zn: 124; Cu: 18.7; and Pb: 30.24. 2 Leaf reference
values for Rh (mg kg−1)—Fe: 72–92.6; Mn: 738.4–929.6; Zn: 5.0; Cu: 2.0; and Pb: 0.02–0.11. 2 Leaf reference values
for Lg (mg kg−1)—Fe: 523.3–655.1; Mn: 79.9–112.4; Zn: 10.2–15.2; Cu: 2.0; and Pb: 1.3–8.9.

In general, the results of the principal components analysis (PCA) explained 100% of
the joint variability of the data in the first two axes for both species (Figure 5). In R. mangle,
the variables Zn-s, Pb-f, Fe-f, Fe-s, salinity, Mn-s, OM, Zn-f, DPPH•, Chla, clay, and sand
presented the highest contribution, in order of importance, and accounted for 59.18% of
the variability in dimension 1 (PCA1). On the other hand, although with less significance
(40.82%), dimension 2 (PCA2) showed the association of Chlb, Cu-s, Cu-f, Mn-f, A, Pb-s,
and silt (Figure 5A). Pearson’s linear correlation for R. mangle can be seen in Figure 5B.
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Figure 5. Principal components analysis plot (PCA) and Pearson’s linear correlation of Rhizophora
mangle (A,B) and Laguncularia racemosa (C,D) species in the Piraquê-Mirim (PM), São Mateus (SM),
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In the PCA of L. racemosa (Figure 5C), Zn-s, Mn-s, Fe-f, Pb-f, Fe-s, salinity, OM, Zn-f,
clay, sand, Chla, and DPPH•, accounted for 75.25% of the variability in dimension 1 (PCA1),
while Cu-s, Chlb, Cu-f, Mn-f, A, Pb-s, and silt and were associated with dimension 2 (PCA2)
with 24.75% variability. Figure 5D shows Pearson’s linear correlation for this specie.

The bioconcentration factor for both species can be seen in Table 2. BCF values
between 0.01 and 0.1 represent a low metal bioconcentration in the leaf; between 0.1 and 1.0
correspond to medium bioconcentration; and 1.0 and above indicate high bioconcentration.

Table 2. Bioconcentration factors (BCF = metal concentration in leaf tissue/metal concentration in
sediments) of Rhizophora mangle (Rh) and Lacuncularia racemosa (Lg) species in the Piraquê-Mirim, São
Mateus, and Caravelas estuaries. Fe: iron; Mn: manganese; Zn: zinc; Cu: copper; and Pb: lead.

BCF

Fe Mn Zn Cu Pb

Rhizophora mangle
Piraquê-Mirim 0.01 2.36 0.32 0.43 1.50

São Mateus 0.01 5.97 0.46 1.37 1.15
Caravelas 0.04 1.76 0.25 1.27 0.56

Laguncularia racemosa
Piraquê-Mirim 0.01 3.31 0.64 0.34 3.56

São Mateus 0.08 1.47 0.94 1.47 0.70
Caravelas 0.01 0.36 0.61 3.21 0.53

4. Discussion

Granulometry and OM content are important factors that affect the distribution of
trace metals [50] and their retention time in sediment [51]. Fine-grained sediments tend
to have relatively higher metal contents, partly due to the high specific surface of the
particles which increases the surface adsorption of the mineral to OM and the activity
of microorganisms that alter the microenvironment, causing a lower oxidation state [52].
In this study, the clay and silt fractions contributed to higher levels of the metals Fe-s,
Mn-s, Zn-s, and Pb-s for both species located in the Caravelas River. In this estuary, the
contribution of finer sediments was more outstanding than Piraquê-Mirim and São Mateus
(Figure 3). The predominance of finer sediment in the Caravelas estuary is due to the
influence of the tides on river flows. The extensive tidal plain in this estuary functions as a
sink for particulate matter in suspension, except in the dry season. The adsorption capacity
of OM can be observed in the R. mangle forest sediment, with a positive correlation between
OM and the trace elements Fe-s (r = 0.99, p < 0.05), Mn-s (r = 0.78, p < 0.05), and Zn-s
(r = 0.90, p < 0.05). The Piraquê-Mirim estuary recorded the lowest values of Fe-s, Mn-s,
Zn-s, and Pb-s in the sediment, occurring in the L. racemosa forest. This seems to be slightly
related to it having the lowest amount of OM but mostly to the absence of clay in this
area [53]. These results confirm the interaction of clay with the elements in question. This
granulometric fraction is responsible for the sorption/desorption mechanisms induced
by the trace element loads. In addition to the question of sediment granulometry and
its association with metals, Fe facilitates the precipitation of toxic metals in mangrove
sediments [54]. This ability can increase contamination and result in long-term toxicity.

Significant and positive correlations of Fe were formed with the trace elements Mn
(r = 0.82, p < 0.01) and Zn (r = 0.93, p < 0.01) for the sediments of R. mangle. The same occurs
between Fe and the elements Mn (r = 0.85, p < 0.01), Zn (r = 0.98, p < 0.01), and Pb (r = 0.84,
p < 0.01) for the sediments of L. racemosa. This interaction suggests adsorption in the form
of Fe oxides/hydroxides, which is associated with the transport and availability of metals
that influence exchanges at the water-sediment interface [11,55,56]. This behavior can be
observed in the sediments of both species and is justified by the higher concentrations of
Fe-s, mainly in Caravelas, which corresponds to the highest concentrations of the other
elements, except for Cu-s. According to Kabata-Pendias [57], the high sorption capacity
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of Fe oxides (and also Mn) allows for the accumulation of metals mainly in nodules and
Fe-rich points. This same author reported that the pH and redox status (Eh) govern all
oxidation-reduction reactions in the soil. The reduction of Fe3+ and Mn4+ (i.e., insoluble
oxyhydroxides) to Fe2+ and Mn2+, for example, has an important effect on the bioavailability
of the metal [58,59]. Fe oxyhydroxides deposited in sediments can be expected to be
solubilized (by microorganisms and organic ligands), leading to chronic contamination by
trace metals and the accumulation of these metals in the biota. In this context, the chronic
impact of tailing deposition in estuaries is likely to last longer than expected, especially
considering that the Fe redox cycle can trigger different biogeochemical processes [9]. The
three estuaries have a semidiurnal tide and the L. racemosa forest in Piraquê-Mirim is less
flooded. These environmental conditions can explain the different results registered by
the metal concentrations between the habitat species, in addition to the granulometry of
the sediment.

Still, regarding Fe and Mn, the previous maximum values (based on past studies
developed in the Piraquê-Açú and Mirim region) were close to the minimum observed
for all collection stations in the period considered in this study, which corroborates the
confirmation of an allochthonous source to the estuary resulting from the Fundão Dam
failure [60,61].

The Cu content is closely associated with soil texture and generally has lower levels
in sandy soils and higher levels in clayey soils [57]. Differently, it was observed in this
study that higher Cu values in the sediment were associated with the sandy fraction
(Figure 5). Furthermore, the lower OM content and higher sand content suggest that lower
concentrations of the metal are linked to the sediment and, therefore, more available for
plant uptake. However, such characteristics do not necessarily indicate bioavailability [62],
and this behavior is corroborated by the lower concentration of Cu-f and BCF recorded
for both species in the Piraquê-Mirim estuary (Figure 4, Table 2). On the other hand,
bioaccumulation was observed in São Mateus and Caravelas, places that presented lower
concentrations of Cu-s (Figure 3), but with higher Cu-f results than in Piraquê-Mirim,
suggesting that in these environments Cu did not occur in residual form, but is bioavailable
to plants. For L. racemosa, the increase in Cu-f was associated with a high concentration of
Mn-s (r = 0.99, p < 0.05), suggesting the association of Cu with Mn (and also Fe in some
cases) oxyhydroxide phases and its bioavailability [62]. The bioavailability of Cu to plants
is possible by a disjunctive pathway. In this mechanism, the dissociated metal ion comes
into pores with water and is taken up further by the roots [63].

According to Kabata-Pendias [57], the distribution of Pb in soils shows a positive
correlation with the fine particle size fraction. Pb is mainly associated with sediments with
a higher content of clay, silt, Fe, and Mn, in addition to CaCO3 (Figure 3). Considered as one
of the main metal binding phases present in sediments, CaCO3 is classified as a geochemical
support in the retention of metallic elements, which explains the interaction with certain
metals [64]. The three domain sites for L. racemosa showed all these characteristics, with
positive correlations between Pb and silt (r = 0.98, p < 0.05), clay (r = 0.98, p < 0.05), Fe
(r = 0.84, p < 0.05), Mn (r = 0.99, p < 0.05), and CaCO3 (r = 0.91, p < 0.05). For sediments in
the presence of R. mangle, there was only a correlation between Pb and silt (r = 0.98, p < 0.05)
(Figures 3 and 5). Sipos et al. [65] reported that Pb mobilization is generally slow but, in
some soils, the formation of the Pb-organic matter complex can increase its solubility.

Queiroz et al. [9] emphasized that the concentration of metals found mainly in the sur-
face layers of sediments indicates trace metal enrichment caused by tailings. Although the
average values of the metals were below the limits reported by the NOAA [36], there were
samples with excessive concentrations of metals, mainly iron (Table 1). Considering the
environmental conditions that affect the estuarine soil, the limit values may not represent
the real environmental risk. Their association with CaCO3 indicates an ocean source. The
estuaries are under the influence of the flood of the Doce River, and the transport of the
sediments and trace elements to the north or south of its mouth is related to littoral drift,
prevailing seasonal winds, and coastal currents [10].
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In general, mangroves are considered permanent sinks for Zn, Cu, and Pb [54,56].
However, as can be seen in the results referring to leaf metals, there is a transfer and
accumulation of these elements to the leaves. In this way, the monitored areas that showed
high concentrations of some metals in the different plots in all estuaries indicate potential
contamination in the biota [61]. The study areas are an important source of marine resources
for the traditional community. The Municipal Sustainable Development Reserve (RDS)
Piraquê-Açu and Piraquê-Mirim produce resources for indigenous villages and artisanal
fishermen, shellfish gatherers, and crab collectors residing in their surroundings [66]; the
Extractive Reserve (RESEX) of Cassurubá, located in Caravelas and nearby municipalities,
is part of the Central Ecological Corridor of the Atlantic Forest, which encompasses the
entire state of Espírito Santo and part of Bahia, and is important in the exploitation of
natural resources and their conservation [67].

According to Lutts and Lefèvre [68], the translocation of metals in plants is positively
influenced by salinity and, consequently, greater absorption occurs. In this study, the
highest values of Fe, Mn, Cu, and Pb found in the leaf tissue of R. mangle occurred in the
estuary of São Mateus, the area with lower salinity (Table S1). These data are corroborated
by the negative correlations between the salinity variable and Fe-f (r = −0.99, p < 0.01),
Mn-f (r = −0.55, p < 0.01), Cu-f (r = −0.53, p < 0.01), and Pb-f (r = −0.99, p < 0.01).
For L. racemosa, a negative correlation only occurred between salinity and Fe-f (r = 0.93,
p < 0.01) and Mn-f (r = 0.96, p < 0.01) (Figures 3 and 4). Such behavior can be attributed
to the geochemical heterogeneity of the sediment, the influence of the physiological and
anatomical characteristics of the species involved in the metal exclusion mechanisms [69],
and the bioavailability of the metal. Lacerda et al. [70] and Medina et al. [71] observed that
the concentrations of metals in mangrove leaves do not correlate with the nutrient content of
the sediment, revealing the differential absorption of ions by plants. Arrivabene et al. [72]
considered that a greater foliar absorption of Fe may occur due to pH conditions since
values between 5.5 and 7.0 are more favorable for the absorption of nutrients; this is what
may have happened with L. racemosa in the São River Mateus (Figure 4C) where the pH
varies from slightly acidic to neutral [73]. Otherwise, Mn does not form stable sulfides
and some species such as R. mangle may have a higher concentration of this metal in the
leaf tissue as a result of the solubilization of Mn in the reducing conditions typical of the
mangrove ecosystem, making this metal more bioavailable than others [74]. Such behaviors
explain why the R. mangle and L. racemosa plants absorb metals in different concentrations.

The preferential incorporation of Mn by R. mangle and Fe by L. racemosa agrees with
the results described by other authors [39,73]. According to Lacerda et al. [75], the salt input
control mechanism can also affect the absorption of metals by plants. Thus, the mechanism
of exclusion of salt present in R. mangle could prevent the entry of trace elements such
as Fe, Zn, Cu, and Pb, causing a decreased concentration of these elements in the leaf
tissue. Despite this characteristic, most of the metals analyzed in the leaves of R. mangle
presented values above those used as references in this study. The same can be observed
for L. racemosa (Figure 4, Table 1).

Although iron plates interfere with the absorption of some metals considered toxic
to plants, the presence of Zn and Cu in the leaf tissues demonstrates that the absorption
process is not controlled only by the presence of these plates. The bioavailability of Cu
and other elements in mangrove sediments depends on their chemical speciation [62]. The
higher concentration of Zn and Cu in the leaf tissue of L. racemosa, compared to R. mangle,
confirms the interspecific difference in the absorption and the capacity for the accumulation
of metals between the two species. This differential behavior between mangrove species
is corroborated by other studies around the world. Copper was the trace element that
most accumulated in the tissues (roots, stems, and leaves) of Lumnitzera racemosa [56].
This species belongs to the Combretaceae Family, like L. racemosa, and occupies a niche in
the Indo/Pacific region similar to L. racemosa in South America. The positive correlation
between Zn and Cu in L. racemosa (r = 0.97, p < 0.05) (Figure 5) can be attributed to the active
absorption process of these elements in the soil, in which there is competition for the same
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carrier site between them [76]. Queiroz et al. [9] reported that Fe, Al, Mn, Cr, Cd, Pb, and As
associated with tailings from the Fundão dam affected different freshwater compartments
(water, sediments, and biota), causing damage to watercourses and biodiversity. Our results
indicate contamination in the coastal environment and that the mangrove ecosystem acts
as a sink.

Changes observed in the carbon assimilation (A) of both species reflect changes in the
efficiency of photosynthetic machinery as a result of higher concentrations of leaf metals.
Khan et al. [77] suggested that the inhibition of this process, stimulated by trace elements,
may be due to lower ATP and NADPH utilization, non-photochemical suppression, and a
reduced rate of electron transport in photosystem II (PSII), which, according to the authors,
decreases the quantum yield of electron transport and net photosynthesis in plants. The
results indicate that trace elements, although essential nutrients, can interfere with the
physiological performance of the species.

Similarly, the presence of trace elements has been documented as a major cause of
changes in the oxidative metabolism of cells [21]. The unifying factor in determining
the toxicity of metals is the generation of reactive oxygen species (ROS), caused mainly
by the imbalance between pro-oxidant and antioxidant homeostasis [78]. According to
Gupta et al. [79], PSII is a possible target of inhibition by ROS. DPPH• data suggests that
the highest Mn, Cu, and Zn values altered the oxidative metabolism of R. mangle and
L. racemosa. These metals can be considered highly toxic, depending on the plant and the
concentration of the metal in the leaf tissue. The highest DPPH• (IC50), observed for
R. mangle in the presence of Mn and L. racemosa in the presence of Cu and Zn, occurred
in the estuaries of São Mateus and Caravelas, inferring a lower antioxidant capacity for
these species and was justified by the lower values of A, Chla, and Chlb. A possible reason
for the symptoms of oxidative stress may be due to the reduced efficiency of antioxidant
defense by Cu2+ and Mn2+ [80,81]. The alteration in the activity of key enzymes of the
antioxidant system, caused by higher concentrations of Cu and Mn, induces the degradation
of Chla, with an increase in pheophytin a, pheophytin b, and total concentrations in leaves
(pheophytinization), indicating a stress condition for the plant [81,82]. Under excess Mn,
chlorophyll content and photosynthesis are highly affected, with a decrease in CO2 fixation
and the efficiency of electron flow in the chloroplast, the main source of ROS. Under low
carbon fixation, excited chlorophyll molecules can generate 1O2 (singlet oxygen) which
is extremely deleterious for photosynthetic reactions [83,84]. In most cases, excess Zn
also generates reactive oxygen species [85], changes in electron transport, and membrane
permeability [86].

According to Wang et al. [87], the mechanisms directly related to the reduction of
photopigments are the replacement of the central magnesium in the porphyrin ring of the
chlorophyll molecule, mainly by Mn, Cu, and Zn. Consequently, the cells accumulate pro-
toporphyrin, and pigment synthesis is blocked [88]. Cheng et al. [89] and Naidoo et al. [90]
showed that trace metals can decrease the chlorophyll content in mangrove species. In
contrast, MacFarlane et al. [91] reported that in native plants such as mangroves, the accu-
mulation of metals in the leaf tissue may not affect the content of chlorophylls. However, in
this study, chlorophyll concentrations were altered in R. mangle in São Mateus, but mainly
in L. racemosa located in São Mateus and Caravelas; this is supported by lower magnesium
values and by the Chla/Chlb ratio (Figure 4). Elefteriou and Karataglis [92] observed that
lower concentrations of chlorophyll occurred in an excess of Cu, as well as ultrastructural
changes in chloroplasts such as the reduction in thylakoid membranes. Decreases in chloro-
phyll values can compromise the energy capture efficiency of PSII and reduce electron
transport [93]. Reductions in the content of Chla and the Chla/Chlb ratio can be observed
before any visible symptom of toxicity, indicating that such parameters can be used as
sensitive indicators of metal stress [87]. Chlorophyll-a is considered more susceptible to
oxidation than Chlb. The greater reduction in Chla compared to Chlb (Figure 4A,B) in
L. racemosa may be due to the increased conversion of Chla to Chlb or, conversely, the
lower reversion of Chlb to Chla [94]. The regulation of this process can be altered by metal
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stress [95]. Accordingly, the behavior of L. racemosa can be considered a response to toxicity
due to Cu and Zn. It is worth mentioning that the significative negative correlation between
Chla and Fe-f (r = −0.094, p < 0.01), Mn-f (r = −0.074, p < 0.01), Cu-f (r = −0.072, p < 0.05),
and Pb-f (r = −0.094, p < 0.05) in R. mangle (Figures 4 and 5) suggests that these metals also
interfered in the synthesis of pigment for this species.

The bioconcentration factor, calculated as the ratio between the total metal in the
leaf tissue and the metal concentration in the sediment, can estimate the potential for the
bioaccumulation of plant metals and the plant-sediment interaction [96]. BCFs showed
different patterns between metals and species (Table 2). In general, these differences
are related to metals, but the physicochemical characteristics of sediments can also have
implications for determining whether metals accumulate in plant tissues [97]. The low
Fe BCF common to both species possibly results from the low availability of the metal
present in the form of oxides and the physiological parameters, mainly, the root system
that acts as a barrier to Fe transfer [52]. However, such behavior did not prevent this metal
from altering the synthesis of chlorophylls as mentioned above. The Mn showed relatively
low concentrations in the leaf tissue of L. racemosa, which is probably also related to the
lower concentrations of this metal in the sediments. However, the fact that Mn is easily
translocated from the root to the leaves by the xylem makes it highly bioavailable, resulting
in a higher BCF than other metals. For R. mangle this is even more visible, considering
that the characteristic anoxic sediment of this species generally precipitates some metals
such as sulfates. Bernini et al. [73] found similar results for R. mangle in the São Mateus
River estuary. The low BCF of Zn did not prevent the toxic action of the metal on the leaf
tissues of L. racemosa. Cu showed a similar behavior concerning toxicity, with a BCF greater
than 1 for this species. Despite Cu and Zn being considered essential micronutrients for
plants, a higher concentration of these metals altered some functions of the physiology of
the species, mainly of L. racemosa, as already mentioned. According to Chettri et al. [94],
Pb is bound almost exclusively to the cell wall and is unlikely to have a direct effect
on plant metabolism. However, if the Pb concentration in the tissues reflects the level
of environmental contamination [98], the results of this study show high contamination
compared to the Pb concentration in leaves of L. racemosa and R. mangle in impacted areas in
the states of Rio de Janeiro and Espírito Santo, respectively [40,41], which receives effluents
from nearby chemical, metallurgical, and steelmaking industries. Finally, it is important
to consider that Pb and Cu are toxic elements to fauna and the bioaccumulation of these
elements in leaves may transfer them to the food web by biomagnification. Caravelas,
São Mateus, and Piraquê-Mirim are important habitats for mangrove crabs that have
commercial interest. These places have an important protected marine area in the South
Atlantic involving coral reefs and mangroves, such as Abrolhos Park and Costa das Algas.

The results of this study corroborate the hypotheses of Analuddian et al. [56], i.e., that
the phylogeny of each mangrove species and their physiological behavior is in response to
growth in different situations of contamination by heavy metals. More than that, the diver-
sity of mangroves could explain the environmental resistance to the increased pollution of
the coastal environment. The results also indicate that the mangrove ecosystem in the area
affected by the Fundão tailings is a sink for trace elements dumped in the coastal zone. The
different species of mangrove flora are acting as a source of bioremediation, accumulating
the trace elements and heavy metals in their tissues, indicated here by leaf concentration.
However, contamination is persistent in the Doce basin and has a long-term impact on
the mangrove ecosystem. The region has a low diversity of flora species and a decrease in
physiological performance could lead to the collapse of the mangrove ecosystem under
another environmental stressor, such as a decrease in rainfall.

5. Conclusions

R. mangle and L. racemosa showed different behaviors concerning the concentration
of metals in the sediment and, consequently, the effects of absorption on their leaf tissues.
Both species showed adjustments in their physiological responses such as an alteration in
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chlorophyll synthesis and carbon assimilation, stimulated by the production of reactive
oxygen species and verified by higher values of DPPH• and by the negative correlations
between leaf metals, pigments, and carbon assimilation. High concentrations of leaf Pb and
Cu may also be indicative of contamination in the mangrove ecosystem, especially in fauna
due to the trophic web. Although the metal uptake by mangroves provides short-term
bioremediation, the associated decrease in carbon assimilation and primary productivity
may reduce or eliminate mangrove ecosystem services, including metal uptake, in the
long term.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/coasts3020008/s1, Table S1. Measurements of salinity in the interstitial
water of sediments with the presence of Rhizophora mangle and Laguncularia racemosa in the Piraquê-
Mirim, São Mateus, and Caravelas estuaries.
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