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Abstract: The awareness of the origin of meat that people consume is rapidly increasing today
and with that increases the demand for fast and accurate methods for its distinction. In this work,
we present for the first time the application of Raman spectroscopy using a portable spectrometer
for the classification of pork. Breeding conditions were distinguished from spectral differences of
adipose tissues. The pork samples were obtained from Dutch vendors, from supermarkets with
quality marks of 1 and 3 stars, and from a local butcher shop. In total, 60 fat samples were examined
using a fiber-optic-coupled Raman spectrometer. Recorded spectra were preprocessed before being
subjected to multivariate statistical analysis. An initial data exploration using Principal Component
Analysis (PCA) revealed a separation of adipose tissue samples between the lower supermarket
quality grade and the samples from the local butcher. Moreover, predictive modeling using Partial
Least Squares Discriminant Analysis (PLS-DA) resulted in 96.67% classification accuracy for all three
sources, demonstrating the suitability of the presented method for intraspecies meat classification
and the potential on-site use.
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1. Introduction

The consumption of meat has rapidly increased in the last decades, with a reported
rise of up to 500% between 1961 and 2016 [1,2]. The pigmeat consumption was the highest
on a global average till 2015 and remains in the second position until today [3]. The
nutritional values, such as the high content of protein, amino acids, fatty acids and being a
source of vitamin B12, zinc, iron, and phosphorus [4], make meat a very popular product
on our plates, standing for approximately 30% of the total calory intake in the European
Union (EU) [5]. Although the trend of meat consumption is expected to continue growing,
nowadays consumers are also becoming more interested in and aware of the meat value
chain including animal well-being and food safety [6]. Several studies have reported animal
welfare as a predominant reason why people choose to buy organically produced meat.
Animals raised on organic farms are defined as free-range, with access to the pasture for
grazing and foraging [7]. Moreover, their larger living spaces reduce stress and diseases.
Besides animal well-being, other reasons for favoring organic meat are environmental
impact and human health. The consumers who are aware of the negative impact of

AppliedChem 2023, 3, 279–289. https://doi.org/10.3390/appliedchem3020017 https://www.mdpi.com/journal/appliedchem

https://doi.org/10.3390/appliedchem3020017
https://doi.org/10.3390/appliedchem3020017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/appliedchem
https://www.mdpi.com
https://orcid.org/0000-0002-0288-0422
https://orcid.org/0000-0002-7709-2869
https://doi.org/10.3390/appliedchem3020017
https://www.mdpi.com/journal/appliedchem
https://www.mdpi.com/article/10.3390/appliedchem3020017?type=check_update&version=1


AppliedChem 2023, 3 280

meat production on the environment are more likely to purchase products from organic
sources, as these are perceived as more sustainable than conventional ones. Organic meat
is considered healthier and of better taste due to the reduced use of antibiotics and a
lower amount of concentrated feed in comparison to meat from conventional farming [8,9].
Health and taste aspects have been correlated to the nutritional value of animal products.
The fatty acid composition of animal food is reported to influence the fatty acid content
of meat, eggs, and milk [10]. The comparison of the chemical composition of organically
and conventionally produced meat showed significant variations in the fatty acids profiles.
Especially large differences were detected for total polyunsaturated fatty acids (PUFAs)
and n-3 PUFA, known as good fats, which were more abundant in organic meat [11].

The importance of higher nutrition values as well as caring for animal well-being has
led to a substantial growth of the organic food business in the last years, undergoing a
fivefold expansion from 1999 [7]. Yet, the increasing demand for organic meat is associ-
ated with the risk of adulteration, as such products are usually more expensive due to
higher production costs [12]. To prevent fraudulence and protect the consumers as well
as the organic farmers, methods are required to delineate organic and nonorganic meat.
Commonly, meat is analyzed with respect to fatty acid ethyl esters using gas chromatogra-
phy coupled with flame-ionization detection (GC-FID) [13–16] or with mass spectrometry
(GC-MS) [17,18]. Liquid chromatography–mass spectrometry (LC-MS) has been used for
nonvolatile compound screening [16,18], proton transfer reaction mass spectrometry for
volatile compounds analysis (PTR-MS) [16], inductively coupled plasma mass spectrom-
etry (ICP-MS) for trace elements detection [19], and rapid evaporative ionization mass
spectrometry (REIMS) for direct metabolite analysis [20].

While these techniques are widely used in chemical analysis, they require laborious
sample preparation or utilization of nonportable instrumentation, resulting in nonfieldable
applicability. Techniques to overcome these problems are based on optical spectroscopy
allowing for rapid analysis, noninvasiveness, and portability. In food analysis, Raman
spectroscopy plays a particular role since water molecules do not cause interference and
samples can be analyzed through the packaging [21–24].

In this work, we present for the first time the use of Raman spectroscopy for the classi-
fication of pork meat from different origins using a portable spectrometer. Samples from
three sources were analyzed using a mobile Raman system together with a chemometric
analysis. PCA and PLS-DA were used to explore and subsequently exploit the potential of
the Raman system in combination with carefully selected spectral data processing methods
to discriminate pork meat welfare labels. The approach was applied to distinguish adipose
tissues of pork, chicken, and lamb and extended to intraspecies discrimination of pork meat.

2. Materials and Methods
2.1. Sample Preparation

Pork samples (bacon steaks) were collected from the Dutch supermarket chain (Albert
Heijn) with different quality labels, 1 star and 3 stars (Beter Leven), and from a local butcher.
Chicken thighs were purchased from the same supermarket with quality label 1 and lamb
chopsticks were labeled as AH Excellent brand, which corresponds to the 3-star quality
label. Fat pieces (10 mm × 10 mm) were cut out of meat slices and placed on a metal
stage for Raman experiments. In total, 121 adipose tissue samples were investigated for
interspecies discrimination: 40 from lamb, 21 from chicken, and 60 from pork. The latter
consisted of 18 fat pieces from the 1-star quality meat, 18 from the 3-star quality meat,
and 24 from meat obtained from a local butcher for intraspecies discrimination. Meat
samples were purchased on different days to eliminate intrabatch variations: for lamb
samples—4 packages, for chicken samples—3 packages, and for pork samples—6 packages
per welfare label. All samples were analyzed within 2 h after the purchase to avoid spoilage.
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2.2. Raman Analysis

Raman analyses were performed using a QePro-Raman+ spectrometer (Ocean Insight,
Orlando, FL, USA), equipped with a thermoelectric (TE)-cooled CCD detector at −15 ◦C
and a 50 µm interchangeable slit. Fat samples were placed on an adjustable metal stage with
the Raman probe (InPhotonics, Inc., Norwood, MA, USA) positioned above the sample.
A 785 nm wavelength laser with a power of 350 mW was used as an excitation source
(Innovative Photonic Solutions, Plainsboro, NJ, USA). Samples were visually inspected
after the measurements to ensure no changes occurred due to the laser power. The spectral
acquisition was controlled using OceanView v2.0.9 software (Ocean Insight, Orlando, FL,
USA), in the range of 0–3038 cm−1 (1039 data points) using an integration time of 30 s.

2.3. Spectral Processing and Statistical Analysis
2.3.1. Data Preprocessing

All data were analyzed using MATLAB R2021a and in-house built scripts. Only
spectral data from 800 cm−1 to 3038 cm−1 (832 data points) were processed. The trimmed
spectroscopic data were pretreated prior to data modeling to compensate for additive and
multiplicative baseline artifacts, as well as instrumental noise [25]. Such artifacts often
arise from differences between the measurements (e.g., analysis) rather than from actual
chemical differences between the samples. Slight differences between calibration settings
between two measurement runs may for instance cause additive and multiplicative baseline
artifacts. Not only do these artifacts limit the extraction of chemically relevant information,
but when correlated to the class labels they can cause a prediction model to actively (and
falsely) model the analysis differences rather than the chemical differences. As independent
testing provides no protection against this, it was decided to reduce the effects of additive
and multiplicative baseline artifacts with, respectively and subsequently, Asymmetric Least
Squares (AsLS) smoothing [26] and a Standard Normal Variate (SNV) transformation [27].
Instrumental noise was eliminated using a Gaussian-weighted moving average filter with
a window width of 5 spectral data points [28].

2.3.2. Explorative Data Modeling

Principal Component Analysis (PCA) was used to perform an explorative analysis of
the measured data [29]. As PCA allows for the projection of the major sources of variance
in the data to a minimal and orthogonal space, it can visualize how strong the meat class
differences are manifested in the Raman data in terms of component scores plots, without
actively maximizing those differences. Further investigation of the component loadings
can help in understanding the major variations of the data from a chemical viewpoint and
helps in checking the data for artifacts and outliers. The spectral variables were centered to
zero mean prior to modeling [30].

2.3.3. Predictive Data Modeling

To further exploit the spectral data with supervised predictive modeling, Partial
Least Squares Discriminant Analysis (PLS-DA) was used on the preprocessed spectral
data to construct models for the classification of the meat quality according to the welfare
label for pork fat samples. The meat types and welfare labels were used as dependent
variables, while the intensities/signals measured over the different Raman shifts were used
as dependent variables for the multivariate regression [31]. As for the PCA models, the
spectral variables were mean-centered prior to modeling.

2.3.4. Model Optimization and Validation

The PLS-DA models were optimized and validated by applying double 5-fold Venetian
Blinds cross-validation [32]. The outer cross-validation loop holds out 20% of data for
independent testing of the model, while the remaining 80% of data is used for training the
model. This is repeated 5 times in a way that every sample is independently tested once,
to help estimate the modeling accuracy while respecting the distribution of the classes.
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This outer validation loop ensures that the estimated discrimination accuracy is not subject
to model overfitting. The inner cross-validation loop is a nested loop applied (per outer
validation fold) to 80% of training data, to optimize the number of latent variables used by
PLS-DA towards minimum Root Mean Squared Error (RMSE). In this nested loop, 80% of
training data is iteratively used to calibrate the model and 20% of the model to select (and
thereby) optimize the number of latent variables.

3. Results
3.1. Raman Spectra of Fat Samples

Fat samples from pork, lamb, and chicken were cut, prepared, and analyzed with a
portable Raman spectroscopy system. Spectra acquired from 0 to 3038 cm−1 were trimmed
to 800–3038 cm−1. Figure 1 shows the unprocessed Raman spectra from all fat samples.
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Figure 1. Raw Raman spectra from analysis of pork, lamb, and chicken fat samples.

After spectral data preprocessing, the differences between the three species are better
visualized (Figure 2), especially for the peaks between 800 and 1000 cm−1 (C–C, CH3
rocking vibrations, C–O), 1062 cm−1 (out-of-phase aliphatic C–C stretching all-trans),
1082 cm−1 (aliphatic C–C stretching in gauche), 1125 cm−1 (in-phase aliphatic C–C stretch-
ing all-trans), 1269 cm−1 (=CH in-plane cis olefinic hydrogen bending), 1295 cm−1 (CH2
methylene twisting deformations), 1653 cm−1 (cis C=C olefinic stretching), 2854 cm−1

(methylene symmetric stretching), and 2886 cm−1 (methyl symmetric stretching). The
wavenumbers of the bands including some variations corresponded well with previously
described Raman analyses of animal adipose tissues [33–35]. Moreover, the intensity dif-
ferences in these bands were also apparent from intraspecies measurements (Figure S1),
emphasizing the importance of these peaks for meat discrimination analysis.
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3.2. Data Analysis
3.2.1. Principal Component Analysis (PCA)

An exploration of the preprocessed spectral data using PCA reveals a clear separation
between samples from pork, lamb, and chicken (Figure 3), with the first principal compo-
nent (PC1) explaining 78.4% of the variance and the second principal component (PC2)
describing another 12.1% of the variations. Further principal components were investigated
but did not reveal better class separation than is already observed for the scores of the PC1
and PC2. Pork samples were clustered in the positive PC2 space while lamb and chicken
were represented in the negative PC2 space. The separation between lamb and chicken
was achieved in the PC1 dimension as lamb samples grouped in the negative space, while
chicken samples appeared on the positive PC1 axis. PCA loading plots (Figure 4) showed
Raman features responsible for the discrimination in the negative and positive spaces
for both dimensions, PC1 and PC2. The peaks with the largest variance in the negative
PC2 space were found at 1650 cm−1 (C=C olefinic stretching) and 2854 cm−1 (methylene
symmetric stretching), while in the positive direction, bands at 1269 cm−1 (=CH in-plane
cis olefinic hydrogen bending) and 1436 cm−1 (CH2 methylene scissor deformations) were
important. In PC1 positive space, the observed separation is correlated to Raman bands
at 1269 and 1650 cm−1, whereas in the negative region, bands at 1062 cm−1 (out-of-phase
aliphatic C–C stretch all-trans), 1125 cm−1 (in-phase aliphatic C–C stretch all-trans), and
1295 cm−1 (CH2 methylene twisting deformations) seem decisive.
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Figure 4. PCA loadings plots showing Raman features associated with the separation of pork, chicken,
and lamb.

Figure 5 shows the scores for the first two principal components of a PCA model
calculated on the spectral data of only the pork samples. This figure reveals that some
separation between supermarket pork samples with 1-star quality mark and samples from
a local farm could be recognized. Data from the 3-star quality label also referred to as
biological meat did not separate well but were widely spread and occurred at high PC1 and
PC2 values but also within the two clusters. Hence, only a few samples at high PC values
were well separated. The large total distribution may be due to similarities in breeding
conditions. For instance, living conditions and standard diets are rather similar for pigs of
the supermarket quality labels 1 to 3 [36]. Yet, animals for biological grade meat also have
access to the pasture where they can graze and forage like pigs bred on a local farm. These
results show that distinguishing meats within one species based on Raman measurements
is more challenging than distinguishing meats of different species, and that the usage
of a supervised classifier such as PLS-DA should indeed be explored. Note that further
principal components were investigated but did not reveal better class separation than is
already observed for the scores of the PC1 and PC2.
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The separation between samples with 1-star grade and samples from local farm meat
was mainly visible in the PC2 space of the PCA score plot shown in Figure 5, with the
separation of 1-star meat samples in the positive space and local farm meat samples in
the negative space. The Raman spectral features that cause the separation of lower-grade
pork samples corresponded to the vibrations at 1062 cm−1 (out-of-phase aliphatic C–C
stretching all-trans), 1269 cm−1 (=CH in-plane cis olefinic hydrogen bending), 1295 cm−1

(CH2 methylene twisting deformations), 1436 cm−1 (CH2 methylene scissor deformations),
and 1653 cm−1 (cis C=C olefinic stretching). In contrast, bands important for the separa-
tion of the local farm meat as seen in the negative PC2 space were located at 886 cm−1

(CH3 rocking vibration), 1125 cm−1 (in-phase aliphatic C–C stretching all-trans), 1743 cm−1

(C=O carbonyl stretching), and 2854 cm−1 (methylene symmetric stretching), cf. Figure 6.
A compilation of Raman spectra of pork samples with annotated major characteristic bands
is given in Figure S2.
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3.2.2. Predictive Modeling for Pork Origins

PLS-DA models were calibrated, optimized, and validated on the preprocessed Raman
data to further exploit the discriminating properties of pork for the three qualities by
adipose tissue analysis. Table 1 presents the classification confusion matrix for the PLS-DA
model. Note that these results are found after the double cross-validation applied to protect
against overfitting and thus correspond to independent resting. The number of latent
variables selected—which is executed for each of the five outer validation folds—ranged
between 14 and 29 for the PLS-DA models.

Table 1. Double cross-validated PLSDA classification confusion matrix for pork samples.

Validated Classification Accuracy = 96.67% Predicted Class

1 Star 3 Stars Local Farm

True class
1 Star 18 0 0

3 Stars 2 16 0

Local farm 0 0 24

The PLS-DA model shows excellent validated performance with 96.67% classification
accuracy. Only two samples from 3-star grade pork out of 18 were predicted as 1-star
quality. A PLS-DA model built for the three meat species achieved a classification accuracy
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of 97.52% (Table S1). In this case, three samples from 3-star grade pork were classified as
1 star. In contrast to PCA, the PLS-DA scores plot (Figure 7) showed that the 1-star label
samples and the local farm samples formed well-defined clusters, whereas the 3-star pork
samples were scattered more widely over the latent space. Thus, the 1-star label and local
farm samples exhibited the largest differences and were therefore easier to discriminate
from each other. The 3-star pork samples showed more intersample variance, which
reduced their discriminant distance from the two other groups. This was also supported by
the fact that the two samples misclassified by the PLS-DA model were 3-star pork.
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(MUFAs) and polyunsaturated fatty acids (PUFAs) from pork fat differed significantly 
between pork samples from conventional and organic farming [16,39,40]. In particular, 
linoleic acid was given a significant role in intraspecies classification. This is in excellent 
agreement with our results as the band observed at 1650 cm−1 could be traced back to con-
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Figure 7. PLS-DA scores plot of pork samples of 1 star, 3 stars, and local farm meat quality.

The regression coefficients presented in Figure S3 revealed the Raman features respon-
sible for the distinction of the three pork classes. In the 1-star grade PLS-DA model, the
following Raman peaks contributed predominantly: 847 and 868 cm−1 (C–O–O skeletal),
1038 cm−1 (C–H bending) [37], 1269 cm−1 (in-plane cis olefinic hydrogen bending (=CH)),
and 2854 cm−1 (methylene symmetric stretching). In the 3-star grade model, the major
contribution stemmed from the bands at 847 cm−1, 1062 cm−1 (out-of-phase aliphatic
C–C stretching all-trans), and 1269 cm−1 (=CH in-plane cis olefinic hydrogen bending).
The discriminatory power in the local farm meat PLS-DA model was associated with the
vibrations at 1029 cm−1 (CH bending), 1082 cm−1 (aliphatic C–C stretching in gauche),
1125 cm−1 (in-phase aliphatic C–C stretching all-trans), and 1436 cm−1(CH2 methylene
scissor deformations).

4. Discussion

In the presented study, Raman spectroscopy was used to explore and exploit the dif-
ferences in adipose tissue profiles for inter- and intraspecies classification of meat samples.
Previous studies assigned the peaks responsible for the separation of meat from different
animals to saturated fatty acids, i.e., 1060, 1080, 1127, and 1440 cm−1, and unsaturated fatty
acids, i.e., 1267 and 1650 cm−1 [33,38]. These findings support our observations that the bands
at 1062, 1125, 1269, 1295, 1436, 1650, and 2854 cm−1 were responsible for the interspecies
discrimination. Moreover, the bands at 1267 and 1650 cm−1 stemming from unsaturated fatty
acids played a crucial role in the intraspecies classification of pork meat. The observation
and analysis of unsaturated fatty acids are especially important since it has been previously
reported that the concentration of monounsaturated fatty acids (MUFAs) and polyunsatu-
rated fatty acids (PUFAs) from pork fat differed significantly between pork samples from
conventional and organic farming [16,39,40]. In particular, linoleic acid was given a significant
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role in intraspecies classification. This is in excellent agreement with our results as the band
observed at 1650 cm−1 could be traced back to conjugated linoleic acid [38].

5. Conclusions

In this work, we advanced the field of meat science by demonstrating that Raman
spectroscopy combined with chemometrics can be used for meat classification from dif-
ferent sources based on spectral differences stemming from adipose tissues. The Raman
spectrometer used here provided a fast, nondestructive, and fieldable method requiring
only 30 s of acquisition time and minimal sample preparation. Meat analysis resulted in a
clear distinction between lamb, chicken, and pork meat. A classification model based on
fat tissues could further successfully discriminate between pork of the lower supermarket
grade (1 star) according to the Dutch classification scheme and local farm quality with
an accuracy of 96.62%. These results indicate the potential of the presented method for
predicting animal welfare labels on-site. Yet, further studies need to be carried out for an
in-depth understanding of the chemical variations between meat and its adipose tissues
due to different breeding conditions.
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after spectral data pre-processing with wavenumbers on the main characteristic bands. Figure S3: Re-
gression coefficient for three pork classes. Table S1: PLSDA classification confusion matrix for five
meat classes.
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