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Abstract: Barrier islands within sheltered environments are an important natural defense from
severe storm impacts for coastal communities worldwide. Despite their importance, these fetch-
limited barrier islands remain understudied and their ability to withstand and recover from storms
is not well-understood. Here, we present a case study of Sugarloaf Island in North Carolina that
demonstrates the operational use of openly accessible LiDAR and aerial imagery data to quantify
synoptic habitat, shoreline, and volumetric change between 2014 and 2020, a period that encompasses
four hurricanes and a winter storm event. During this time period, our results show: (1) an 11–13%
decrease in marsh and shrub habitat, (2) an average landward shoreline migration of 2.9 m yr−1 and
up to 5.2 m yr−1 in extreme areas, and (3) a net volume loss of approximately 9800 m3. The results
of this study highlight the importance of storms as a driver of morphologic change on Sugarloaf
Island and have implications for better understanding the resiliency of fetch-limited barrier islands to
storms. This work helps to enhance prerestoration data availability and supports knowledge-based
decision-making regarding habitat change, erosional issues, and the efficacy of nature-based solutions
to increase the resiliency of a coastal community in North Carolina.

Keywords: barrier islands; fetch-limited; LiDAR; aerial imagery; storms; change detection;
bio-geomorphology; remote sensing; nature-based solutions; coastal governance

1. Introduction

Barrier islands are highly dynamic coastal landforms that provide storm defenses for
roughly 10% of the world’s open-ocean coastlines, particularly in the U.S., where 24% of
the world’s barrier islands occur [1]. While open-ocean-facing barrier island evolution
has been subject to intense scientific study for nearly 180 years (e.g., [2–18]), barrier is-
lands that form within sheltered and fetch-limited environments such as bays, lagoons,
and sounds have received little attention or systematic research. In fact, they were an
unrecognized coastal landform until recently [14,15]. Termed fetch-limited barrier islands
(hereinto fetch-limited islands), these islands are about six times more numerous than
open-ocean-facing barrier islands and, often, front estuarine shorelines with sensitive com-
munity development [15–21]. As such, fetch-limited islands serve as important barriers for
coastal communities that buffer them against intense wave action and other storm event
impacts [22,23]. By the end of the century, coastal issues are anticipated to have worsened
as a result of spatiotemporally variable accelerated sea-level rise (e.g., [24]), elevated storm
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frequency and intensity (e.g., [25]), and increased coastal development (e.g., [20]). Barrier
islands will be particularly vulnerable to these factors, considering that a 50% acceleration
in barrier island retreat is expected due to a lagged response to previous sea-level rise [26].
It is therefore critical to better understand the spatiotemporal resiliency of fetch-limited
islands to storms, particularly where coastal communities rely on them as nature-based
coastal defense infrastructure.

Fetch-limited islands have a complex evolutionary dynamic with storms. Intense
and/or prolonged coastal storms can subject islands to elevated water levels, wave runup,
and/or wave attack that exceed the island’s ability to withstand prolonged erosion, thereby
causing them to disappear entirely [1,14]. Yet overwash, the storm-driven process where
sediments eroded from the beach and foredune are carried inland and deposited into back
barrier marsh environments, is typically the most important sediment transport process re-
sponsible for fetch-limited island evolution [15]. During nonstorm conditions, fetch-limited
island morphology is predominately influenced by low-energy, locally generated waves
and negligible aeolian inputs [15,21,27,28]. As a result, fetch-limited island systems are
thought to show little change during poststorm recovery periods, making their morphol-
ogy a product of storm events [15,21,27,28]. In comparison, during nonstorm conditions,
open-ocean-facing barrier systems can be exposed to higher-energy, nonlocally generated
waves, such as those from further offshore or other ocean basins [21,27,28]. As a result,
open-ocean-facing barrier systems can experience cyclical poststorm recovery patterns,
where mobilized offshore bars are transported landward and provide a sediment source for
features such as dunes to reform following damage from storm events [15,27–32]. Fetch-
limited islands are thus particularly vulnerable to high-energy coastal storms if they do not
experience a poststorm recovery period like open-ocean barrier systems. However, recent
work (e.g., [21]) on inlet barrier islands (a subgroup of fetch-limited islands studied by [15])
in North Carolina suggests that over time, some fetch-limited islands may fall into and
out of conformance with the open-ocean-facing barrier system poststorm recovery model.
Considering the lack of studies and lack of agreement between studies in the available
literature, it is important to better understand and monitor the spatiotemporal resiliency of
fetch-limited islands to storm events.

Storm impacts on barrier islands are primarily a function of the combined effects of
storm-induced water levels, wave energy, storm duration, island morphology, and the
island’s resiliency to prolonged erosion [33,34]. However, other variables such as storm
path, storm timing, and vegetation cover can also affect coastal responses to storms [35].
This relationship is conceptualized in the Sallenger Storm Impact Scale by four storm
impact regimes with increasing magnitudes of potential hazards [33]. These four regimes
are defined as swash, collision, overwash, and inundation. The swash regime is the lowest
impact level and defined where wave runup is confined to the foreshore and where no net
change occurs [33]. The next impact level is the collision regime where wave runup exceeds
the base of the foredune ridge or berm and results in net dune erosion [33]. The overwash
regime is the third highest impact level and is defined where wave runup overtops the
foredune ridge or berm and results in net landward sediment transport and net landward
migration of the barrier island [33]. Lastly, the highest impact regime is the inundation
regime where water level only is sufficient to continually submerge the barrier island, result-
ing in net landward sediment transport over the barrier island in quantities and distances
greater than what occurs during overwash regime impacts [33]. The Sallenger Storm Impact
Scale can be used to reasonably predict the coastal response to storms and explain aspects of
the spatial variability observed related to shoreline and volumetric change magnitude [36].
Since many fetch-limited islands are typically uninhabited and unmonitored, quantitative
historical information regarding their morphological change is not readily available and
may only be anecdotal in nature, if it exists at all [15]. Openly available (e.g., NOAA’s Data
Access Viewer) remote sensing datasets, such as Light Detection and Ranging (LiDAR)
and aerial imagery, therefore play a critical role in providing accurate and reliable data
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for synthesizing historical change estimates and monitoring ongoing changes in complex
coastal environments [15,37–41].

Here we present a case study that demonstrates the operational use of remote sensing
technologies to support knowledge-based management of coastal resources. The main
objectives of this study are two-fold: (1) to further understand the influence of storms on
the bio-geomorphology of fetch-limited islands, and (2) to synthesize a remotely sensed
knowledge base for an ongoing coastal restoration project. Specifically, we use openly
accessible LiDAR and aerial imagery data to quantify synoptic habitat, shoreline, and
volumetric change on a fetch-limited island in central eastern North Carolina between 2014
and 2020, a period that encompasses four hurricanes and a winter storm event. This work
is unique and timely in that it (1) enhances understanding of the relationship between
coastal processes and the bio-geomorphology of fetch-limited islands, (2) contributes to a
larger multidisciplinary coastal governance project that combines efforts from private citi-
zens, governmental and nongovernmental organizations, and academia, and (3) enhances
prerestoration data availability that supports knowledge-based decision-making regarding
habitat change, erosional issues, and the efficacy of innovative science- and nature-based
solutions to increase the resiliency of fetch-limited islands.

2. Site Description and Historical Context

The North Carolina coastal region comprises of ~23 open-ocean-facing barrier islands
that cover ~320 km of shoreline, as well as over 4800 km of estuarine shoreline comprising
coastal communities, back barrier marsh, and oyster-reef habitats known as the Inner
Banks [42,43]. Sugarloaf Island is a small, anthropogenically modified fetch-limited barrier
island (~14 ha) located in Morehead City, North Carolina, within a region called the ‘Crystal
Coast’ (indicated by the red dot and green outline in Figure 1A). Sugarloaf Island is situated
landward of the developed open-ocean-facing barrier island, Bogue Banks, in the eastern
end of the Bogue Sound near its confluence with the Beaufort Inlet Channel that connects
the Sound with the Atlantic Ocean (Figure 1B). As early as 1888, modern Sugarloaf Island
was identified on nautical charts as a marsh island [44]. By 1913, the Island is shown to have
developed some subaerial exposure [45], which is likely due to dredge-spoil deposition
associated with the construction of an anchorage basin along Morehead City’s waterfront
between 1910 and 1913 [46]. Dredge-spoil deposition would continue to augment islands
in this area throughout the 20th century. A portion of Sugarloaf Island was modified from
spoils associated with Port of Morehead City navigational improvements along the city’s
waterfront in the 1950′s [46–48]. However, no additional spoil deposition on the Island has
been documented by the Army Corps of Engineers for at least the past 35 years [48], and
the island has characteristics of a natural fetch-limited barrier island.

Contemporarily, Sugarloaf Island is bounded on the north and east sides by the
Harbor Channel, separating the Island by approximately 100 m from the city’s commercial
downtown waterfront and port areas. The western end of the Island is characterized by a
recurved sandy spit (i.e., West Spit in Figure 1C) that partially encloses a shallow backbarrier
lagoon and marsh along its northern-facing shoreline (i.e., Back Barrier Marsh in Figure 1C).
Moving to the east, the south-facing shoreline transitions to a rapidly eroding sediment
bank escarpment with dense woody vegetation (e.g., Morella cerifera (wax myrtle)). Past the
sediment bank to the east (i.e., East Spit in Figure 1C), the Island is again characterized by a
sandy barrier ridge and spit with washover deposits and a back barrier marsh dominated
by Spartina alterniflora (smooth cordgrass). Within the back barrier marsh, there are two tidal
creeks that can segment the Island into three smaller islands during elevated water levels.
During higher-than-normal tides and storm conditions, this area can experience overwash,
as is evidenced by the presence of washover deposits. The south- and southeast-facing
shorelines along the East Spit are characterized by a thin sandy shoreface with scattered
patches of beach and dune grasses (e.g., Spartina patens (salt meadow cordgrass)). On
both the West and East Spit areas, previously buried marsh deposits are exposed along
the shoreline and are actively eroding away. Examples of the different habitat types on
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Sugarloaf Island are shown in Figure 1D. Sugarloaf Island experiences semidiurnal tides
with a mean tidal range of 0.9 m (Beaufort, Duke Marine Lab, NC—Station ID: 8656483).
Sugarloaf Island’s proximity to and parallel orientation with the city’s waterfront area
provides the community with protection during marine weather events and is critical to
Morehead City’s future resiliency.
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Figure 1. Maps of different scales of Sugarloaf Island located in North Carolina’s Crystal Coastal
region. (A) The location of Sugarloaf Island is indicated by a red dot. The dotted circle denotes a
60 nautical mile radius from the Island where hurricanes passed. Hurricane-best-track data obtained
from: https://www.nhc.noaa.gov/data/ (accessed on 25 October 2022), (B) 2010 bathymetry model
from TCarta Marine LLC, (C) RGB aerial imagery from 2020, (D) visual line of sight captured while
in the field in June 2022.

Anecdotally, the seaward shoreline of Sugarloaf Island experiences shoreline erosion
from wave exposure and currents that destroy vegetation and sweep sediment from the
Island into the water, thereby contributing to nearby navigational channel infilling and
water quality deterioration. This trend is shown in historical satellite imagery from 1984 to
2020, which shows the island contracting in the north, east, and west directions with no
visually noticeable recovery year over year [49]. Moreover, local reports document striking
and accelerating morphologic and ecologic changes to Sugarloaf Island in association with
storms; however, to the authors’ knowledge, the Island has never been formally studied
and historical changes are poorly documented. In an effort to increase the resiliency of
downtown Morehead City, a partnership consisting of private citizens, governmental and

https://www.nhc.noaa.gov/data/
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nongovernmental organizations, and academia was created to protect Sugarloaf Island from
continued erosion by implementing nature-based stabilization methods. These methods
include: (1) wave attenuation devices to reduce erosion, (2) aquatic and terrestrial plantings
to stabilize sediment and create habitat, and (3) living shorelines to build saltmarsh and
upland vegetation. In recognition of the economic importance of this island as a tourist
destination and coastal defense resource, the project was awarded USD 2 million by the
North Carolina General Assembly in the state’s 2022 budget. To support the implemen-
tation of this project, remote sensing techniques were used to enhance Sugarloaf Island’s
prerestoration data availability in order to (1) better understand recent habitat, shoreline,
and volumetric change in relation to storm events and (2) establish a baseline dataset by
which the efficacy of future restoration activities can be assessed.

3. Data and Methods
3.1. Data Availability and Description

At the time of this study, the best available openly accessible topobathymetric LiDAR
and corresponding aerial imagery were from 2014 and 2020 and are available through
NOAA’s Data Access Viewer (https://coast.noaa.gov/dataviewer/; accessed on 25 October
2022). Both the 2014 and 2020 topobathymetric LiDAR were collected between the months
of November and April, while the 2014 and 2020 aerial imagery were collected between
the months of January and April. All datasets are horizontally referenced to the North
American Datum of 1983 (NAD 83) and projected to the State Plane Coordinate System
in meters. Additional aerial imagery were available, but corresponding LiDAR collected
during the same year and season were not. Since wetland plant productivity and growth is
sensitive to small variations in elevation on the order of centimeters [50], LiDAR elevation
is an important feature when driving a machine learning algorithm to classify habitat [51].
For these reasons, the authors limited the study to the 2014 and 2020 datasets.

The 2014 and 2020 topobathymetric LiDAR were acquired using Riegle VQ sensors and
then classified as ground and submerged topography classes before the vendor generated
1 m horizontal resolution topobathymetric LiDAR DEMs. The vertical accuracy of each
DEM was assessed by each vendor using independent survey checkpoints. The reported
open terrain vertical Root Mean Square Error (RMSE) was 0.057 m for the 2014 DEM and
0.037 m for the 2020 DEM [52,53]. The 2014 and 2020 DEMs were vertically referenced to
the North American Vertical Datum of 1988 (NAVD 88) using Geoid 12B. In this study, we
converted the DEMs to local tidal datums of Mean Lower Low Water (MLLW) and Mean
Higher High Water (MHHW) using NOAA’s open-source vertical datum transformation
tool, VDatum (https://vdatum.noaa.gov/; accessed on 25 October 2022). MLLW represents
the modern lowest low-water mark, which allows us to identify where land is dry daily.
On the other hand, MHHW is the modern highest high-water mark, and is used in this
study as a baseline to capture areas inundated by storms. The maximum cumulative
uncertainty, which is the value from the transformation from the International Terrestrial
References Frame to a tidal datum, is 0.09 m for the North Carolina coastal region (https:
//vdatum.noaa.gov/; accessed on 25 October 2022).

The 2014 aerial imagery was acquired with an Intergraph/Leica DMC sensor at a
0.35 m ground sampling distance and horizontal accuracy tested at 0.53 m [54]. The
specifications for the 2020 aerial imagery included data acquisition with a Leica ADS100
pushbroom sensor, a slightly better ground sampling distance of 0.3 m, and horizontal
accuracy of 0.28 m [55]. Both the 2014 and 2020 imagery contained 4 bands (i.e., Red (R),
Green (G), Blue (B), and Near-Infrared (NIR)), but were not tidally controlled. Therefore,
we performed a quality assessment in a GIS by overlaying the transparent imagery with
the respective DEM relative to MLLW to determine any potentially submerged areas that
were dry at low tide [56]. The results showed that the 2014 imagery was collected at low
tide, while the 2020 imagery was collected near low tide. Since the images were collected at
similar tidal stages, they were considered suitable for further analysis as recommended by
other previous studies [56–61].

https://coast.noaa.gov/dataviewer/
https://vdatum.noaa.gov/
https://vdatum.noaa.gov/
https://vdatum.noaa.gov/
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3.2. Image Analysis and Classification Workflow

In this study, we use a well-established workflow to segment and classify aerial
imagery using object-based image analysis (OBIA) and the Random Forest (RF) machine
learning algorithm. OBIA is a technique used to recognize homogeneous objects in digital
imagery through image segmentation and classification [62]. The defined objects can
have varying shapes and sizes and can also incorporate spectral, textural, and contextual
statistics associated with them to classify objects. RF is an ensemble classification technique,
developed by [63], that can be used to predict image classes based on the partition of data
from multiple uncorrelated decision trees. Advantages of RF include its speed, capability to
deal with complex relationships between predictors, ease of input parameter specification,
and accuracy of its classifications compared to other machine learning models [64,65].

This study used an OBIA workflow in Esri’s ArcGIS Pro v2.9.3, which consisted
of the following three main steps. In the first step of the OBIA workflow, the Segment
Mean Shift algorithm uses a moving window average to group pixels with similar spectral
characteristics into segments [66]. In the algorithm, there are three adjustable parameters:
(1) spectral detail, (2) spatial detail, and (3) minimum segment size. The spectral detail
and spatial detail parameters set the level of importance given to the spectral difference
and the proximity between features, respectively. Both parameters range from 1 to 20,
with higher numbers signifying greater sensitivity to slight differences between features.
The minimum segment size parameter is directly related to the minimum mapping unit
(i.e., the smallest size that can be used to capture a feature), and segments smaller than
the minimum segment size are merged by the algorithm with their best-fitting neighbor
segment. In this study, a spectral detail of 17, spatial detail of 15, and minimum segment
size of 20 were used as inputs in the Segment Mean Shift algorithm.

The second step in the OBIA workflow involved the use of tools within Esri’s Training
Samples Manager to create representative class categories and training samples for each
class and imagery date. Commonly, real-time kinematic global navigation satellite system
(RTK-GNSS) data of each class type are collected at the time of imagery acquisition to aid in
training. However, since no ancillary RTK-GNSS data were available for this study, training
sample objects were created for each class category and imagery year through a supervised
image classification scheme and a priori knowledge of the habitat types on the island over
the past several years. Class categories were based on four major habitat types on the island:
(1) high marsh, (2) low marsh, (3) sand, and (4) shrub (i.e., those shown in Figure 1D). High
and low marsh were differentiated by a combination of RGB and false-color aerial imagery,
DEMs relative to MHHW and MLLW, and a priori field observations (e.g., Figure 1D). A
total of 1272 training sample objects were selected for the 2014 imagery and 952 for the
2020 imagery.

The last step in the OBIA workflow used Esri’s Compute Segment Attributes tool to
extract analytical information for each segment within the image. In this study, six explana-
tory variables were extracted and included: (1) LiDAR elevation minimum, (2) LiDAR
elevation mean, (3) RGB band mean, (4) NIR band mean, (5) segment compactness (the
degree to which a segment is compact or circular), and (6) segment rectangularity (the
degree to which the segment is rectangular). The derived analytical information from
each image was then synthesized into object layers and used as an input into the RF
classification algorithm.

Esri’s adaptation of the RF supervised classification algorithm, called Forest-based
Classification and Regression (Spatial Statistic Tools), can be used to train the models before
making predictions on unseen data. Training samples are randomly split into two datasets
used to: (1) train and fine-tune the model’s parameters used to classify the objects (80% of
the training samples) and (2) test the predictive performance of the model used to generate
the habitat maps (20% of the training samples). Based on trial and error, we used 500 trees
in a forest where each tree included every one of the four habitat classes, a maximum tree
depth that was data driven (set on the 500 trees and six explanatory variables), and the
number of randomly sampled explanatory variables used to create each decision tree was
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set to two. For each year, a total of 25 model runs were carried out to determine the most
stable model based on the highest R2 value. To help reduce overfitting, training time, and
improve model accuracy, an automatic attribute selection was used for determining the
relevant explanatory variables. The variables of importance identified for both imagery
datasets included the LiDAR mean and minimum elevation as well as the RGB and NIR
mean values. Once the models were trained, all training samples were used to make
predictions on unseen data that were used to generate habitat maps.

3.3. Habitat, Shoreline, and Volumetric Change Detection

Changes in habitat were determined by calculating the total area for each habitat class
category and calculating the percent difference between the 2014 and 2020 imagery. By
analyzing various accuracy and error metrics of the classified maps, we can assess their
suitability for understanding the relative composition of the major habitat types on the
Island between 2014 and 2020. The validation of the model’s performance is based on
randomly selected independent test sample objects used to calculate the overall accuracy
and kappa value. The overall accuracy provides information on what proportion of the test
sites were correctly classified. On the other hand, the kappa value evaluates how well the
classification performed when compared to randomly assigned classifications, with values
close to 1 indicating classifications are better than random. Classification accuracies can also
be examined from the map user and producer points of view. The user accuracy represents
the probability that an object classified as a known class on the map represents that class
on the true ground. On the other hand, the producer’s accuracy represents how well the
training sample objects of the ground class features are classified on the map. All these
accuracy statistics were used in this study to assess the suitability of the classifications.

The shoreline is generally defined as the physical interface of land and water [66],
yet this definition is challenging to objectively apply due to the dynamic water levels
at the coastal boundary [56]. As such, numerous shoreline indicators have been used
in the literature to define shoreline change through time (for a review see [56]). In this
study, the shoreline was determined through a tidal datum-based indicator rather than
a visually discernable feature-based indicator in order to increase objectiveness of our
shoreline definition [56,67]. Specifically, we used the MLLW tidal datum to define the land–
water boundary [68,69] in order to minimize tidal variation between years [70]. Changes
in shoreline were calculated using a common endpoint method, where shoreline rate of
change is equal to the change in horizontal shoreline position divided by the change in time
between the two shorelines [70–72], with positive values indicating accretion and negative
values indicating erosion. We calculated shoreline change rates at shore-normal transects
spaced 5 m along the shoreline. The 2014 and 2020 horizontal shoreline positions from each
transect were then used to calculate an annual rate of change. Consistent with NOAA’s
Coastal Mapping Program standards, where imagery must meet a 1.5 m horizontal accuracy
at the 95% circular error confidence interval, we chose to remove all shoreline positions
with differences in horizontal distance less than 1.5 m [53,54]. This was our minimum
critical threshold for determining horizontal changes.

Morphological changes were quantified using the DEM of Difference (DoD) approach,
a common method used in various morphological change-detection studies [73–75]. In
this study, we applied the DoD approach to the 2014 DEM and 2020 DEM to quantify
volumetric change. Since ground truth measurements were not available to estimate
spatially variable DEM error [73], we subjected the spatially uniform DEM error to the
Linear Error (LE) at a 95% confidence interval (RMSE × 1.96 = LE) [76] using the DEM with
the highest error, which, in our case, was the 2014 DEM (RMSE = 0.057 m). In this study,
the LE of ±0.11 m (0.057 × 1.96 = 0.11 m) was used as the minimum critical threshold
for determining vertical changes. We chose to remove all DoD grid cells within the LE
of ±0.11 m. The remaining DoD grid cells were then used to estimate erosion (negative
values) and deposition (positive values) volumes and create a volumetric difference map
and histogram showing the distribution of elevation change across the Island. Given the
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synoptic nature of this study, we use the Sallenger Storm Impact Scale to understand the
cumulative effect of storms on Sugarloaf Island’s morphology and landscape composition
between 2014 and 2020. This was performed by examining hourly wind speed, wind
direction, and water level observations from a nearby (~2 km) tide station (Beaufort, Duke
Marine Lab, NC—Station ID: 8656483) for each storm and topographic profiles extracted
from each DEM to infer impacted regions across the Island.

4. Results
4.1. Habitat Change and Model Validation

Maps showing the total habitat distribution for the 2014 and 2020 imagery are shown
in Figure 2A,B, respectively, with a table summarizing the important statistics below in
Figure 2C. Overall, between 2014 and 2020, high marsh and shrub habitat experienced the
largest percent change, both decreasing by 12.7% between 2014 and 2020. The low marsh
habitat also experienced a decrease during this period, losing 11.8% of its 2014 area. In
contrast to the other habitat types, the area predominantly characterized by sand increased
by 1.2% between 2014 and 2020. Another noticeable difference between the habitat maps is
the change in the shape of the Island, particularly the sand spits located on the eastern and
western ends. This difference is highlighted by superimposing a black solid line parallel to
the eastern and western extents of the 2014 Island in Figure 2A,B.
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Figure 2. (A) 2014 habitat map, (B) 2020 habitat map, and (C) table showing the percentage of habitat
decrease from 2014 to 2020. In the habitat maps, a color scheme was chosen where high marsh
was assigned olive green, low marsh was leather brown, sand was medium sand, and shrub was
spruce green.

As shown in Table 1, the overall accuracy of the 2014 and 2020 imagery classification
is similar, with values of 0.921 and 0.903, respectively. Based on the minimum overall
accuracy criteria of 0.85 set by the U.S. Geological Survey [77], these classifications are
acceptable. Additionally shown in Table 1 are the kappa values for the 2014 and 2020
imagery classification. Like the overall accuracy results, the kappa values between the 2014
and 2020 classification are also similar, with values of 0.895 and 0.876, respectively.

Table 1. Classification accuracies for 2014 and 2020 of Sugarloaf Island.

Imagery Date Overall Accuracy Kappa Value

2014 0.921 0.895
2020 0.903 0.876
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A summary of the user and producer accuracies per-class for the 2014 and 2020 habitat
classification is shown in Table 2. For the 2014 imagery classification, the results show that
the user and producer accuracies are the same for the high marsh and shrub classes. In
contrast, the user accuracy for the low marsh class is less than the producer accuracy, while
the user accuracy for the sand class is greater than the producer accuracy. For the 2020
imagery classification, no classes had the same user and producer accuracies. In contrast to
the 2014 imagery, the high marsh, low marsh, and sand classes have a user accuracy that
is less than the producer accuracy, while the shrub class has a greater user than producer
accuracy. Overall, all user and producer accuracies are greater than or equal to 0.75, and
the 2014 and 2020 imagery classifications were considered suitable, particularly when
considering all accuracy statistics that were assessed.

Table 2. Per-class accuracy for habitat classification of Sugarloaf Island. Where UA = User’s Accuracy
and PA = Producer’s Accuracy.

Classes
2014 Imagery 2020 Imagery

UA PA UA PA

High Marsh 0.866 0.866 0.750 0.857
Low Marsh 0.937 1.000 0.818 0.900

Sand 1.000 0.750 0.882 0.937
Shrub 0.960 0.960 1.000 0.823

4.2. Shoreline Change

A more detailed map of the changes to the Island’s shoreline is shown in Figure 3.
Between 2014 and 2020, the Island decreased in area by 1.7 ha from 15.9 ha in 2014 to 14.2 ha
in 2020. Like the habitat change maps, the shoreline change map in Figure 3 shows marked
changes particularly on the eastern and western ends of the Island. Overall, the shoreline
migrated landward between 2014 and 2020 by 2.9 m yr−1 on average and up to 5.2 m yr−1

in extreme areas such as the western end of the island. Another area of noticeable change is
related to the tidal creeks in the northeastern portion of the Island. In both cases, the tidal
creeks are observed to elongate toward the south–southeast and become more incised in
the landscape. In general, the shoreline on the northern side of the island showed little to
no change in position over the study period.
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Figure 3. Shorelines derived from object-based image analysis techniques, where blue indicates 2014
and red indicates 2020.

4.3. Volumetric Change

The DEMs generated from the 2014 and 2020 LiDAR data relative to MHHW are
shown in Figure 4A,B, respectively. Here, shades of blue indicate where beach and low
marsh habitat are inundated at higher high tide, while shades of green and brown indicate
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areas with higher elevation such as high marsh and shrub habitat. Based on a qualitative
inspection of the DEMs, there are several areas on the Island that have had noticeable
volumetric change and are highlighted in Figure 4A,B by colored arrows. Highlighted by
the red arrow in Figure 4A,B, we see that in 2014, there was a small breach in the narrow
foredune just to the southeast of the tidal channel, but in 2020, the dune area above MHHW
had grown more robust in width and height, and the breach had been filled. To the west
and highlighted by the black arrow, we see a narrow foredune exposed just above MHHW
in 2014, but in 2020, overwash had created a channel cutting through the narrow foredune.
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spatially uniform DEM error removed (+/−0.11 m) to reveal morphological change as erosion (red
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To provide a quantitative assessment of volumetric change as erosion and deposition,
the differences between the 2020 and 2014 DEMs relative to MHHW were calculated, as
shown in Figure 4 by the map (Figure 4C) and histogram (Figure 4D). Erosion is shown
in red as negative values, while deposition is shown in blue as positive values. Overall,
between 2014 and 2020, the Island experienced a net volume loss of approximately 9823 m3.
There are three distinct erosional patterns shown in Figure 4: (1) very little to no change,
(2) erosion without inland deposition, and (3) erosion with inland deposition. In general, on
the northern side of the Island, there is very little volumetric change detected between 2014
and 2020, with some stretches in this area experiencing no detectable volumetric change.
In contrast, areas generally oriented to the south and associated with the sediment bank
experienced moderate to high erosion without landward deposition, while areas generally
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oriented southwest or southeast experienced moderate to high erosion with landward
deposition. Of the area that experienced detectable change between 2014 and 2020, ap-
proximately 61.8% experienced volumetric loss, while approximately 38.2% experienced
volumetric gain. A histogram summarizing the distribution of volumetric change within
the area that experienced detectable change between 2014 and 2020 is shown in Figure 4D.

4.4. Storm Characteristics

A summary of the wind and water level characteristics of the storm events that
impacted Sugarloaf Island between 2014 and 2020 are shown in Table 3 in chronological
order. For this study, a storm was considered to be any 24 h period where at least 1 h of
tropical storm force winds (i.e., >17.4 m s−1) impacted Sugarloaf Island. Over the course of
the study, Sugarloaf Island received a total of approximately 22 h of tropical storm force
winds over four hurricane events and one winter storm event. On average, Sugarloaf Island
experiences gentle breeze conditions from the southeast with an average hourly wind speed
of 3.7 m s−1. Additionally, on average, the Island experiences approximately 0.14 m of
inundation above MHHW for 3 h per day. Generally, the storms fall into two categories:
(1) winds predominately from the west to southwest (e.g., Arthur, Matthew, Winter Storm,
and Dorian) and (2) winds predominately from the east to southeast (e.g., Florence). Of
all storms, Hurricane Florence reported the highest maximum and average wind speeds
(i.e., 24.1 and 18.3 m s−1, respectively), duration of tropical storm force winds (i.e., 13 h),
maximum water level above MHHW (i.e., 1.12 m), duration of water level above MHHW
(i.e., 23 h), and magnitude of average water level above MHHW (i.e., 0.50 m). Next,
Hurricane Matthew and Dorian reported similar maximum and average wind speeds
(i.e., 20.0 and 10.5 m s−1 and 19.6 and 10.6 m s−1, respectively), duration of tropical
storm force winds (i.e., 3 h), and duration of water levels above MHHW (i.e., 11 and
10 h, respectively). However, Hurricane Matthew reported higher maximum water levels
(i.e., 0.64 m) and magnitude of average water level above MHHW (i.e., 0.28 m) than
Hurricane Dorian (i.e., 0.41 and 0.23 m, respectively). Lastly, Hurricane Arthur and Winter
Storm report similar maximum and average wind speeds (i.e., 20.3 and 6.5 m s−1 and
17.5 and 9.9 m s−1, respectively) and duration of tropical storm force winds (i.e., 2 and
1 h, respectively). However, Winter Storm reports higher maximum water level above
MHHW (i.e., 0.49 m), duration of water levels above MHHW (i.e., 6 h), and magnitude of
average water level above MHHW (i.e., 0.28 m) than Hurricane Arthur (i.e., 0.42 m, 4 h,
and 0.17 m, respectively).

Table 3. Summary of wind and water level characteristics of storm events that impacted Sugarloaf
Island, NC, between 2014 and 2020. Note that maximum hourly wind speed is reported outside of
parentheses, and average hourly wind speed is reported inside parentheses. Wind and water level
duration are reported in hours (h). Duration of water level > MHHW for the total study period is
reported in hours per day (h d−1) and is highlighted by the asterisk.

Name Date Near
Sugarloaf Island

Hourly Wind
Speed (m s−1)

Max (Avg.)

Duration of
Tropical Winds >

17.4 m s−1

Avg Hourly
Wind Direction

Max Hourly
Water Level

> MHHW (m)

Duration of
Water Level
> MHHW

Avg Magnitude
of Water Level
> MHHW (m)

Total Study Period 24.1 (3.7) 22 h 169◦ 1.12 3 h d−1* 0.14
Arthur (H2) 4 July 2014 20.3 (6.5) 2 h 237◦ 0.42 4 h 0.17

Winter Storm 7 February 2016 17.5 (9.9) 1 h 254◦ 0.49 6 h 0.28
Matthew (H1) 9 October 2016 20.0 (10.5) 3 h 283◦ 0.64 11 h 0.28
Florence (H2) 14 September 2018 24.1 (18.3) 13 h 106◦ 1.12 23 h 0.50
Dorian (H2) 6 September 2019 19.6 (10.6) 3 h 227◦ 0.41 10 h 0.23

5. Discussion
5.1. Morphological Indicators of Dominant Storm Impact Regimes

Our short-term (i.e., <10 years) synoptic investigation of two openly accessible, re-
motely sensed datasets reveals dynamic changes to Sugarloaf Island’s habitat, shoreline,
and morphology between 2014 and 2020, a timeframe that encompasses the impacts of four
hurricanes and one strong winter storm on the region. The results of this study highlight
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the importance of storms as a driver of morphologic change on Sugarloaf Island, similar
to other fetch-limited islands documented in the literature [14,15,21]. The locations of
four selected topographic profiles distributed across the island are shown in Figure 5. In
each of the profiles, blue denotes the topography in 2014, while red is the topography
in 2020. Changes in habitat along the profiles and maximum hurricane water levels are
also summarized in Figure 5. To contextualize the morphological changes to Sugarloaf
Island, refer to the summary of the wind- and water-level observations for the study period,
previously shown in Table 3. For reference, coastal terminology usage is consistent with
the standards outlined in [78].

Profile 1 (Figure 5A) was extracted from the western spit area of Sugarloaf Island,
where substantial changes to the Island’s morphology were observed during the study
period. Minimal change in habitat type occurred along Profile 1, since this area was
predominately sand in 2014 and 2020 (Figure 2A,B and Figure 5A). However, we see a
marked change in the location of the spit area with its shoreline location having shifted
to the east by approximately 15 m from its original location in 2014. While changes in the
horizontal location of the western spit are clearly evident, the feature generally retained its
overall shape and appearance, which is consistent with [39]’s conceptual profile translation
model. Under nonstorm conditions, the 2014 and 2020 profiles are located within the
intertidal zone, both becoming inundated by average MHHW conditions for several hours
every day (Table 3). During storm conditions in our study, water levels were, on average,
2 times higher and persisted for 3.5 times longer than average MHHW conditions during
nonstorm times (Table 3). The pronounced landward translation of the western spit likely
occurs during high-water events that are accompanied by storm waves and is consistent
with impacts expected during overwash and inundation regimes on the Sallenger Storm
Impact Scale [33–35]. Given the low elevations in this area of Sugarloaf Island, it is highly
susceptible to storms where water levels and winds are elevated for prolonged periods,
such as Hurricane Florence. During Hurricane Florence, Sugarloaf Island experienced
persistent tropical storm-force winds, which coincided with prolonged elevated water
levels (Table 3). However, it is also important to consider the orientation of Sugarloaf Island
in relation to the average wind direction. For instance, the long axis of Sugarloaf Island
is oriented approximately west to east and parallel with the direction of maximum fetch
within the Bogue Sound. Storms that produce winds out of the west to southwest, such as
Arthur, Winter Storm, Matthew, and Dorian, could enhance wave heights on the western
side of Sugarloaf Island given the additional fetch the Island experiences from that direction.
It is likely that higher wave energies from the direction of maximum fetch contribute to the
observed landward translation despite the lower durations of tropical winds and elevated
water levels of the storms when compared to Hurricane Florence (Table 3). However, based
on our synoptic dataset, it is uncertain which storm metric is most important for predicting
future impacts from specific storms on Sugarloaf Island.

Moving to the east, Profile 2 (Figure 5B) was extracted from the sediment bank of
Sugarloaf Island, where substantial erosion occurred. Profile 2 shows a landward shoreline
migration of nearly 15 m between 2014 and 2020, which is similar to Profile 1. While a clear
change in horizontal position of the sediment bank was observed, the height of the bank
remained unchanged between 2014 and 2020. Under nonstorm conditions, the narrow
foreshore is situated within the intertidal zone, with the sediment bank toe representing
the intersection point of the profile with MHHW. The backshore is characterized by the
steep cliff face of the sediment bank that extends approximately 2 m above MHHW. The
dominant morphology of this area, a scarp, is indicative of a collision impact regime on
the Sallenger Storm Impact Scale. Scarping takes place when the resistive strength of a
sediment bank is exceeded by destabilizing forces, such as wave attack, via processes such
as sliding, notching, and slumping along failure planes [79–82]. Considering the height
of the sediment bank (Figure 5B) and the water level record (Table 3), it is likely that the
sediment bank remains supratidal during storm conditions, which is also consistent with
the collision impact regime. Compared to other areas of Sugarloaf Island, the sediment bank
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is heavily vegetated. Vegetation exerts a strong control on the resistance of the sediment
banks to erosion through above- and below-ground biomass [79–82]. As such, the presence
of toppled trees and exhumed root systems along the scarp toe are obvious evidence of
previous erosion and shoreline retreat events. This response was commonly observed
throughout North Carolina’s estuaries following Hurricane Florence [83,84], and is likely
related to the prolonged and intense storm conditions exerted by Hurricane Florence
on Sugarloaf Island (Table 3). Coincidently, foreshore vegetation plays a significant role
in dissipating wave energy [85,86]. The presence of foreshore vegetation (albeit dead
vegetation in this scenario) along the sediment bank may therefore exert a stabilizing effect
and help to prevent future erosion during lower magnitude and shorter duration storms
similar to Hurricane Arthur. However, further work is needed to assess how the presence
or absence of toe-slope debris contributes to the Island’s resiliency and storm response.

The eastern spit shows some of the most striking changes observed in the study,
particularly where the washover deposit is present. The extracted profile from this area
(i.e., Profile 3 shown in Figure 5C) shows an approximately 15 m shoreline retreat and an
overall flattening of the topography between 2014 and 2020. Under nonstorm conditions,
the 2014 profile has a roughly 25 m wide supratidal exposure with a maximum height
of approximately 0.25 m above MHHW. Immediately beyond the landward extent of the
subaerial dune, the topography drops sharply and then smooths out through the rest of
the profile. In contrast to the 2014 profile, the 2020 profile is flattened, fully situated within
the intertidal zone, and does not have any supratidal exposure. Given the low elevation
shown in the 2014 and 2020 profile, this area of Sugarloaf Island is susceptible to overwash
and inundation regime impacts considering the persistently elevated water levels during
the storm events of this study (Table 3). Unlike the other profiles shown in Figure 5, Profile
3 shows sediment accretion as thick as 0.5 m landward of the 2014 subaerial dune that
corresponds with areas that were classified as low marsh in 2014 (Figures 2A,B and 5C). This
pattern of foreshore erosion and back barrier marsh deposition is consistent with overwash
regime impacts on the Sallenger Storm Impact Scale. It is likely that Hurricane Florence was
a major source of overwash, particularly given the parallel orientation of the tropical storm-
force winds (Table 3) with the direction of washover deposit growth (Figures 4C and 5C).
When coupled with elevated inundation time and inundation magnitude, the higher energy
waves generated from tropical storm-force winds were likely sufficient to mobilize the
sediment landward. However, it is important to note that given the synoptic nature of
our study, individual storm impacts cannot definitively be quantified. While sediment
transported to the back barrier marsh contributes to annual marsh accumulation and can
enhance marsh growth [29,87–89], burial of marsh vegetation beyond the optimal depth of
0.05 to 0.1 m has been found to lead to plant mortality [83], which, consequently, impacts
island resiliency. Commonly, barrier islands experience breaching and channel incision
in response to inundation regime impacts [35]. For instance, the 2014 profile (Figure 5C)
shows the presence of a thin supratidal dune that is continuous toward the eastern end of
the Island (Figure 4A). In the 2020 profile (Figure 5C), we observe destruction of the dune
and the creation of a breach that connects the foreshore with the back barrier marsh via an
incised channel (Figure 4B) that was not previously active in 2014 (Figure 4A). Furthermore,
it is also notable that the breached area corresponds to a tidal channel seen in the back
barrier marsh, suggesting an antecedent control on the position of the breach. The filled
channel may extend beneath the barrier to the south and offer less resistance to erosion
than the surrounding cohesive marsh peat platforms underlying the foreshore in other
areas. A relationship similar to this was noted with respect to the formation of Isabel Inlet
on North Carolina’s Outer Banks [16].
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Figure 5. Morphology change is shown at selected profiles where the 2014 shoreline is blue and the
2020 shoreline is red. (A) Profile 1 of western spit, (B) Profile 2 of sediment bank, (C) Profile 3 of
beach and foredune flattened into a washover fan, and (D) Profile 3 where waves cut back the dune,
forming a scarp. The water levels for the four hurricanes are also shown to match the color of their
tracks in Figure 1, as are 2019 images of sediment bank and dune scarp by Niels Lindquist and 2022
images of western spit and washover fan by Matthew Sirianni.
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Extracted from the eastern extent of Sugarloaf Island, Profile 4 (Figure 5D) shows the
largest magnitude change in the horizontal location of the shoreline, where roughly 35 m
of shoreline migration occurred. The 2014 profile is convex in nature and characterized
by a sloped foreshore within the intertidal zone and a backshore with an approximately
60-meter-wide subaerial dune up to 1 m above MHHW at its maximum. Comparatively, the
2020 profile is generally concave in nature and characterized by a wider and more gently
sloping foreshore within the intertidal zone and a backshore with a steep scarp and a berm
height of approximately 1 m above MHHW. As discussed previously in regard to Profile 2,
scarping is an indicator of the collision impact regime on the Sallenger Storm Impact Scale.
In contrast to Profile 2, however, Profile 4 does not have extensive vegetation present, as
summarized by the horizontal bars above the profile in Figure 5D. The lack of vegetation
and its stabilizing influence helps to explain why Profile 4 experienced approximately two
times greater horizontal shoreline migration compared to the densely vegetated region
of Profile 2 [79–82], since they were both subjected to similar storm conditions (Table 3).
Similar to Profile 2, however, the sediment that was eroded from Profile 4 seems to have
been lost to transport offshore or longshore, since there is not landward deposition of
sediment observed in the profile or in Figure 4C. Without the stabilizing effect of vegetation,
this area of the island will likely experience additional scarping during future storm events,
shifting the shoreline further inland such as what was observed between 2014 and 2020.
Loss of sediment from the Island not only impacts its future persistence, but it also impacts
the Port of Morehead City’s navigational channels surrounding the Island, since the sand is
known to be infilling the channel on the Island’s eastern end.

5.2. Implications for Future Restoration Monitoring

Due to growing concern over Sugarloaf Island’s continued erosional issues, plans
are being made to increase the resiliency of Morehead City’s downtown waterfront by
enhancing Sugarloaf Island’s capacity to (1) mitigate disturbances such as hurricanes
and (2) return to a predisturbance state. Commonly, structural hardening of the shoreline
through bulkheads, seawalls, and revetments is one way in which coastal communities have
attempted to address erosional issues [90]. However, these hardened structures can bring
about a number of negative side-effects such as loss of biodiversity, erosion and scouring,
reduced storm protection, and loss of ecosystem services [91–95]. Alternatively, nature-
based infrastructure solutions, such as living shorelines, have recently gained attention
as a method to increase coastal resiliency while limiting negative repercussions [92–95].
Living shorelines work by harnessing the adaptive capacity of natural habitats, such
as salt marshes and oyster reefs, in combination with low-lying engineered structures,
such as sills and breakwaters, to stabilize the shoreline and restore critical habitat and
ecosystem services [92–95]. Since each restoration technique has its pros and cons, the
Sugarloaf Island project design aims to employ a hybrid approach that combines nature-
based solutions and engineered structures to enhance the Island’s resiliency. This hybrid
approach consists of several living shoreline restoration approaches and includes offshore
hollow Wave Attenuation Devices (WADs), seagrass planting, oyster reef installation, and
upland dune enhancement. WADs may be able to reduce wave heights and stabilize the
shoreline position and volume of sand on the beach during storms, but this will depend
on the Island’s coastal processes and underlying geology [96]. Seagrasses can provide
additional erosion control, habitat for economically important aquatic species, and carbon
sequestration [97]; however, seagrass beds cannot be installed until sediment has gathered
landward of the WAD and wave-sheltered conditions are present. Oyster reefs complement
seagrass beds and provide habitat, water filtration, coastal stabilization, and fisheries,
which can enhance recreation, although this can be highly variable by location [98]. Upland
dune enhancement through the planting of appropriate plants, such as Spartina patens,
can help to stabilize existing dune features, adding to the sediment’s cohesiveness via
above-ground and below-ground biomass and trapping aeolian transported sediment.
Assessment of similar designs demonstrates that marsh vegetation is established within
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three to eight years, and sediment accretion and organic matter accumulation occur at rates
similar to or greater than natural fringing marsh [93,99]. However, the success of these
projects will vary regionally and are based on specific design parameters [100]. Considering
that sediment from Sugarloaf Island is infilling the Port of Morehead City’s navigational
channels, dredge spoils are a potential sediment source for new dune and beach creation;
however, periodic replenishment of the sediment will likely be needed [101]. Ideally, all of
these approaches will work in conjunction with one another to stabilize the island while
also continuing to provide public recreational access to the Island for boating, fishing,
and beach-going. Short- and long-term monitoring of Sugarloaf Island is another critical
future component of the project since there is a distinctive need to understand the efficacy
of living shorelines and other restoration devices at different spatial and temporal scales
to improve coastal resiliency [94,95]. With the rapid advancement of small Unoccupied
Aircraft Systems (sUAS) (e.g., [102]), on-demand remote sensing devices are available
for high-resolution, real-time monitoring pre- and poststorms and long-term resiliency
assessments. Given that aerial imagery has a limited ability to measure bathymetry, future
work should consider coupling sUAS imagery data with nearshore bathymetric data, or
the use of a sUAS equipped with a topobathymetric LiDAR payload, for a more holistic
understanding of the coastal geomorphology.

5.3. Study Limitations

The most glaring limitation of this study is its synoptic nature, in that we are only able
to infer the cumulative impact of storms rather than assess specific storm event impacts.
For example, our dataset shows erosion over the six-year period of the study, which we
inferred to be related to episodic occurrence of hurricanes based on an interpretation of
the predominant morphological features on the Island. However, studies such as [21] used
sUAS imagery and higher-frequency surveys to capture a fetch-limited island response
to individual storms and identify a pattern of poststorm recovery that contradicts the
standard evolutionary model [15]. Our study was unable to determine if Sugarloaf Island
experienced any recovery period following the storms that impacted the area during the
study; thus, it is unclear if the Island conforms to the standard evolutionary model for
fetch-limited islands [15] or contradicts the model [21]. Yet, even with higher-frequency
surveys, repeated storms in quick succession can prevent or potentially mask a recovery
stage, which could thus lead to the misclassification of the Island’s poststorm behavior.

While LiDAR and aerial imagery are critical tools for monitoring coastal change, it is
important to understand their associated limitations. For example, timing available satellite
and/or aircraft coverage to coincide with pre-/poststorm comparisons can be difficult,
and factors such as weather conditions, sun angle, and water levels can negatively impact
the quality or comparability of the collected datasets [103]. Moreover, the datasets’ spatial
resolution and geolocation error are important considerations, as changes in location and
elevation below that error threshold cannot be differentiated from noise in the data [21].
While the availability of openly accessible and reliable remotely sensed data is a great
benefit, it comes at a cost, because ground truth data for certain locations are often not
collected simultaneously. The logistics of collecting ground truth data simultaneously with
state or federal government survey campaigns can be complex. For this study, it would have
been best to collect RTK-GNSS data with corresponding attributes of latitude, longitude,
elevation, and vegetation species at hundreds of locations spread throughout the Island.
Since the Island is experiencing rapid change, it would be best to collect the data for both
dates being monitored, which can be labor intensive and expensive, since the Island is only
accessible by boat. This type of data could then be used to train and validate a machine
learning or deep learning model to better classify habitat and coastal landforms [104].
Another use of this data would be as a correction factor for the LiDAR DEMs, particularly
in the marsh areas where LiDAR may not penetrate the vegetation and thus overestimate
the marsh surface [105]. Moreover, ground truth data would also allow for each DEM’s
error to be analyzed spatially when calculating the volume of sediment deposition and
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erosion on the Island [74]. This issue of collecting ground truth data simultaneously can be
addressed with sUAS survey campaigns, which involves experienced scientific pilots and
data processing and analysis workflows [106].

In addition to the DEM error, future work should consider the transformation errors
when defining the minimum critical threshold for determining vertical changes. In this study,
we used the DEM’s Linear Error (LE) at a 95% confidence interval (RMSE × 1.96 = LE) [76]
to define the minimum critical threshold to estimate erosion and deposition volumes. Our
estimates are likely overestimated because they do not incorporate the uncertainty in datum
transformations. It is best to consider the DEM and transformation error when defining the
minimum critical threshold.

6. Conclusions

In this study, we used openly accessible topobathymetric LiDAR and aerial imagery
to quantify synoptic changes to Sugarloaf Island’s habitat, shoreline, and morphology in
response to storms between 2014 and 2020. Our workflow uses several proven data process-
ing and analysis techniques by combining OBIA to segment the images into homogeneous
vegetation patches rather than pixels, machine learning to classify the landscape patches
into habitat types, and raster algebra to calculate areas of sediment erosion and deposition.
Our results highlight the overall impact of recent storms on the Island and demonstrate
that the Island’s current morphology is a legacy of cumulative storm impacts, which is
consistent with other previous studies. In summary, Sugarloaf Island lost approximately
1.7 ha of area and 9800 m3 of sediment during the study period. Although this study is
limited by its lack of individual storm impact quantification, it suggests that if the current
trend in storms continues, Sugarloaf Island may not recover naturally and may therefore
be susceptible to further inundation or rapid transgression and erosion. Due to growing
concern over Sugarloaf Island’s dynamic erosion problem, a multidisciplinary coastal
governance project that combines efforts from private citizens, governmental and non-
governmental organizations, and academia was brought together to design and implement
a shoreline stabilization project for future implementation. In order to manage and monitor
the project’s success, the authors suggest that future work should implement the use of
sUAS and RTK-GNSS in seasonal and/or annual surveys.
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