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Abstract: Climate change has been associated with intensified harmful algal blooms (HABs). Some
harmful microalgae produce toxins that accumulate in food webs, adversely affecting the envi-
ronment, public health and economy. Ocean acidification (OA) is a major consequence of high
anthropogenic CO2 emissions. The carbon chemistry and pH of aquatic ecosystems have been signifi-
cantly altered as a result. The impacts of climate change on the metabolisms of microalgae, especially
toxin biosynthesis, remain largely unknown. This hinders the optimization of HAB mitigation for
changed climate conditions. To bridge this knowledge gap, previous studies on the effects of ocean
acidification on toxin biosynthesis in microalgae were reviewed. There was no solid conclusion for
the toxicity change of saxitoxin-producing dinoflagellates from the genus Alexandrium after high CO2

treatment. Increased domoic acid content was observed in the diatom Pseudo-nitzschia. The brevetoxin
content of Karenia brevis remained largely unchanged. The underlying regulatory mechanisms that
account for the different toxicity levels observed have not been elucidated. Metabolic flux analysis is
useful for investigating the carbon allocations of toxic microalgae under OA and revealing related
metabolic pathways for toxin biosynthesis. Gaining knowledge of the responses of microalgae in
high CO2 conditions will allow the better risk assessment of HABs in the future.
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1. Introduction

Harmful algal blooms (HABs) refer to the rapid growth of phytoplankton, including
cyanobacteria, dinoflagellates, raphidophytes, haptophytes, and macroalgae, which exerts
harmful effects on the environment, human health, and the economy [1]. High microalgal
biomass accumulation during HABs can cause hypoxia, suffocating surrounding aquatic
organisms [2]. Some HAB species can produce algal toxins that accumulate in aquatic
food webs [3]. Apart from causing the massive death of marine mammals and fish [4],
algal toxins can lead to intoxication in humans. Approximately 50,000 to 500,000 cases of
intoxication with a 1.5% mortality rate have been reported annually due to the consumption
of contaminated shellfish or fish [5]. The health costs associated with HABs are substantial,
ranging from around USD 90 to USD 12,000 for digestive and respiratory illnesses with
different severities [6]. The aquacultural industry is the most vulnerable when considering
the direct economic losses caused by HABs. From the 1980s to the 2010s, the aquacultural
industry in Korea lost a total of USD 121 million due to HAB-induced fish and shellfish
deaths [7]. In addition to the aquacultural industry, tourism is adversely affected by HABs.
It was reported that the monthly revenue of coastal lodgings and restaurants decreased
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by USD 2.8 and 3.7 million, respectively, in Fort Walton Beach and Destin in Florida when
HABs occurred [8]. To mitigate the negative effects of HABs, costly monitoring programs
and mitigation measures are conducted in different regions, such as the US, Europe, and
Australia, as well as by intergovernmental organizations [9].

The direct link between HABs and climate change was first affirmed in the Special
Report on the Ocean and Cryosphere in a Changing Climate, published by the Intergovern-
mental Panel on Climate Change in 2019 [1]. Climate change has profoundly changed the
aquatic environment over the years by increasing the surface temperature, acidifying water
bodies, shifting nutrient availability, altering salinity, etc. Several studies have reviewed
the association between climate change and intensified HABs [10–13]. In parallel with the
spatial expansions and frequencies of HABs, the frequency and distribution of human in-
toxication by algal toxins have also increased globally [4]. According to the Harmful Algae
Event Database (HAEDAT), 1598 HAB-related seafood poisoning cases were reported dur-
ing the 20th century. A nearly five-fold increase in the number of cases (7843) was observed
from 2001 to 2022. Intensified HABs can also further alter the food webs and disturb the
ecosystem. The physiology, mortality, and toxicity of marine organisms at higher trophic
levels were found to have changed when co-exposed to algal toxins and climate change
stressors, as summarized by Griffith and Gobler [14]. Given the above-mentioned scenario,
it is believed that the adverse effects of HABs will be aggravated in the future.

2. Algal Toxins

Intensified HABs of toxic microalgae may increase the algal toxins in aquacultures,
subsequently raising the risks of seafood poisoning [15]. Consumption of contaminated
seafood can lead to different poisoning syndromes, depending on the types of algal toxins
accumulated in shellfish during HABs. As of December 2019, the incidence of paralytic
shellfish poisoning (PSP) and diarrhetic shellfish poisoning (DSP) accounted for approxi-
mately one third of the reported cases of human intoxication, with PSP contributing 35%
and DSP contributing 30% [16]. According to the data, the incidence of amnesic shellfish
poisoning (ASP) was relatively low, at 9%, whereas both neurotoxic shellfish poisoning
(NSP) and azaspiracid shellfish poisoning (AZP) each accounted for only 1% of cases.

2.1. Paralytic Shellfish Poisoning

The causative agents of PSP, saxitoxin (STX) and its 57 analogues, are collectively known as
paralytic shellfish toxins (PSTs) [17]. STX is composed of a tricyclic 3,4-propinoperhydropurine
backbone with two guanidine groups [18]. The analogues have been classified into different
groups according to the side group moieties. PSTs are mainly produced by eukaryotic
marine dinoflagellates from the genera Alexandrium, Gymnodinium, and Pyrodinium [19,20].
Prokaryotic freshwater cyanobacteria from the genera Anabaena, Cylindrospermopsis, Aph-
anizomenon, Planktothrix, and Lyngbya are producers of PSTs as well [21–24]. The toxicity
levels of these analogues vary depending on the structures. Generally, the toxicity levels
of STXs are inversely proportional to the degree of sulfation [17]. PSTs selectively and
reversibly bind to receptor site 1 of the voltage-gated sodium channels in the nerves and
muscles [25]. Due to the blockage of the channels, the propagation of action potential is
terminated, leading to symptoms such as paralysis, burning sensations, and numbness [26].
In serious cases, death can result due to respiratory failure [27]. Most reported PSP cases
were contributed by the toxic Alexandrium species, which are mainly present in Northern
Europe, the Mediterranean, Northern Asia, East Asia, and North America [28–31]. Recently,
the geographical distribution of Alexandrium has been expanded towards the poles [32].

2.2. Diarrhetic Shellfish Poisoning

Okadaic acid and its derivatives, the dinophysistoxins (DTXs), are lipophilic polyke-
tides predominately produced by toxic dinoflagellates from the genera Prorocentrum and
Dynophysis [33]. For human adults, DSP symptoms occur when a minimum dosage of
40 µg okadaic acid equivalents is consumed [34]. According to the Food and Agriculture
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Organization (FAO), the recommended okadaic equivalents for okadaic acid, DTX1, and
DTX2 are 1.0, 1.0, and 0.5, respectively [35]. Diarrhea, nausea, vomiting, and abdominal
pain are the common symptoms of DSP [36]. DSP is generally not life-threatening, and hos-
pitalization is not required [37]. As potent inhibitors of serine/threonine phosphatases [38],
okadaic acids show specifically high binding affinity to protein phosphatase 1 (PP1) and
protein phosphatase 2 (PP2) [39]. The gastrointestinal symptoms of DSP may be a result of
inhibited intestinal PP activities by okadaic acids [40]. In addition, the inhibiting effect of
okadaic acids may induce the hyperphosphorylation of proteins that regulate the sodium
secretion of intestinal cells [41]. The release of sodium from cells disturbs the osmotic
gradient balance and subsequently causes the passive loss of fluids, leading to diarrhea.
Both Prorocentrum and Dynophysis have expanded their niches in recent years. P. minimum
is the most studied Prorocentrum species and is widespread in the Black Sea, the Baltic Sea,
Lake Nakanoumi, the Mexican coast, and the Philippines [42]. The expansion of Dynoph-
ysis was observed in the coastal areas of the United States, Canada, and South Africa [13].
Moreover, increased abundances of Prorocentrum and Dynophysis in the Northeast Atlantic
were reported [43].

2.3. Amnesic Shellfish Poisoning

ASP is caused by the consumption of domoic acid (DA)-accumulated shellfish. Red
algae such as Chondria armata and diatoms from the genera Pseudo-nitzschia and Nitzchia
(N. navis-varingica and N. bizertensis) are the primary producers of DA [44,45]. DA, a
tricarboxylic amino acid, is analogous to glutamic acid and kainic acid [46]. Several
DA isomers (isodomic acid A-H, 5′ epi-DA) have been identified [47]. With such struc-
tural similarity, Das can bind and activate three ionotropic glutamate receptor subtypes
(N-methyl-D-aspartate (NMDA), kainate, and α-amino-3-hydroxy-5-methyl-4-isoxazole
propionate (AMPA) receptors) located on the dendrites of postsynaptic cells [48,49]. An
influx of calcium ions (Ca2+) into neurons is induced upon the activation of kainate and
AMPA receptors [50], while an influx of both Ca2+ and sodium ions (Na+) is induced
upon the activation of the NMDA receptor [51]. Desensitization is prevented by the low
conformational mobility of DAs when docked to the receptors, leading to a continuous flow
of cations to the postsynaptic cells [52]. DAs exert excitotoxic effects primarily through
excess intracellular Ca2+, which triggers the mobilization of glutamate-containing vesi-
cles towards the membrane surface, followed by the release of glutamate (Glu) into the
synaptic cleft [53]. Excess Glu results in neurodegeneration and apoptosis [54,55]. Since
neurons in the hippocampus, where the consolidation of memories takes place, are affected
by DAs [56], symptoms such as short-term memory loss and anterograde amnesia may
result [57]. Generally, the toxicity of DA isomers is lower than that of DA because of the
lower binding affinity of DA isomers to glutamate receptors [58–60]. One of the major
DA producers, Pseudo-nitzschia, has been detected in the Pacific Ocean and the Southern
Ocean [61]. Expanded distributions of Pseudo-nitzschia and N. navis-varingica have been
observed recently [44]. Several locations, including the Arctic, Angola, Singapore, Ukraine,
and Pakistan, have recorded the presence of Pseudo-nitzschia for the first time, while N.
navis-varingica has expanded to Malaysia, Australia, Indonesia, and the Philippines.

2.4. Neurotoxic Shellfish Poisoning

NSP is caused by the consumption of shellfish contaminated with brevetoxins (PbTx).
PbTx are a set of cyclic polyether neurotoxins primarily produced by dinoflagellate Karenia
brevis [62]. Besides K. brevis, recent research indicated PbTx production by raphidophyte
Chattonella cf. verruculosa [63]. PbTx-1 and PbTx-2 are regarded as the parent molecules for
other derivatives based on their different structural backbones. The toxicity of all identified
natural derivatives is lower than that of the parent molecules [64]. PbTx bind specifically to
receptor site five of the voltage-gated sodium channels in the nerves and muscles, with a
preference for those located in the nerves [65,66]. The influx of Na+ ions into the cells is
induced upon the activation of the sodium channels. Prolonged membrane depolarization
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persistently initiates the generation of action potentials in nerves and muscles, causing
symptoms such as paresthesia, vertigo, and malaise [67]. Blooms of K. brevis occur nearly
annually along the southwestern coast of Florida, which is notoriously known as the
“Florida red tide” [68]. The low incident rate of NSP may be credited to the successful
monitoring program of constantly occurring red tides. Apart from Florida, where regular
red tides take place, a few large outbreaks of NSP have been reported in New Zealand and
North Carolina [69].

2.5. Azaspiracid Shellfish Poisoning

Azaspiracids (AZAs) are polyether phytotoxins produced by some dinoflagellate
species from the genera Azadinium and Amphidoma and the causative toxin of AZP [70].
AZA was named based on its unique spiro ring assemblies [71]. To date, over 60 AZA
analogues have been identified [72]. They are different in the degrees of methylation
and/or the number of hydroxyl groups and carboxyl groups that they possess. How-
ever, among the numerous analogues, only AZA1, AZA2, and AZA3 levels are monitored
for regulatory purposes [33]. The symptoms of AZP are similar to those of DSP, includ-
ing diarrhea, vomiting, nausea, and stomach cramps [73]. A minimum dosage ranging
from 23 to 86 µg/person of AZA can have observable adverse health effects [74]. Unlike
other phytotoxins, the molecular target(s) of AZAs has not been fully understood. Al-
though the blocking of the hERG (human ether-à-go-go related gene) potassium channel by
AZA1-3 was demonstrated in a recent study, relatively high concentrations of AZAs were
required [75]. Therefore, there may be other molecular targets that have not been identified.
The presence of toxigenic Azadinium species has been reported worldwide, including in the
North Atlantic [76,77], Eastern South Atlantic [78], Mediterranean [79], Western Pacific [80],
Eastern North Pacific [81], and Eastern South Pacific [82]. On the other hand, the occurrence
of toxigenic Amphidoma species was only recorded in the North Atlantic [77,83,84].

3. Ocean Acidification

Ocean acidification (OA) is one of the major aspects of climate change and has in-
deed been significantly influencing the aquatic environment, where toxigenic microalgae
live. Carbon dioxide (CO2) emissions have increased dramatically since the Industrial
Revolution, primarily due to the combustion of fossil fuels. At present, the recorded at-
mospheric CO2 level is 417 ppm [85], which has increased by nearly 50% compared to the
pre-industrial level. The atmospheric CO2 concentrations will continue to rise until the end
of this century unless a very stringent CO2 emissions trajectory is satisfied (Representative
Concentration Pathway 2.6) [86]. A large amount of atmospheric CO2 traps and prevents
heat from escaping the planet, driving global warming and subsequent climate change. As
a natural carbon sink, the ocean has absorbed around 48% of anthropogenic CO2 since the
Industrial Revolution [87]. Given the elevated atmospheric CO2 levels, more CO2 has dis-
solved in the ocean. The dissolution of atmospheric CO2 produces carbonic acid (H2CO3),
which dissociates to form bicarbonate ions (HCO3

−) and hydrogen ions (H+). HCO3
−

further dissociates into carbonate ions (CO3
2−) and H+. The rise in the concentration of H+

in turn has acidified the ocean, resulting in OA. OA has altered the carbonate chemistry
of the aquatic system. Excess H+ released from the dissociation of dissolved CO2 creates
an imbalance in the carbonate equilibrium. The equilibrium is attained by the natural
buffering capacity of the ocean. The free CO3

2− in the ocean binds with the excess H+ to
produce more HCO3−. As a result, the dissolved CO2 and HCO3− concentrations increase
while the CO3

2− levels decrease under OA. Since the decrease in CO3
2− levels leads to

a lower saturation state of CaCO3, OA is particularly detrimental to marine-calcifying
organisms such as molluscs, coccolithophores, and corals [88].

OA (increased pCO2/decreased pH) alters the carbon chemistry of the aquatic en-
vironment and acidifies the water. Microalgae have shown great adaptability towards
different abiotic stress factors [89,90]. Therefore, it is believed that microalgae will respond
and acclimate to OA by regulating their metabolic activities, which may in turn affect
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their toxicity. However, the effects of OA on microalgal toxicity and the underlying mech-
anisms have not been well characterized. Apart from leading to shellfish poisoning in
humans, several studies have indicated the bioaccumulation of algal toxins in predators
of microalgae and the biomagnification of algal toxins through food webs, which cause
disease or even death among marine organisms [91–95]. A recent study suggested that the
bioavailability of STX would increase under global warming and ocean acidification [96].
Although the bioavailability of STX and other phycotoxins in high CO2 conditions has not
been fully examined, the possibility that more toxins can be accumulated along the food
chain and harm the health of marine organisms and humans should not be neglected [96].
Predicting the toxicity of microalgae under OA is therefore important to evaluate the public
health concerns and ecological impacts of intensified HABs in future high atmospheric
CO2 scenarios, which will provide insights for policymakers to improve the monitoring
programs for HABs. Considering the above, this paper reviewed the effects of OA on the
toxicity of microalgae, and the underlying mechanisms proposed.

3.1. Effects of OA on the Toxicity of Microalgae

No studies that investigated the effects of OA on the toxicity changes in microalgae
that produce okadaic acid and azaspiracids could be found in the literature. Therefore, the
scope of the review was limited to microalgae that synthesize STXs, DA, and PbTx. The
experimental setups and significant findings of the reviewed studies are summarized in
Table 1.

Table 1. Summary of reviewed studies on the effects of OA on toxigenic microalgae.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

STXs-Producing Microalgae

Alexandrium
fundyense (NBP8)

isolated from
Northport Bay

Laboratory culture
CO2 gas bubbling

Experiment No. 1
pH: 8.085 ± 0.009

AT:
1824 ± 87 µmol L−1

Calculated pCO2:
41 ± 2 Pa

DIC:
1600 ± 80 µmol L−1

Length of experiment:
15 days

Experiment No. 1
pH: 7.629 ± 0.031

AT:
1678 ± 123 µmol L−1

Calculated pCO2:
122 ± 6 Pa

DIC:
1606 ± 116 µmol L−1

Length of experiment:
15 days

Experiment No. 1
Growth rate
increased *

[97]

Experiment No. 2
pH: 8.068 ± 0.013

AT:
1858 ± 104 µmol L−1

Calculated pCO2:
44 ± 4 Pa

DIC:
1639 ± 100 µmol L−1

Length of experiment:
27 days

Experiment No. 2
pH: 7.741 ± 0.007

AT:
1975 ± 128 µmol L−1

Calculated pCO2:
110 ± 7 Pa

DIC:
1868 ± 125 µmol L−1

Length of experiment:
27 days

Experiment No. 2
Total cellular

toxicity increased *
GTX1/4

increased *

[97]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

Experiment No. 3
pH: 8.075 ± 0.057

AT:
1994 ± 355 µmol L−1

Calculated pCO2:
46 ± 2 Pa

DIC:
1790 ± 329 µmol L−1

Length of experiment:
15 days

Experiment No. 3
pH: 7.545 ± 0.034

AT:
1966 ± 231 µmol L−1

Calculated pCO2:
177 ± 9 Pa

DIC:
1941 ± 243 µmol L−1

Length of experiment:
15 days

Experiment No. 3
Growth rate
increased *

[97]

Experiment No. 4
pH: 8.096 ± 0.032

AT:
2122 ± 123 µmol L−1

Calculated pCO2:
47 ± 2 Pa

DIC:
1885 ± 102 µmol L−1

Length of experiment:
12 days

Experiment No. 4
pH: 7.592 ± 0.022

AT:
1977 ± 240 µmol L−1

Calculated pCO2:
162 ± 12 Pa

DIC:
1977 ± 240 µmol L−1

Length of experiment:
12 days

Experiment No. 4
Growth rate
increased *

Total cellular
toxicity increased *

GTX1/4
increased *

[97]

Alexandrium
fundyense

(CCMP2304)
isolated from the

Bay of Fundy

Experiment No. 5
pH: 8.118 ± 0.008

AT:
2167 ± 53 µmol L−1

Calculated pCO2:
45 ± 1 Pa

DIC:
1912 ± 44 µmol L−1

Length of experiment:
24 days

Experiment No. 5
pH: 7.873 ± 0.033

AT:
2186 ± 91 µmol L−1

Calculated pCO2:
87 ± 4 Pa

DIC:
2033 ± 71 µmol L−1

Length of experiment:
24 days

Experiment No. 5
Growth rate:
increased *

[97]

Experiment No. 6
pH: 8.041 ± 0.012

AT:
1729 ± 56 µmol L−1

Calculated pCO2:
44 ± 1 Pa

DIC:
1539 ± 49 µmol L−1

Length of experiment:
12 days

Experiment No. 6
pH: 7.547 ± 0.028

AT:
1889 ± 90 µmol L−1

Calculated pCO2:
169 ± 4 Pa

DIC:
1845 ± 84 µmol L−1

Length of experiment:
12 days

Experiment No. 6
Growth rate
increased *

[97]

Experiment No. 7
pH: 8.086 ± 0.048

AT:
2121 ± 213 µmol L−1

Calculated pCO2:
48 ± 3 Pa

DIC:
1888 ± 183 µmol L−1

Length of experiment:
12 days

Experiment No. 7
pH: 7.556 ± 0.038

AT:
2184 ± 167 µmol L−1

Calculated pCO2:
191 ± 4 Pa

DIC:
2138 ± 157 µmol L−1

Length of experiment:
12 days

Experiment No. 7
Growth rate
increased *

[97]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

Alexandrium
minutum (AM-1)
isolated from the
South China Sea

Laboratory culture
CO2 gas bubbling

400 ppm CO2
treatment

Length of experiment:
37 days

800 ppm CO2
treatment

Length of experiment:
37 days

400 vs. 800 ppm
CO2

Total cellular
toxicity

increased **

[98]

400 ppm CO2
treatment

Length of experiment:
37 days

1200 ppm CO2
treatment

Length of experiment:
37 days

400 vs. 1200 ppm
CO2

Total cellular
toxicity

increased **

[98]

Alexandrium
catenella (A-11c)

isolated from
Jalama Beach

Laboratory culture
CO2 gas bubbling

380 µatm CO2
treatment
pH: 8.169

Calculated pCO2:
285 µatm

DIC: 1957 µmol L−1

Length of experiment:
7 days

750 µatm CO2
treatment
pH: 7.925

Calculated pCO2:
571 µatm

DIC: 2103 µmol L−1

Length of experiment:
7 days

380 vs. 750 µatm
CO2

Growth rate
increased ***
Total cellular

toxicity
increased ***

[99]

Alexandrium
ostenfeldii (AON13)

isolated from
Ouwerkerkse

Kreek

Laboratory culture
CO2 gas bubbling

prior to cell
inoculation c

400 µatm CO2
treatment

pH: 8.23 ± 0.02
Calculated pCO2:

213 ± 11 µatm
DIC:

1188 ± 41 µmol L−1

Length of experiment:
14 days

1000 µatm CO2
treatment

pH: 7.82 ± 0.01
Calculated pCO2:

527 ± 30 µatm
DIC:

1168 ± 56 µmol L−1

Length of experiment:
14 days

400 vs. 1000 µatm
CO2

STX increased *
[100]

Alexandrium
ostenfeldii (AON15)

isolated from
Ouwerkerkse

Kreek

400 µatm CO2
treatment

pH: 8.07 ± 0.07
Calculated pCO2:

357 ± 36 µatm
DIC:

1120 ± 21 µmol L−1

Length of experiment:
14 days

1000 µatm CO2
treatment

pH: 7.75 ± 0.08
Calculated pCO2:

676 ± 55 µatm
DIC:

1117 ± 10 µmol L−1

Length of experiment:
14 days

400 vs. 1000 µatm
CO2

Growth rate
increased **

Total cellular
toxicity

decreased ***
GTX increased *

[100]

Alexandrium
ostenfeldii

(AON5.26) isolated
from Ouwerkerkse

Kreek

400 µatm CO2
treatment

pH: 8.17 ± 0.05
Calculated pCO2:

286 ± 13 µatm
DIC:

1085 ± 15 µmol L−1

Length of experiment:
14 days

1000 µatm CO2
treatment

pH: 7.86 ± 0.03
Calculated pCO2:

479 ± 18 µatm
DIC:

1126 ± 2 µmol L−1

Length of experiment:
14 days

Growth rate
increased ***

GTX increased ***
STX and C1/2
decreased ***

[100]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

Alexandrium
tamarense (Alex5)

Laboratory culture
CO2 gas bubbling

380 µatm CO2
treatment

pH: 8.27 ± 0.07
AT: 2439 ± 1 µmol L−1

Calculated pCO2:
315 ± 57 µatm

DIC:
2117 ± 41 µmol L−1

Length of experiment:
8 days

800 µatm CO2
treatment

pH: 7.97 ± 0.10
AT: 2434 ± 2 µmol L−1

Calculated pCO2:
706 ± 154 µatm

DIC:
2245 ± 37 µmol L−1

Length of experiment:
8 days

380 vs. 800 µatm
CO2

Total cellular
toxicity decreased *
Non-sulfated STX

analogues
decreased *

Di-sulfated STX
analogues
increased *

[101]

380 µatm CO2
treatment

pH: 8.27 ± 0.07
AT: 2439 ± 1 µmol L−1

Calculated pCO2:
315 ± 57 µatm

DIC:
2117 ± 41 µmol L−1

Length of experiment:
8 days

1200 µatm CO2
treatment

pH: 7.83 ± 0.12
AT: 2418 ± 1 µmol L−1

Calculated pCO2:
995 ± 248 µatm

DIC:
2283 ± 34 µmol L−1

Length of experiment:
8 days

380 vs. 1200 µatm
CO2

Total cellular
toxicity decreased *
Non-sulfated STX

analogues
decreased *

Mono-sulfated STX
analogues
increased *

Di-sulfated STX
analogues
increased *

[101]

Alexandrium
tamarense (Alex2)

380 µatm CO2
treatment

pH: 8.27 ± 0.02
AT: 2384 ± 4 µmol L−1

Calculated pCO2:
305 ± 20 µatm

DIC:
2111 ± 14 µmol L−1

Length of experiment:
8 days

800 µatm CO2
treatment

pH: 7.90 ± 0.03
AT: 2390 ± 6 µmol L−1

Calculated pCO2:
810 ± 60 µatm

DIC:
2229 ± 33 µmol L−1

Length of experiment:
8 days

380 vs. 800 µatm
CO2

No significant
changes in growth
rate, total cellular
toxicity, and toxin

profile

[101]

380 µatm CO2
treatment

pH: 8.27 ± 0.02
AT: 2384 ± 4 µmol L−1

Calculated pCO2:
305 ± 20 µatm

DIC:
2111 ± 14 µmol L−1

Length of experiment:
8 days

1200 µatm CO2
treatment

pH: 7.75 ± 0.04
AT: 2386 ± 9 µmol L−1

Calculated pCO2:
1167 ± 112 µatm

DIC:
2279 ± 14 µmol L−1

Length of experiment:
8 days

380 vs. 1200 µatm
CO2

No significant
changes in growth
rate, total cellular
toxicity, and toxin

profile

[101]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

DA-producing microalgae

Pseudo-nitzschia
multiseries

(CCMP2708)
isolated from

Eastern Canada

Laboratory culture
CO2 gas bubbling

22 Pa CO2 treatment
pH: 8.40 ± 0.03

Calculated pCO2:
22 ± 2 Pa

DIC:
1970 ± 4 µmol L−1

Length of experiment:
around 4 to 6 weeks

41 Pa CO2 treatment
pH: 8.19 ± 0.02

Calculated pCO2:
40 ± 3 Pa

DIC:
2066 ± 11 µmol L−1

Length of experiment:
around 4 to 6 weeks

22 vs. 41 Pa CO2
Growth rate
increased ***

Carbon fixation
rate increased **

[102]

22 Pa CO2 treatment
pH: 8.40 ± 0.03

Calculated pCO2:
22 ± 2 Pa

DIC:
1970 ± 4 µmol L−1

Length of experiment:
around 4 to 6 weeks

74 Pa CO2 treatment
pH: 7.96 ± 0.01

Calculated pCO2:
73 ± 1 Pa

DIC:
2177 ± 6 µmol L−1

Length of experiment:
around 4 to 6 weeks

22 vs. 74 Pa CO2
Growth rate
increased ***

Carbon fixation
rate increased ***

Cellular DA
content

increased ***

[102]

41 Pa CO2 treatment
pH: 8.19 ± 0.02

Calculated pCO2:
40 ± 3 Pa

DIC:
2066 ± 11 µmol L−1

Length of experiment:
around 4 to 6 weeks

74 Pa CO2 treatment
pH: 7.96 ± 0.01

Calculated pCO2:
73 ± 1 Pa

DIC:
2177 ± 6 µmol L−1

Length of experiment:
around 4 to 6 weeks

41 vs. 74 Pa CO2
Growth rate
increased ***
Cellular DA

content
increased **

[102]

Pseudo-nitzschia
fraudulenta isolated

from Ventura
County

Laboratory culture
CO2 gas bubbling

200 ppm CO2
treatment
pH: 8.43

Calculated pCO2:
198 ppm

DIC: 1965 µmol L−1

360 ppm CO2
treatment
pH: 8.23

Calculated pCO2:
357 ppm

DIC: 2107 µmol L−1

200 vs. 360 ppm
CO2

Growth rate
increased ***

Carbon fixation
rate increased

[103]

200 ppm CO2
treatment
pH: 8.43

Calculated pCO2:
198 ppm

DIC: 1965 µmol L−1

765 ppm CO2
treatment
pH: 7.95

Calculated pCO2:
764 ppm

DIC: 2249 µmol L−1

200 vs. 765 ppm
CO2

Growth rate
increased ***

Carbon fixation
rate increased

[103]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

Pseudo-nitzschia
australis (HAB 200)

isolated from
northern Monterey

Bay

Laboratory culture
CO2 gas bubbling

pH 8.1 treatment
Length of experiment:

7 days
Exponential growth

phase
pH: 8.14 ± 0.01

AT: 2232 ± 9 µmol L−1

Calculated pCO2:
406 ± 8 µatm

DIC:
2032 ± 11 µmol L−1

Stationary growth
phase

pH: 8.14 ± 0.01
AT:

2239 ± 25 µmol L−1

Calculated pCO2:
410 ± 2 µatm

DIC:
2052 ± 21 µmol L−1

pH 8.0 treatment
Length of experiment:

8 days
Exponential growth

phase
pH: 8.03 ± 0.01

AT:
2248 ± 25 µmol L−1

Calculated pCO2:
550 ± 8 µatm

DIC:
2093 ± 21 µmol L−1

Stationary growth
phase

pH: 8.04 ± 0.01
AT:

2254 ± 14 µmol L−1

Calculated pCO2:
537 ± 19 µatm

DIC:
2107 ± 17 µmol L−1

pH 8.1 vs. pH 8.0
No significant

response
[104]

pH 8.1 treatment
Length of experiment:

7 days
Exponential growth

phase
pH: 8.14 ± 0.01

AT: 2232 ± 9 µmol L−1

Calculated pCO2:
406 ± 8 µatm

DIC:
2032 ± 11 µmol L−1

Stationary growth
phase

pH: 8.14 ± 0.01
AT:

2239 ± 25 µmol L−1

Calculated pCO2:
410 ± 2 µatm

DIC:
2052 ± 21 µmol L−1

pH 7.9 treatment
Length of experiment:

8 days
Exponential growth

phase
pH: 7.93 ± 0.02

AT:
2255 ± 20 µmol L−1

Calculated pCO2:
719 ± 34 µatm

DIC: 2136 ± 25 µmol L−1

Stationary growth
phase

pH: 7.93 ± 0.02
AT:

2279 ± 14 µmol L−1

Calculated pCO2:
732 ± 28 µatm

DIC:
2175 ± 13 µmol L−1

pH 8.1 vs. pH 7.9
Maximum carbon

fixation rate
increased **

[104]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

pH 8.0 treatment
Length of experiment:

8 days
Exponential growth

phase
pH: 8.03 ± 0.01

AT:
2248 ± 25 µmol L−1

Calculated pCO2:
550 ± 8 µatm

DIC:
2093 ± 21 µmol L−1

Stationary growth
phase

pH: 8.04 ± 0.01
AT:

2254 ± 14 µmol L−1

Calculated pCO2:
537 ± 19 µatm

DIC:
2107 ± 17 µmol L−1

pH 7.9 treatment
Length of experiment:

8 days
Exponential growth

phase
pH: 7.93 ± 0.02

AT:
2255 ± 20 µmol L−1

Calculated pCO2:
719 ± 34 µatm

DIC:
2136 ± 25 µmol L−1

Stationary growth
phase

pH: 7.93 ± 0.02
AT:

2279 ± 14 µmol L−1

Calculated pCO2:
732 ± 28 µatm

DIC:
2175 ± 13 µmol L−1

pH 8.0 vs. pH 7.9
Maximum carbon

fixation rate
increased *

[104]

pH 8.1 treatment
Length of experiment:

7 days
Exponential growth

phase
pH: 8.14 ± 0.01

AT: 2232 ± 9 µmol L−1

Calculated pCO2: 406
± 8 µatm

DIC: 2032 ± 11 µmol
L−1

Stationary growth
phase

pH: 8.14 ± 0.01
AT: 2239 ± 25 µmol

L−1

Calculated pCO2: 410
± 2 µatm

DIC: 2052 ± 21 µmol
L−1

pH 7.8 treatment
Length of experiment:

9 days
Exponential growth

phase
pH: 7.81 ± 0.03

AT: 2292 ± 3 µmol L−1

Calculated pCO2: 980
± 64 µatm

DIC: 2213 ± 11 µmol
L−1

Stationary growth
phase

pH: 7.84 ± 0.01
AT: 2348 ± 17 µmol

L−1

Calculated pCO2: 929
± 12 µatm

DIC: 2271 ± 16 µmol
L−1

pH 8.1 vs. pH 7.8
Growth rate

decreased ****
Maximum carbon

fixation rate
increased *

[104]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

pH 8.0 treatment
Length of experiment:

8 days
Exponential growth

phase
pH: 8.03 ± 0.01

AT:
2248 ± 25 µmol L−1

Calculated pCO2:
550 ± 8 µatm

DIC:
2093 ± 21 µmol L−1

Stationary growth
phase

pH: 8.04 ± 0.01
AT:

2254 ± 14 µmol L−1

Calculated pCO2:
537 ± 19 µatm

DIC:
2107 ± 17 µmol L−1

pH 7.8 treatment
Length of experiment:

9 days
Exponential growth

phase
pH: 7.81 ± 0.03

AT: 2292 ± 3 µmol L−1

Calculated pCO2:
980 ± 64 µatm

DIC:
2213 ± 11 µmol L−1

Stationary growth
phase

pH: 7.84 ± 0.01
AT:

2348 ± 17 µmol L−1

Calculated pCO2:
929 ± 12 µatm

DIC:
2271 ± 16 µmol L−1

pH 8.0 vs. pH 7.8
Growth rate

decreased ****
Maximum carbon

fixation rate
increased *

[104]

pH 7.9 treatment
Length of experiment:

8 days
Exponential growth

phase
pH: 7.93 ± 0.02

AT:
2255 ± 20 µmol L−1

Calculated pCO2:
719 ± 34 µatm

DIC:
2136 ± 25 µmol L−1

Stationary growth
phase

pH: 7.93 ± 0.02
AT:

2279 ± 14 µmol L−1

Calculated pCO2:
732 ± 28 µatm

DIC:
2175 ± 13 µmol L−1

pH 7.8 treatment
Length of experiment:

9 days
Exponential growth

phase
pH: 7.81 ± 0.03

AT: 2292 ± 3 µmol L−1

Calculated pCO2:
980 ± 64 µatm

DIC:
2213 ± 11 µmol L−1

Stationary growth
phase

pH: 7.84 ± 0.01
AT:

2348 ± 17 µmol L−1

Calculated pCO2:
929 ± 12 µatm

DIC:
2271 ± 16 µmol L−1

pH 7.9 vs. pH 7.8
Growth rate

Decreased ****
[104]

Pseudo-nitzschia
spp. in Gullmar

Fjord

Mesocosm,
addition of

CO2-saturated
seawater

380 µatm CO2
treatment

Length of experiment:
111 days

1000 µatm CO2
treatment

Calculated pCO2:
760 ± 175 µatm

Length of experiment:
111 days

380 vs. 1000 µatm
CO2

Cellular DA
content increased *

[105]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

PbTx-producing microalgae

Karenia brevis
(CCFWC-126)

isolated from the
Gulf of Mexico

Laboratory culture
CO2 gas bubbling

150 µatm CO2
treatment

Before inoculation
pH: 8.51 ± 0.04

AT: 2320 ± 3 µmol L−1

Calculated pCO2:
118.9 ± 0.1 µatm

DIC:
1679 ± 2 µmol L−1

Mid exponential phase
pH: 8.63 ± 0.05

AT:
2428 ± 64 µmol L−1

Calculated pCO2:
102.9 ± 16.8 µatm

DIC:
1714 ± 4 µmol L−1

400 µatm CO2
treatment

Before inoculation
pH: 8.12 ± 0.02

AT: 2348 ± 18 µmol
L−1

Calculated pCO2:
446.6 ± 31.0 µatm

DIC: 2008 µmol L−1

Mid exponential phase
pH: 8.22 ± 0.03

AT:
2376 ± 14 µmol L−1

Calculated pCO2:
355.6 ± 30.4 µatm

DIC:
1982 ± 26 µmol L−1

150 vs. 400 µatm
CO2

No significant
response

[106]

150 µatm CO2
treatment

Before inoculation
pH: 8.51 ± 0.04

AT: 2320 ± 3 µmol L−1

Calculated pCO2:
118.9 ± 0.1 µatm

DIC:
1679 ± 2 µmol L−1

Mid exponential phase
pH: 8.63 ± 0.05

AT:
2428 ± 64 µmol L−1

Calculated pCO2:
102.9 ± 16.8 µatm

DIC:
1714 ± 4 µmol L−1

780 µatm CO2
treatment

Before inoculation
pH: 7.89 ± 0.01

AT: 2309 ± 1 µmol L−1

Calculated pCO2:
812.7 ± 0.5 µatm

DIC:
2089 ± 1 µmol L−1

Mid exponential phase
pH: 7.95 ± 0.04

AT:
2342 ± 19 µmol L−1

Calculated pCO2:
753.4 ± 78.8 µatm

DIC:
2103 ± 4 µmol L−1

150 vs. 780 µatm
CO2

No significant
response

[106]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

400 µatm CO2
treatment

Before inoculation
pH: 8.12 ± 0.02

AT:
2348 ± 18 µmol L−1

Calculated pCO2:
446.6 ± 31.0 µatm

DIC: 2008 µmol L−1

Mid exponential phase
pH: 8.22 ± 0.03

AT:
2376 ± 14 µmol L−1

Calculated pCO2:
355.6 ± 30.4 µatm

DIC:
1982 ± 26 µmol L−1

780 µatm CO2
treatment

Before inoculation
pH: 7.89 ± 0.01

AT: 2309 ± 1 µmol L−1

Calculated pCO2:
812.7 ± 0.5 µatm

DIC:
2089 ± 1 µmol L−1

Mid exponential phase
pH: 7.95 ± 0.04

AT:
2342 ± 19 µmol L−1

Calculated pCO2:
753.4 ± 78.8 µatm

DIC:
2103 ± 4 µmol L−1

400 vs. 780 µatm
CO2

No significant
response

[106]

Karenia brevis
(Wilson) isolated
from John’s Pass

Laboratory culture
CO2 gas bubbling

prior to cell
inoculation2

250 ppm CO2
treatment

Length of experiment:
9 days

Before inoculation
Calculated pCO2:

241.2 µatm
DIC:

1727.3 ± 33 µmol L−1

At the beginning of the
experiment

AT:
2082.8 ± 34.3 µmol L−1

Calculated pCO2:
134.2 µatm

At the end of the
experiment

AT:
2198.6 ± 62.0 µmol L−1

Calculated pCO2:
80.5 µatm

DIC:
1562.6 ± 14.5 µmol L−1

350 ppm CO2
treatment

Length of experiment:
9 days

Before inoculation
Calculated pCO2:

318.4 µatm
DIC:

1733.9 ± 163.7 µmol L−1

At the beginning of the
experiment

AT:
2021.3 ± 33.6 µmol L−1

Calculated pCO2:
115.6 µatm

At the end of the
experiment

AT:
2250.5 ± 0.6 µmol L−1

Calculated pCO2:
55.1 µatm

DIC:
1509.9 ± 259.7 µmol L−1

No significant
response [107]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

250 ppm CO2
treatment

Length of experiment:
9 days

Before inoculation
Calculated pCO2:

241.2 µatm
DIC:

1727.3 ± 33 µmol L−1

At the beginning of the
experiment

AT: 2082.8 ± 34.3 µmol L−1

Calculated pCO2:
134.2 µatm

At the end of the
experiment

AT:
2198.6 ± 62.0 µmol L−1

Calculated
pCO2: 80.5 µatm

DIC:
1562.6 ± 14.5 µmol L−1

1000 ppm CO2
treatment

Length of experiment:
9 days

Before inoculation
Calculated pCO2:

1131.9 µatm
DIC:

1986 ± 17.2 µmol L−1

At the beginning of the
experiment

AT:
2076.6 ± 6 µmol L−1

Calculated pCO2:
438.9 µatm

At the end of the
experiment

AT:
2224.7 ± 10.7 µmol L−1

Calculated pCO2:
166.1 µatm

DIC:
1750.8 ± 21.1 µmol L−1

250 vs. 1000 ppm
CO2

Growth rate
increased ***

[107]

350 ppm CO2
treatment

Length of experiment:
9 days

Before inoculation
Calculated pCO2:

318.4 µatm
DIC:

1733.9 ± 163.7 µmol L−1

At the beginning of the
experiment

AT:
2021.3 ± 33.6 µmol L−1

Calculated pCO2:
115.6 µatm

At the end of the
experiment

AT:
2250.5 ± 0.6 µmol L−1

Calculated pCO2:
55.1 µatm

DIC:
1509.9 ± 259.7 µmol L−1

1000 ppm CO2
treatment

Length of experiment:
9 days

Before inoculation
Calculated pCO2:

1131.9 µatm
DIC:

1986 ± 17.2 µmol L−1

At the beginning of the
experiment

AT:
2076.6 ± 6 µmol L−1

Calculated pCO2:
438.9 µatm

At the end of the
experiment

AT:
2224.7 ± 10.7 µmol L−1

Calculated pCO2:
166.1 µatm

DIC:
1750.8 ± 21.1 µmol L−1

350 vs. 1000 ppm
CO2

Growth rate
increased ***

[107]
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Table 1. Cont.

Algal Species
(Strains)

OA Modeling
Method

Experimental Parameters a

Significant
Outcomes b Reference

Control High pCO2
Treatment

Karenia brevis (SP1)
isolated from

South Padre Island

300 ppm CO2
treatment

Length of experiment:
9 days

Before inoculation
Calculated pCO2:
299 ± 157.8 µatm

At the beginning of the
experiment

Calculated pCO2:
211.8 ± 32 µatm
At the end of the

experiment
Calculated

pCO2: 99 ± 32.7 µatm

1000 ppm CO2
treatment

Length of experiment:
9 days

Before inoculation
Calculated pCO2:
1084 ± 14.1 µatm

At the beginning of the
experiment

Calculated pCO2:
398.6 ± 3.4 µatm
At the end of the

experiment
Calculated pCO2:
219 ± 11.1 µatm

300 vs. 1000 ppm
CO2

Growth rate
increased

[107]

a AT: total alkalinity, DIC: dissolved inorganic carbon. Length of experiment does not include pre-acclimation
period of culture. b Significant outcomes refer to the significant differences in the growth rates, carbon fixation
rates, and/or the toxicity observed between the corresponding control and high CO2 treatment. * = p ≤ 0.05,
** = p ≤ 0.01, *** = p ≤ 0.001,**** = p ≤ 0.0001. c Seawater was manipulated once by CO2 gas bubbling before cell
inoculation.

3.1.1. STXs-Producing Microalgae

Dinoflagellates from the genus Alexandrium are the most studied STX producers.
However, there is not yet any solid conclusion drawn for the toxicity change in Alexandrium
at elevated pCO2. Increases in cellular toxin levels were detected in A. catenella, A. minutum,
and A. fundyense after high CO2 treatment [97–99]. It is believed that elevated pCO2
will permit microalgae to perform photosynthesis when more substrates are available for
their unsaturated carbon-fixing enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase
(Rubisco) [108]. Dinoflagellates may be particularly sensitive to elevated pCO2 as they
possess type II Rubisco, which has a higher affinity with O2, a competitive inhibitor of
CO2 [109]. Since carbon is essential for the synthesis of biomolecules, including phycotoxins,
increased production of fixed carbon at elevated pCO2 may thus contribute to the higher
toxicity of microalgae [99]. However, the carbon fixation rates of A. catenella, A. minutum,
and A. fundyense after high CO2 treatment were not measured to support this hypothesis.

Another plausible explanation for the enhanced production of STXs is the increased
availability of STX precursors [98]. To initiate the synthesis of STX, arginine (Arg), methio-
nine (Met), and acetate are required [110]. In the study performed by Lian, Li, He, Chen,
and Yu [98], the concentrations of Arg and Met were quantified in A. minutum at elevated
pCO2. It was found that the content of Arg and Met increased at the beginning of the
experiment and then decreased gradually. The increase in the Arg level was related to the
enhanced activity of argininosuccinate synthase, an enzyme responsible for a rate-limiting
step in Arg synthesis. However, the mechanisms behind the rise in the Met level remained
undetermined. Since the STX content increased after the decline in Arg and Met levels
with a slight delay, it was suggested that elevated pCO2 had indirectly promoted STX
production by increasing Arg and Met supplies.

On the other hand, significant decreases in STX content were detected in both A.
tamarense and A. ostenfeldii at elevated pCO2, resulting in lower toxicity [100,101]. Van de
Waal, Eberlein, John, Wohlrab, and Rost [101] isolated the RNA of A. tamarense cultured
at different pCO2 (180, 380, 800, 1200 ppm) to perform microarray-based gene expression
analysis. When comparing the 800 ppm group to the 380 ppm group (control), 1238
differentially expressed genes (DEGs) were found. Genes associated with amino acid
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transport and metabolism were downregulated, implying that fewer Arg and Met molecules
were synthesized and available for STX biosynthesis at elevated pCO2.

The differences in the toxicity of Alexandrium species may be caused by genetic vari-
ations between species. The gene expression patterns of the toxic A. fundyense and A.
tamarense strains revealed by Taroncher-Oldenburg and Anderson [111] indicated the high
interspecific variations between them. In parallel with this previous finding, A. fundyense
and A. tamarense responded differently under OA. While A. fundyense promoted STX pro-
duction at elevated pCO2 [97], A. tamarense inhibited STX production by reducing the
synthesis of STX precursors [101]. The Alexandrium species are likely to regulate their
metabolism differently under OA due to the interspecific variations in genetic expression,
thus contributing to the toxicity differences.

Regarding the STX composition of Alexandrium, increased GTX1/4 is a common
change observed in A. catenella and A. tamarense, although the toxin profiles of Alexandrium
are highly varied [99,101,112]. According to the gene expression profile of A. tamarense,
sulfur metabolism was differentially regulated under high CO2 treatment [101]. The
significant upregulation of a putative sxtN homologue encoding a sulfotransferase involved
in synthesizing sulfated STXs was found [113–116]. In contrast, genes encoding sulfatases
that are responsible for the hydrolysis of sulfate esters were downregulated. Together, they
might promote the transformation of non-sulfated STXs to sulfated STXs while inhibiting
the transformation of sulfated STXs to non-sulfated STXs. Moreover, the downregulation of
genes encoding sulfite reductase was reported. Inhibition of assimilated sulfur into amino
acids might result in more sulfur being allocated for synthesizing sulfated STXs [117,118].
In parallel with these, lower non-sulfated STX content but higher sulfated GTX1/4 and
C1/2 content of A. tamarense at elevated pCO2 were observed. Nevertheless, increases in
both non-sulfated and sulfated STX levels were exhibited in A. catenella after high CO2
treatment [99], suggesting that the toxin composition could be altered by different metabolic
pathways besides sulfur metabolism.

3.1.2. DA-Producing Microalgae

The diatom Pseudo-nitzschia has been extensively studied compared to other DA
producers. Generally, both laboratory and mesocosm studies revealed increased cellular
DA content of Pseudo-nitzschia at elevated pCO2 [102–105]. In line with the assumption that
excess fixed carbon may be shunted for toxin biosynthesis in microalgae under OA [99],
an increased growth rate, carbon fixation rate, and cellular DA content were reported in
P. fraudulenta at elevated pCO2 [103]. Nonetheless, there were no consistent findings of P.
australis [104]. The cellular DA content of P. australis was largely unchanged despite the
increased carbon fixation rate at elevated pCO2.

For DA-producing Pseudo-nitzchia, environmental pH may also play a role in toxin
biosynthesis by affecting cellular enzymatic activities, metal speciation, and the compo-
sition of symbiotic bacteria [119]. The intracellular pH of diatoms may be modified or
maintained by regulating the metabolism under acidification [120]. Although research
on the intracellular pH change of Pseudo-nitzchia at elevated pCO2 is lacking, the effects
of acidification on DA biosynthesis should not be neglected. Lundholm, Hansen, and
Kotaki [119] proposed that there might be an optimal pH for DA biosynthesis; however, it
remains to be determined as an increased cellular DA level was detected under both low
and high pH conditions in Pseudo-nitzschia [102,103,119,121]. The DA biosynthetic pathway
has been modeled recently based on the transcriptome sequencing of P. multiseries [122].
The intracellular pH of Pseudo-nitzschia may be modified under acidification, which pos-
sibly affects the activities of putative DA biosynthetic (Dab) enzymes including terpene
cyclase (dabA), hypothetical protein (dabB), alpha-ketoglutarate-dependent dioxygenase
(dabC), and CYP450 (dabD), causing changes in cellular DA content.

The toxicity and availability of metals are likely to be affected by a decreased pH.
For example, a rise in the concentrations of free copper (Cu2+) and dissolved iron (Fe3+)
was expected at lower pH levels due to increased solubility [123]. While the Cu2+ level is
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generally closely related to its toxicity in phytoplankton [124], Fe3+ is one of the essential
micronutrients for microalgal growth. Although the ecological and physiological roles
of DA have not been well established, it was suggested that DA might be a trace metal
chelator involved in iron acquisition and copper detoxification, given its similar structure
to phytosiderophores [125]. Therefore, increases in Cu2+ and Fe3+ levels under an acidic
environment may stimulate the DA production of Pseudo-nitzschia. However, both the cel-
lular and dissolved DA content of P. multiseries remained largely unchanged after exposure
to different copper levels [126]. On the other hand, a positive relationship between the iron
concentration and total DA content in P. multiseries was indicated [127]. Thus, enhanced DA
production at elevated pCO2 may be mainly contributed by the increased concentration of
Fe3+ rather than Cu2+ under acidification.

Symbiotic bacteria are related to DA biosynthesis in Pseudo-nitzschia. Xenic cul-
tures of P. multiseries exhibited increased DA content when compared with axenic cul-
tures [128]. While free-living bacteria were likely to be incapable of producing DA
autonomously [129,130], it is difficult to obtain a conclusion for epiphytic bacteria due to
the difficulties in isolating them from the diatoms. Research on the bacteria–phytoplankton
interaction mechanisms for DA biosynthesis in Pseudo-nitzschia is lacking. However, it
was proposed that the attached bacteria might exchange metabolites that are used for DA
biosynthesis with Pseudo-nitzschia [130]. Since bacterial abundance and diversity were
shown to be affected by a decreased environmental pH [131], symbiotic bacteria that pro-
mote DA biosynthesis may become more abundant at lower pH levels given the observation
of increased cellular DA content in Pseudo-nitzschia.

3.1.3. PbTx-Producing Microalgae

Dinoflagellate K. brevis is the primary producer of PbTx and its response to OA has
been studied. Elevated pCO2 had no significant effect on the cellular PbTx content of K.
brevis [106,107]. Although K. brevis shifted its inorganic carbon preference from HCO3

− to
CO2 and the half-saturation constant (K1/2) for CO2 increased under high CO2 treatment,
the growth rate, carbon fixation rate, and cellular carbon composition remained largely
unchanged [106]. The relative insensitivity of K. brevis to elevated pCO2 was surprising as
high CO2 availability had been thought to be especially beneficial to dinoflagellates that
possess inefficient type II Rubisco [109].

3.2. OA May Affect the Central Carbon Metabolism of Toxic Microalgae

Based on the above, OA can affect the toxicity of some species of dinoflagellate Alexan-
drium and diatom Pseudo-nitzschia. On the other hand, dinoflagellate K. brevis was shown
to be somewhat more resistant to OA and its toxicity was largely unchanged. The way
in which they regulate central carbon metabolism under OA is likely to contribute to the
changes in toxicity or to help to achieve homeostasis. OA was shown to be beneficial
to P. fraudulenta as it promoted the carbon fixation rate by increasing inorganic carbon
availability [103]. The increased growth rate and cellular toxin content gave rise to the
hypothesis that excess carbon not used for growth might be shunted for toxin biosynthe-
sis [99]. However, the positive relationship between the carbon fixation rate and toxin level
does not always apply, as observed in P. multiseries [104]. All biomolecules are carbon-
based, so the excess fixed carbon is not necessarily transported for toxin production. The
detailed routes of carbon reallocation for toxin biosynthesis have not been elucidated either.
Therefore, investigating the central carbon metabolism of Alexandrium and Pseudo-nitzschia
is important to validate the hypothesis. For K. brevis, the acquisition of inorganic carbon
was shown to be affected by OA despite the nearly unchanged growth rate, carbon fixation
rate, and toxin content [106]. Since central carbon metabolism is highly conserved across
phylogeny [132], comparing the central carbon metabolism of relatively resistant K. brevis to
that of other sensitive microalgae at elevated pCO2 may help to explain the unique response
of K. brevis to OA. A decreased pH was proposed to affect the toxicity of Pseudo-nitzschia,
though the exact mechanisms had not been demonstrated [119]. Increased inorganic carbon
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availability and decreased pH may have combined effects on the regulation of central
carbon metabolism in microalgae, hence affecting toxin biosynthesis. Considering the
above, studying the carbon fluxes in Alexandrium, Pseudo-nitzschia, and K. brevis is essential
to deepen our understanding of the effects of OA on microalgae.

4. Future Research Directions

Manipulating seawater to a range of increased pCO2 levels for OA experiments is not a
straightforward task due to the interdependency of ocean carbon system components [133].
To predict the microalgal responses under OA accurately, the seawater used for microalgae
cultivation should resemble the ocean carbon chemistry in future high CO2 scenarios as
closely as possible. Multiple seawater manipulation methods with distinct advantages
and disadvantages have been applied to OA experiments. Most of the reviewed studies
adopted CO2 gas bubbling to model OA (Table 1). CO2 gas bubbling is an efficient seawater
manipulation method that exactly mimics the carbon chemistry of the ocean in future high
atmospheric CO2 scenarios (increased DIC without altering AT) [134]. In addition, it is easy
to implement and it can maintain the initial conditions in the long term [135]. Thus, CO2 gas
bubbling was adopted by most of the studies to investigate the effects of OA on microalgae.
However, the turbulence induced by bubbling may affect the growth of phytoplankton
to a different extent, especially Alexandrium spp. [136]. Hence, the effects of turbulence
became an uncontrolled confounding variable, which increased the difficulties in generating
reproducible results for the microalgal adaptive response to OA [137]. To minimize the
effects of turbulence, a dialysis bag with a 3 kDa molecular weight cut-off should be
used to enclose the microalgae, so as to reduce the mechanical disturbance introduced
by the aeration [135]. Unfortunately, none of the reviewed studies mentioned the uses
of dialysis bags in their methodology. Besides CO2 gas bubbling, mixing CO2-enriched
water prior to cell inoculation, and the combined addition of HCl and Na2CO3/NaHCO3,
are other seawater manipulation methods that also closely resemble the carbon chemistry
of the ocean in future high atmospheric CO2 conditions [134,135]. These methods can be
effective and reliable alternatives to CO2 gas bubbling without the mechanical disturbance
to microalgae. Thus, they are especially useful for studying the effects of OA on microalgae
with high sensitivity to turbulence. Regardless of the method used, it is noteworthy that
the biological processes of microalgae, such as respiration and photosynthesis, will affect
the carbon chemistry of seawater, especially when the biomass is high [138,139]. Thus, it
would be preferable to monitor at least two carbon chemistry parameters of pH, AT, DIC,
and pCO2, in addition to temperature and salinity, throughout the experiments [140].

With appropriate methods to model OA and monitor the carbon chemistry of the
seawater, metabolomics is a useful technique to investigate the metabolic changes of the
microalgae in response to OA. This will help to reveal the biological regulation of toxin
biosynthesis in microalgae under OA. Metabolomics is the investigation of a complete
set of small molecules with molecular weights lower than 1500 Da, also known as the
metabolome, of biological samples [141]. It has been increasingly applied in algal toxin
research with technological advancements [142,143]. Metabolic flux analysis (MFA) is an
effective metabolomic tool that examines the turnover rate of metabolites by using stable
isotope tracers such as 13C, 2H, and 15N [144]. With the help of nuclear magnetic resonance
(NMR) or mass spectrometry (MS), the isotope labeling patterns of intracellular metabo-
lites are determined, which helps to construct a flux map, including reverse fluxes [145].
Compared to the measurement of metabolite levels, analyzing metabolic fluxes is more
informative as it reveals the production and consumption rates of metabolites, which
illustrate the biochemical events behind the changes in metabolite levels [146]. Based on the
reviewed studies, it is hypothesized that the central carbon metabolism of toxic microalgae
may be regulated differently under OA. The altered central carbon metabolism may then
affect the toxicity of microalgae or relieve the stress brought by OA. Therefore, further
studies on the central carbon metabolism of toxic microalgae are warranted. MFA has
been applied for the investigation of photosynthesis and central carbon metabolism in
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microalgae, C3, and C4 plants recently in 13CO2 pulse labeling, and the distinct carbon flux
pattern of microalgae has been successfully identified [147]. In this light, carbon allocation
in toxic microalgae can be investigated to reveal the metabolic pathways related to toxin
biosynthesis and their regulation under OA by MFA in order to elucidate the underlying
mechanisms of toxicity changes. When conducting MFA to study the effects of OA on
the carbon allocations of microalgae, it is critical to note that CO2 gas bubbling without
the continuous control of the pH would alter the pCO2, DIC, and pH of the seawater at
the same time. As a result, it is difficult to determine which confounding variable causes
the observed effects. Although CO2 gas bubbling successfully mimics the carbon chem-
istry of seawater under OA observed in reality, this method fails to decouple different
variables in the carbon chemistry to study the individual effects of the variables on the
carbon allocations of microalgae. Therefore, other methods or systems that can decouple
different variables of the carbon chemistry of seawater under OA should also be adopted
to investigate in detail the biological mechanisms of the changes in carbon allocation of
microalgae under OA when using the metabolomic approach (Figure 1) [148].
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Knowledge of the relationship between environmental drivers and HABs is of fun-
damental importance to optimize the current mitigation of HABs [149]. Under climate
change, it is undoubted that the HAB dynamic has been altered [1]. However, the physi-
ological responses of toxigenic microalgae in changed climate conditions have not been
well documented. A precise linkage between environmental factors and microalgal toxicity
has not been confirmed due to the diverse responses displayed by microalgae belonging
to the same genus or even the same species, as in the case of the STX-producing dinoflag-
ellate Alexandrium [97–101,150]. MFA of the central carbon metabolism of microalgae can
reveal the metabolic pathways that are responsible for the toxicity changes under OA. The
identification of differentially regulated pathways will facilitate the discovery of universal
biomarkers for potentially more toxic microalgae in future elevated atmospheric CO2 sce-
narios. Given the diverse responses of microalgae to different environmental conditions,
detecting universal biomarkers is a relatively efficient way to identify microalgae with in-
creased toxicity under climate change. Monitoring and forecasting these microalgae can be
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prioritized to help establish early warning systems for the coastal tourism and aquaculture
sectors, to minimize the economic losses caused by HABs [151–153]. Policymakers can
guide the closure of beaches, fish farms, and shellfish-harvesting areas in an appropriate
timeframe according to the early warning system, to protect public health while minimizing
economic losses. Moreover, more research efforts can be implemented to understand the
interactions between the potentially more toxic microalgae and other organisms in the food
web under climate pressure. The findings can be used to assess the ecological risk of HABs
in the future, which will aid policymakers to achieve a balance between environmental
protection and economic development.
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