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Abstract: Marine ecosystems such as kelp are gaining recognition for providing ecosystem services
(ES) along the coastal regions worldwide. Here, we synthesize information from the last four decades
of research on the structure, functioning and threats of kelp forests, and the ES they provide in
the Humboldt Current System (HCS) where information is scarce. The SALSA (Search, Appraisal,
Synthesis and Analysis) framework was used for the literature survey and review. From 86 selected
articles, only 4 directly discussed kelp ES in Chile. Supporting services-related articles were the
most prevalent (n = 59), followed by provisioning (n = 19), regulating (n = 3) and cultural services
(n = 1). ES-related research was mostly conducted in Chile (n = 77). Studies in Peru (n = 5), and in
Chile and Peru at same time (n = 4) were scarce. Our search also showed that Lessonia trabeculata
presented the highest number of associated taxa (n = 213), followed closely by M. pyrifera (n = 210).
However, the number of phyla reported was higher in M. pyrifera (n = 17) than in the Lessonia species
(n = 7–13). Natural and anthropic impacts on the biodiversity of kelp forests using novel technologies
would facilitate the quantitative study and economic valuations of the services provided by these
ecosystems at the Humboldt Current System.
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1. Introduction

Ecosystem services (ES) are defined as the benefits that humans obtain from ecological
systems. These include services such as food and fresh water and climate regulation, among
others that make human life possible [1]. This concept is established as a “policy advocacy
tool” since it helps with management practices [2]. Consequently, in recent decades, these
ES have been categorized by governmental organizations and research bodies globally as
supporting, regulating, provisioning and cultural services [3,4].

At a global scale, the study of ES is prioritized under their economic value [5,6]. This
helps the valuation of each service provided and facilitates the development of strategies
through the management and protection of ecosystems [7,8]. Since the beginning of the
Anthropocene, ecosystems worldwide have been rapidly degrading, causing their services
to change and/or be lost. In this context, addressing the ES approach has emerged as a
priority for blue growth worldwide [9,10].

Coastal ecosystems, including wetlands [11], seagrasses [12], coral reefs [13,14] and
kelp forests [15–17] support human activities along coastal regions at a global scale. These
are highly efficient at providing bioresources, in nutrient cycling and as climate regulators.
Considering that a major portion of the human population has been associated with coastal
ecosystems, estimating the value of their benefits has gained relevance in the past decades.
However, the estimation of the value of ES and studying the ES represents a challenge for
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researchers and policy makers internationally [18]. The productivity of coastal systems
globally approximately provides ES valued at ~USD 19,000 per hectare (ha) each year [19].
However, this could fluctuate due to variations between habitats, their benefits and the
way their values are estimated, by using up-to-date and more accurate information in
relation to their geographical distribution [20]. Economic valuation is a useful tool for
the preservation, protection and sustainable management of kelp forests. It shows the
benefits kelp provides to stakeholders, decision makers and all of the society, allowing the
identification and planning of the integrative management of the kelp ecosystem [21,22].

The term “kelp” has historically been used to refer to almost any large brown marine
macroalgae, with some common characteristics that can be reduced to i) being part of the
Laminariales order and ii) structuring the habitat for other species, forming the so-called
marine forests as a foundation species [17,23]. Kelp forests are mostly composed of mixed
assemblages, which can be found globally within temperate, sub-tropical and sub-polar
regions [24]. As bioresources, kelp species present a wide array of uses, representing the
raw material for different industries, such as pharmaceuticals, cosmetics, fertilizers, textiles,
medicine and culinary arts. Additionally, due to their bio-adsorption capacity they have
been proposed as a promising alternative for bioremediation. In past decades, some studies
have highlighted the potential of certain kelp species as biofuel sources, granting them
visibility by the energy industry [25,26].

Besides presenting a great diversity of bioactive components [27], kelp species fix
large amounts of inorganic carbon from the atmosphere and the water column [28,29]. The
omission of kelp forests from blue carbon assessments significantly underestimates the
carbon storage and sequestration potential from vegetated coastal ecosystems globally [30].
They support one of the highest productivity rates via photosynthesis, and greatly influence
the physical environment in which they live, due to their three-dimensional structure.
This magnifies secondary productivity through habitat forming. The alteration of the
environment by kelp biomass has been described in reference to water flow [31,32], physical
disturbance [33], sedimentation rates [34] and outwelling [35]. A forest can improve the
habitability of the benthos and the water column, generating habitats for a biodiverse
microbiome as well as breeding areas for other macrophytes, and both sessile and motile
animal species. Many of these organisms are of socioeconomic relevance or are critically
endangered [36–39]. Kelp forests are also susceptible to physical, chemical and biological
changes in the marine environment, such as heatwaves, pollution and even disease [40–43].

Extended along the coasts of Chile and Peru, the Humboldt Current System (HCS)
is one of the most productive marine ecosystems worldwide. This macro-ecosystem,
encompassing most of the west coast of South America, is mainly influenced by the
Humboldt Current, which is characterized by a predominant northward flow of surface
waters of subantarctic origin (~42◦ S), and by a strong upwelling of cool nutrient-rich
subsurface waters of equatorial origin [44].

The economic value of kelp forests in Chile and Peru, where this resource is socially
and economically relevant, may change according to new findings, emerging industries
and potentially better recognition of kelp’s ecological threats and social role by coastal
communities [22,45]. Previous reviews have addressed the importance of kelp forests
in other geographical regions [17,29]. Thus, this review is the first that summarizes the
state of knowledge of ES provided by the kelp forests of the HCS, focusing on four kelp
species: Lessonia berteroana Montagne, L. spicata (Suhr) Santelices, L. trabeculata Villouta and
Santelices and Macrocystis pyrifera (Linnaeus) C. Agardh. Peer-reviewed papers from both
Chile and Peru were used to (1) summarize existing knowledge (Research Articles) on the
structure and functioning of kelp forests and the ES they provide in the HCS; (2) identify
research trends regarding the ES of kelp forests along the HCS; and (3) highlight knowledge
gaps and research priorities that will lead to a better understanding of the current and
future role of kelp habitats within the HCS. The information collected will help decision
makers, scientists and society establish proper policies, research and management tools
related to kelp forests.
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2. Materials and Methods

The research area covered the Humboldt Current System in the eastern Pacific between
central Chile and north Peru, which is located between ~42◦ S and the equator. In order
to locate and synthesize the existing literature on kelp forests along the HCS, the meta-
synthesis method [46] was applied using the Search, Appraisal, Synthesis and Analysis
(SALSA) framework [47].

Four academic databases—ScienceDirect, Scopus, SCIELO and Google Scholar—were
used to identify relevant publications that applied the concept of ES in kelp forests of Lesso-
nia berteroana (formerly known as L. nigrescens in Peru and north Chile), L. spicata (formerly
known as L. nigrescens in central and south Chile), L. trabeculata and M. pyrifera along the
HCS. The following search string was used to find the relevant literature: “Ecosystem
service*” AND (Kelp* OR Laminariales OR Lessonia OR Macrocystis) AND (Peru OR Chile
OR “Humboldt Current” OR “Southeastern Pacific”). All the resulting publications from
ScienceDirect (n = 284); Scopus (n = 6); SCIELO (n = 1) and Google Scholar (n = 186), were
taken to the appraisal stage. In order to identify the most relevant articles, the term “ecosys-
tem service*” was replaced in the search engines with the terms “environmental services”,
“provisioning services”, “regulating services”, “cultural services”, “supporting services”,
and complemented with additional search words “ecology”, “biodiversity”, “economics”
and “subsistence resources”. The new search sourced 1528 additional publications from
Science Direct and 8942 from Google Scholar. Some articles appeared in more than one
academic search engine and were not counted twice. Overall, 109 papers were sourced
from the four databases.

To determine their suitability for inclusion in the review, the abstracts of all papers
were analyzed according to the criteria described in Table 1.

Table 1. Inclusion criteria for papers used in the present review, based on their abstracts (ap-
praisal step).

Criteria Explanation

Ecosystem Service (ES) concept The paper applies the ES concept in a meaningful way, or the main findings are related to, at
least, one of the ES.

Type of article The paper is an academic peer-reviewed research article.
Species The content is discussed in relation to Lessonia spp. or Macrocystis pyrifera.
Locality The content is discussed in relation to the Humboldt Current System (HCS).

After the appraisal step, a total of 86 publications from 1979 to 2022 were deemed
suitable for this literature review and considered as the source for the meta-synthesis
(Table S1). These were fully read and analyzed with the purpose of identifying the main
analytical focus and themes related to kelp forests ES along the HCS. Publication-related
metrics were determined as suggested by Donthu et al. (2021) [48]. The papers were
categorized and quantified according to ES types, i.e., supporting, regulating, provisioning
and cultural [1]. Supporting services are those that make up the basic ecological processes
surrounding the ecosystem, which makes way for other ES [49]. The service or capacity
to provide suitable living conditions for great diversity is an essential feature of the kelp
forests and has been classified as a regulating service or an intermediate service as a product
of supporting services [50,51]. Furthermore, regulating services also refer to those that
influence climatic conditions, water quality and flood control [52]. Provisioning services
are the goods that can be extracted and consumed from ecosystems and are often valued in
markets [53]. Cultural services include the environmental basis for esthetic, spiritual and
recreational experiences, cultural heritage, sense of place and ways of life [54].

The thematic analysis was conducted in accordance with Mengist et al. (2020) [47],
providing an overview of the evidence, knowledge gaps and implications for the topic
based on the previously described criteria. Furthermore, we quantified the taxa reported
per kelp species for each country according to our final database.
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3. Results and Discussion
3.1. The Forest-Forming Species of the Humboldt Current System

In the HCS, kelps commonly occur in subtidal rocky reefs except in the most sheltered
or turbid locations, and from the lower shores to depths near 30 m [55–57]. However, kelp
forests composed of Lessonia and Macrocystis have been found in deeper waters (>30 m) [58].
It has been observed that M. pyrifera usually forms an upper canopy, while L. trabeculata, a
lower one [45], playing different roles as habitat-structuring species when occurring in the
same forest. The distribution patterns of the four kelp species addressed in this review are
shown in Figure 1.

Figure 1. Distribution patterns of kelp species forming marine forests in the Humboldt Current System:
Macrocysstis pyrifera (brown), Lessonia trabeculata (white), L. berteroana (yellow), and L. spicata (orange).
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The kelp forest metacommunities are exposed to different regimes, such as permanent
(Peru) or seasonal (Chile) upwelling patterns. The forests located at the northern extreme of
the HCS are directly influenced by events associated with the El Niño Southern Oscillation
(ENSO), such as the “El Niño Costero” event, which changes the biogeochemical properties
of the northern HCS that reduces the availability of nitrates on the upper layer of coastal
waters [59] and increases the temperature. On the other hand, cold and eutrophic sub-
Antarctic waters predominantly influence the forests in the southern extreme. Although
species distribution patterns have been studied for decades, it is still a challenge to monitor
the associated assemblages or the ecosystem dynamic at a wide scale in the HCS [60–62].

The assessment of the genetic structure of the giant kelp Macrocystis spp. across a broad
latitudinal range in the HCS [55], reported low levels of genetic diversity in M. pyrifera
populations and indicated the presence of a single species for this genus at a regional level.
Later, this reduced genetic variation in M. pyrifera was reconfirmed from latitudes 12◦ S
to 16◦ S. However, the presence of unique haplotypes was reported in populations from
the San Lorenzo Island (Mpyr8), and from Los Bancos and San Nicolas Bay (Mpyr9) in
Peru [61].

Regarding the Lessonia genus, the presence of two divergent lineages in central Chile
was evidenced. For years, the existence of cryptic species was assumed; however, it was
not after a few investigations [62–64], that the scientific name of L. berteroana started to be
recognized for the northern populations, while L. spicata was kept mainly for southern ones.
A recent molecular study showed that L. berteroana is distributed from at least 15◦26′ S in
Peru to 30◦ S in Chile [62].

3.2. Overall Search

The SALSA framework provided a large number of articles during the early stages of
research. However, this was mainly completed according to the researchers’ lecture criteria
when conducting the thematic analysis. Based on this, other methods, such as word-mining
programs, are worth noting for future reviews.

Research on supporting services was the most prevalent (n = 59) and mostly related
to ecological studies. This was followed by provisioning services (n = 19), most of them
focused on fishery studies. Less attention was given to regulating (n = 3) and cultural
services (n = 1). Only three papers discussed general topics related to all types of ES.

Publications predominantly addressed Chilean kelp forests (n = 77), with four pub-
lications explicitly mentioning ES in Chile [21,22,33,65]. Research on kelp forests in Peru
(n = 5), or in Chile and Peru at the same time (n = 4), were extremely low. The number of
publications showed a sustained increase during the last four decades, with more than half
of the studies occurring in the last decade (2011–2022) (Figure 2).

Figure 2. Number of publications per decade.
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3.3. General Ecosystem Services of Humboldtian Kelp Forests

In Central Chile, the study of ES using biomass, species richness and personal inter-
views [65,66] resulted in the identification of provisioning services (e.g., food), regulating
services (e.g., biological production), supporting services (e.g., habitat or biodiversity)
and cultural services. In northern Chile, an economic valuation of the ES provided by
wild kelp populations of Lessonia spp. and M. pyrifera [22] indicated that kelp beds in this
locality would have a value of USD 540 million per year over the next ten years with a
constant annual increase. Of the total worth, 9% represented the service of the forests
as an environmental buffer for CO2 capture or O2 production, 75% is provided by kelp
fisheries and 15% by associated-species fisheries. The value of the total ES provided by
the coastal benthic ecosystems of three bays (Mejillones, Antofagasta and Tongoy Bays) in
northern Chile, including brown algae fisheries [21], was estimated to be about 8% of the
total support value that ES provides to the regional economy. This shows the importance
and role kelp forests have when providing numerous jobs, a source of income and food to
coastal populations.

Kelp forests around the world support economic inputs, i.e., the value of kelp in South
Africa is estimated at USD 434 million per year [67], and in the Falkland Islands at USD
342 billion per year [29]. The southeastern Pacific region’s kelp forests are dominated by M.
pyrifera and their value in terms of ES has been evaluated at USD 811,000 per kilometer per
year [22]. However, further research regarding the real extent of the species or assemblages
are needed to generate accurate estimates in the HCS.

3.4. Supporting and Regulating Services

Kelp primary production enters the carbon cycle as wet biomass, detritus or dissolved
organic matter, forming a food source for a wide range of organisms [17,68,69]. In general,
ecosystems with a high net primary production generate more food, timber or fiber than
less productive ecosystems [54,70]. As habitat formers, a single kelp sporophyte directly
provides three distinct primary spaces: the holdfast, the stipe and the lamina. The mor-
phological differences between Macrocystis pyrifera and Lessonia spp. kelp beds (i.e., stipe
number, plant length, dichotomies per stipe and wet mass) influence the composition
of the associated characteristic fauna and its functional relationships [69,71] (Figure 3).
The kelp holdfast consists of a network of root-like ramifications, which provide galleries
and crevices with a high structural complexity, allowing microenvironments to emerge as
habitats for macroinvertebrate species such as echinoderms [45,72,73], crustaceans [74–77],
polychaetes [76,78], bivalves [76], barnacles and limpets [45,79,80]. Fronds (blades and
stipites) can form a dense canopy extending from the holdfast to the upper tip of the long
stipes [78], representing habitats for various organisms, both epiphytes and associated
fauna that seek shelter or food [36,81–83]. In kelp habitats, amphipods provide a link be-
tween kelp and higher trophic level species, including fish, which are voracious predators
of amphipods [82,84]. Kelp sporophytes themselves are habitats for essential small-sized
benthic suspension feeders which contribute to the recycling of nutrients (regulating ser-
vices) [85]. Recently, a spatial optimization model to maximize the potential provision of
ES was evaluated in coastal areas where Lessonia spp. was dominant, accounting for the
role of dispersal and larval connectivity (regulating services). It was suggested that future
modeling methodologies should encompass the diversity of coastal ecosystems and human
activities to develop integrative spatial management [33].

A recent study integrating data of the macroinvertebrates associated with different
forest forming species of Peru showed that more than 100 species are associated with
M. pyrifera and L. trabeculata in central and southern Peru. Of these, L. trabeculata is the
species with the highest diversity recorded [86]. Macroinvertebrate abundance, species
richness and biomass significantly increased with holdfast size, explaining why Lessonia
species have the highest associated diversity [45]. In Chile, at least 45 species were associ-
ated with Lessonia sp. [87,88] and 30 epifaunal invertebrate species inhabited M. pyrifera [80].
According to our search, L. trabeculata showed the highest number of taxa reported (n = 213)
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followed closely by M. pyrifera (n = 210). However, the number of phyla reported was
higher in M. pyrifera (n = 17) than in Lessonia species (n = 7–13) (Figure 4). Overall, there
were more reports of kelp-associated species for Chile than for Peru (Figure 5). The com-
plete list of kelp-forest associated taxa reported per kelp species in Chile and Peru is shown
in Table S2. The idea that this could be due to the high rates of speciation occurring in
larger biogeographical provinces with lower surface temperatures and high endemism
should be considered for further research [89,90].

Figure 3. Supporting services of kelp forests along the Humboldt Current System. The genus Lessonia
usually forms a second canopy (a), while Macrocystis pyrifera forms an upper canopy (e). Kelp forests
support habitats for a wide range of fauna, such as motile invertebrates (Pichidangui, Chile) (a);
chondrichthyans that use kelp structures to deposit their capsules (Pucusana, Peru) (b); osteichthyes
(Trachurus murphyi Nichols 1920; Pucusana, Peru) (c); and sessile organisms (Pucusana, Peru) (d,f).

The reports of fishes associated with kelp forests in southeastern Pacific are mainly
from Chile [37,89,91–100] and show that kelp forests provide food and suitable habitats
for benthic prey items through the understory community. It was suggested that under-
story habitats directly affect the diets of the fishes [93]. At least 25 species of reef fishes
associated with Macrocystis pyrifera and Lessonia spp. were reported from the northern and
central rocky coast of Chile, with many of them having socio-economic relevance at a local
level [37,93]. Kelp forests provide food for many species. Experimental studies showed
that the digestion of L. trabeculata is associated with the morphological features and the
nutritional and reproductive status of the Zamba marblefish (Aplodactylus punctatus) [99].

Furthermore, kelp forests are strongly associated with food resources for coastal sharks,
especially for males [101]. In contrast, pregnant females circle around vertical structures,
selecting taller, physically stable and thicker sporophytes to anchor the tendrils of their
capsules [39]. The redspotted catshark (Schroederichthys chilensis) has been associated with
kelp forests dominated by L. trabeculata in Chile and Peru [39,101–103]. These consumers
concurrently support even higher trophic level organisms, including predators such as
seagulls [104], or the endangered sea otter Londra felina [92,105]. This is relevant for
economies associated with the rich and productive HCS because previous studies have
shown that biodiversity, including genetic diversity, is positively associated with the ES
provided [106]. It is worth mentioning that our understanding of biodiversity may change
over time, as new techniques are developed and integrated into ecological studies.

Regulating services have been mainly represented as the production of larvae that
contributes to the regulation and stability of the marine ecosystem [106]. Multiple studies
have highlighted the essential role of marine forests in larval dispersion and the colonization
of distant habitats [57,73,106–116].
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Figure 4. Number of kelp-forest associated taxa reported per Phyllum. (a) L. trabeculata; (b) L.
berteroana/spicata; (c) M. pyrifera.
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It is known that kelp detritus represents a subsidy of energy in low-productive habitats;
hence, it is the main source of food for rich and abundant faunal assemblages, increasing
the magnitude of carbon flow through consumers [60,75,106–117]. The latter coincides
with experiments showing that trophic association with seaweeds is particularly important
for epiphytic bryozoans under conditions of reduced particulate-food concentration [118].
Regarding kelp blue carbon studies, only one paper has been identified addressing the
capacity of carbon storage by L. trabeculata in southern Peru [117]. Additionally, only one
study addressed the economic value of the carbon that kelp assemblies capture in northern
Chile [22].

Figure 5. Number of kelp-forest associated taxa reported per kelp species in Chile (blue) and Peru (red).

3.5. Provisioning Services and Economical Benefits

In Chile and Peru, kelp species alone are a valuable bioresource used as raw mate-
rial for alginate extraction [119]; feed for aquaculture species [120,121], and even stool
pigeons [57]; organic fertilizer; biofuels; and human food [57,121–123] The use of kelp
resources along the HCS is based on the harvest and collection of biomass, making Chile
the leading producer country of raw material [120–129]. Kelp biomass is destined to
alginate production, an industry valued at USD 213 million annually worldwide [129].
In northern Chile alone, more than 11,000 people depend directly or indirectly on the
collection and harvesting of these resources [130]. For this reason, and to guarantee the
sustainable production of kelps, alternative ways to manage and cultivate them are being
investigated with the aim of obtaining these algae-associated benefits with lower ecosystem
impacts [71,124,131].

Kelp fisheries are not the only kind of fisheries associated with kelp forests. Numerous
fish, mollusks, crustaceans and other invertebrate species are associated with marine forests
too, both in Chile and Peru [117,120,132]. Bioresources including Concholepas concholepas
(Chilean abalone), Fisurella spp. (keyhole limpets), Loxechinus albus (red sea urchin), Pyura
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chilensis (red sea squirt), Octopus mimus (gould octopus) and various rock fishes, such as
Cheilodactylus variegatus (Peruvian morwong), Paralabrax humeralis (Peruvian rock seabass),
Pinguipes chilensis (Chilean sandperch) and Anisotremus scapularis (Peruvian grunt) have
been reported in Humboldtian kelp forests. These species are continually captured by arti-
sanal divers due to their socio-economic relevance, especially as food with high nutritional
value [94,117,133,134].

3.6. Cultural Services

A collaborative paper between archaeologists and marine ecologists discussed the
influence of kelp forests over the human migration from Asia to the Americas near the end
of the Pleistocene. The study mentioned that marine forests provided protected nearshore
areas for human migration, so it was easier for people to sail to the open sea. Kelp forests
also provided food and materials that humans could keep for their sea voyages (e.g., kelp
holdfasts were used for building boats) [135].

According to archaeological records, partially eaten and cooked seaweeds have been
found at a 14,000-year-old site in Chile, suggesting that seaweed and associated fauna have
been part of the human diet in the Western Hemisphere since ancient times [134–137]. In
addition, remnants of algae, presumably Macrocrystis were found in tombs of the Nazca
(10 BC–700 AD) and Paracas (700 BC–200 AD) cultures, revealing the preference for sea-
weeds in the diet and practices ancient coastal societies of Peru [58,138,139].

3.7. Threats and Gaps

As a result of our research, we have been able to identify a lack of peer reviewed
studies related to regulating and cultural services. The perspective of society about the
cultural services of kelp forests and the existential values of kelp communities is unknown,
suggesting a deficit of public interest towards this topic in Chile and Peru. Kelp forests
could be seen as an opportunity to promote ecotourism activities such as natural history
education, flora and faunal watching and recreational diving [22]. More research addressing
these activities is required, especially in Peru where the small number of peer-reviewed
articles evidences a large information gap related to kelp ES. In Chile, the value of kelp
forests for tourism, fisheries, education and scientific research is gaining recognition over
time; however, few studies have addressed the quantification of their economic value.

Research on climate change-related scenarios is critical for understanding how kelp
forests and their ES will be affected. It is known that increasing mean temperatures
threatens Lessonia trabeculata populations and might have further negative consequences for
the continuity of the associated ES [140–142]. Ocean warming or periodic warming events
affect the recruiting capacity of Lessonia spp. and other kelp species by affecting their early
developmental stages and modifying the spatial arrangement of subtidal populations along
the HCS [140–143]. Events such as the ENSO lead to massive mortality of kelp species in
Peruvian and Chilean coasts [144–149]. Such sharp population declines, or bottlenecks,
may translate into losses of genetic variation of marine organisms [145–148].

There is evidence that kelp beds contribute as blue carbon habitats. However, the frac-
tion of carbon fixed by kelps in the HCS, which is effectively removed from the atmosphere
over different timescales, is poorly understood. Research to estimate the carbon storage of
the Humboldtian kelp species could lead to mitigation or adaptation strategies to confront
climate change [117].

Overgrazing by invertebrate herbivores, particularly sea urchins [83,132,150], has been
reported to decimate kelp forests and cause phase shifts from structurally and biologically
diverse habitats to depauperated “barrens”. Predators such as Meyenaster gelatinosus,
Heliaster helianthus, Luidia magellanica and fish naturally control grazer populations, which
indirectly benefits the forest’s stability, as well as their services [84,149–151]. Although it is
evident that kelp forests are characterized for supporting complex trophic relationships,
primary net productivity and secondary productivity need to be explored to a greater
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extent. The latter could help to avoid climate or human-induced regime changes, which
could be detrimental to the human activities developed within the HCS.

Direct harvesting from natural populations is another threat that kelps face within
the HCS because of their value as a raw material for the alginate industry [88,119,123,129].
Increasing demands of L. trabeculata for biomedical and pharmaceutical products would
require increased harvesting efforts, this could negatively affect the population’s sustain-
ability and the associated resources [127]. It has been reported that L. trabeculata harvesting
reduces the richness of macroinvertebrates with socio-economic value such as Concholepas
concholepas [88].

Coastal defense represents one of the critical ES that will become more important along
many coastlines, as the sea-level rise and magnitude and frequency of storms increase [17].
No research regarding the role of kelp species in the natural protection (first barrel) of the
coasts of Peru or Chile was found during our literature review. It is worth highlighting that
both countries are located within the Circum-Pacific Seismic Belt, which frequently exhibits
seismic activity [152].

The nature of interspecific and regional-scale variability in kelps as habitat formers
within Chile and Peru is still poorly understood and remains an important knowledge gap
within the field of kelp forest ecology. Moreover, there is a lack of phylogeographic studies
in the Southern Hemisphere, particularly in the south-eastern Pacific [153].

Research about teleost fishes directly associated with kelp forests along the Peru-
vian coast has been limited to one report [117]. In the same way, the impact of kelp
forest-associated fisheries on predators such as sharks, birds and marine mammals is not
well understood.

Kelp forest insights that are still uncertain would contribute to identifying the sense of
place, as well as fostering social cohesion and essentials for human health and well-being
linked to those ecosystems. It is crucial to carry out more monetary and non-monetary
studies related to cultural services such as contingent valuation, choice experiments, partic-
ipatory mapping and social media-based services as examples [154].

4. Conclusions

Baseline information and detailed ecological studies remain to be completed or up-
dated on kelp forest ES along the HCS (Peruvian and Chilean coasts). From a total of 88
articles, only 3 directly discussed kelp ES in Chile. Studies on supporting services were the
most prevalent followed by provisioning, regulating and, lastly, cultural services. Studies
focusing on kelp forests ES in Peru were scarce, while Chile showed a greater effort. At
the moment, no articles are available regarding the valuation of the ES provided by these
marine forests in Peru. Figure 6 summarizes the ES provided by kelp forests along the HCS.

Over the last few years, it has been possible to properly identify kelp species for both
countries due to the use of molecular tools in ecological studies. However, the geographical
distribution of these species must be further addressed. Integrating phylogenetics with
habitat mapping in different kelp forests along the HCS could support a more realistic
valuation and quantification of the services provided by these ecosystems.

Regarding threats, we identified the ENSO as a major factor contributing to the
variation of the health and genetic diversity in kelp species at the HCS. Climate change
studies were mostly related to effects on the recruitment and early stages of development.
On the other hand, kelp harvesting as a growing human activity and the fisheries associated
with these forests could lead to an ecosystem decline, along with the services it provides,
through trophic cascade effects.

Future Directions

Despite the research completed so far, it is important to continue exploring the dy-
namics of kelp forests in Chile and Peru and the ES they provide. The proper identification
of kelp species is relevant for both the stock management, monetary valuation and the
traceability of the products obtained from them. Future efforts by researchers and policy-
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makers to quantify the landings per algal species would allow a better understanding of
the productivity of kelp forests at a local and regional level. Furthermore, it is essential to
standardize the investigation methodologies so that it is possible to apply them in both
countries for proper comparisons.

In addition, it is important to focus future research on less studied ES, such as regulat-
ing and cultural services, as well as on the mapping and stock quantification of the forests
along the HCS. Particularly, the survey of the ecosystem and associated human activities
in a socio-ecological framework, could help stakeholders to better understand how these
ecosystems will naturally behave and contribute to the local and regional economy. In
a specific matter, future studies must focus on the identification and role of microbial
diversity in relation to: (1) new biological compounds; (2) microbial species succession;
and (3) degradation of kelp detritus in HCS. Genera such as Ralstonia, Cyanobacterium and
Granulosicoccus might be crucial for nutrient cycling and epibiont colonization [155], but
also susceptible to climate change, according to studies in other regions [155–157].

Figure 6. The laminarian assemblages of the HCS are distributed in the intertidal and subtidal areas
of rocky shores. They bring coastal protection and structure a habitat for a plethora of threatened and
commercial species, allowing them a place to shelter, feed and reproduce, as their fragments help
disperse the larvae of organisms associated (Supporting and Regulating Service). The forests have a
key role as a blue carbon reservoir and the carbon flux through the sandy beach (Regulating Service).
In addition, these coastal hotspots on the coast are key ecosystems for different human activities,
mainly fishing directly or recollected (shipped and non-shipped), tourism (diving, recreational fishing,
boat sailing), and scientific research (Providing and Cultural services).

Finally, there should be interest in how kelp forests contribute to coastal defense and
the physics of the waterflow according to the configuration of the canopy. We stress the
need for more studies focusing on the effects of the harvest and collection of kelp, especially
due to the importance of kelp-derived detritus as a food resource for plankton and infauna.
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Within the context of climate change and global warming, predictive models are a tool
that could be applied to identify trends in relation to kelp biomass, associated diversity
and distribution. All of this could provide scientific support for better policy making and
conservation efforts.
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