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Abstract: In the last twenty years, the number of publications presenting generalized pH-sensitive
devices proposed for food freshness monitoring has been steadily growing, but to date, none of
them have succeeded in exiting the laboratory and reaching the supermarket shelf. To reach this
scope, we developed a large-scale applicable pH-sensitive sensor array to monitor perishable foods’
degradation. We ensured freshness monitoring in domestic conditions, using sales packages and
during chilled storage, by simple naked-eye readout and multivariate imaging analysis, and we
fully corroborated the device by (i) projection of unknown independent samples in the PCA model,
(ii) TVB-N quantification and (iii) microbiological assay. The choice of commercial and cheap dye
and polymeric support already employed in food packaging ensures the low-cost and scalability of
the device and the promising results obtained make this device an eligible candidate for large-scale
implementation.

Keywords: pH-sensitive devices; chicken breast degradation; naked-eye reading; chemometrics;
TVB-N; total viable count; industrial scale-up

1. Introduction

Starting from the very beginning, in the last twenty years, the field of sensing de-
vices has experienced a deep transformation with the widespread diffusion of differential
sensing approaches inspired by mammalians’ olfaction and gustation [1,2]. Focusing on
colorimetric sensors, the advent of digital color imaging (DIC) combined with multivariate
data elaboration has further multiplied the opportunities and the possible strategies for the
development of scalable devices for large-scale applications [2–5]. On one hand, DIC allows
for the employment of low-cost and widespread image acquisition devices, such as mobile
phones, cameras or scanners, eliminating the subjective error of naked-eye observation
and summarizing the color information in three-dimensional coordinates [3,4]. On the
other hand, these three-dimensional coordinates represent the eligible input dataset for
multivariate algorithms that allow both qualitative and quantitative analyses, depending
on the type of application [2,5].

The widespread diffusion of such approaches has brought about the rediscovery of
“old” cross-reactive and chemo-responsive dyes whose colors are dependent upon their
chemical environment: among all, the most prominent case is represented by pH indicators
that used to be exploited only in classical acid–base titrations and which now play a
fundamental role in manifold sensing devices both for solutions and vapor analysis [3,6–13].
As a matter of fact, pH is a key target parameter in a broad range of applications from
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the environmental to the industrial to the biomedical, and it is of concern in life sciences,
food and beverage processing, soil examination, and marine and pharmaceutical research
to name a few [7]. Consequently, pH is somehow involved in almost all the chemical
and biochemical reactions, and thus, theoretically speaking, pH-sensitive devices can be
exploited in the monitoring of whatever processes. This is actually a mixed blessing,
because the dividing line between efficient and useful devices and mere chemistry exercises
lies in tuning pH-sensitive sensors’ properties and sensitivity according to the specific need.

In this scenario, pH-sensitive colorimetric sensors have gained ever-growing impor-
tance as promising sensing devices for food degradation monitoring, which represents an
interesting challenge due to environmental and social impact. The huge number of sensing
units and arrays proposed in the last ten years, commonly referred to as “smart labels”
and deeply discussed in various reviews [14–19], may suggest that this research field has
been completely explored and must be abandoned. We definitely do not agree with this
opinion since, to this day, none of these devices actually managed to exit the laboratory
and reach the supermarket shelf, which means succeeding in large-scale production and
implementation [19]. This means that something is still missing in the scientific production,
and we do believe it must be sought in the easy interpretation and actual applicability and
scalability of the proposed devices, both in terms of production and interpretation.

Before moving to our solution to this concerning issue, a brief description of animal-
based protein foods’ spoilage is required. This event is a very complex combination
of processes related to the activity of different bacteria [20–23], in which three different
spoilage steps can be identified: freshness, early spoilage and spoilage [22]. The term
“freshness” obviously refers to the period immediately after animal death and slaughter,
when food is processed and packed and in which bacterial activity is not substantially
affecting food odor, taste and appearance [22,24]. Consequently, during early spoilage,
the consumption of glucose, lactic acid and their derivatives by microorganisms and the
consequent production of EtOH, 3-methyl-1-butanol and free fatty acids, mainly acetic
acid, represent the main ongoing processes [22,24]. Eventually, spoilage occurs when no
more glucose and none of its direct metabolites are left, the catabolism of proteins starts
and consequently amines and thiols are released in the food matrix [22]. Considering
the bacterial by-products’ toxicity, foodstuff is perfectly eatable during the freshness and
early spoilage steps, while, when spoilage begins, meat is no longer suitable for human
consumption [25].

Combining all the hints listed so far, starting from a panel of “old” pH-indicators,
we tuned their sensitivity to develop a prototype of a smart label that (i) ensures the easy
naked-eye distinction between freshness, early spoilage and spoilage for poultry meat sam-
ples under chilled storage, (ii) allows multivariate modelling of spoilage process relying on
sensors’ colour analysis based on RGB triplets, (iii) gives back freshness attribution fully
corroborated by TVB-N measurements and microbiological assays and (iv) represents an el-
igible candidate for large-scale implementation, being composed of low-cost, commercially
available dyes, a polymeric support already employed in food packaging and suitable for
heat-sealing on food-grad plastic films and, last but not least, requiring scalable procedures
for both production and implementation.

2. Materials and Methods

o-Cresol red, methyl red and methylene blue analytical reagents grade, thionyl chloride
solution 1 M in dichloromethane, sodium hydroxide in pellets, nitric acid, hydrochloric
acid, perchloric acid 65%, boric acid powder, ammonia, glacial acetic acid, phosphate buffer,
dimethylacetamide (DMA) and dichloromethane (DCM) were purchased from Merck. Four
different ethylene vinyl alcohol (EVOH) copolymers were provided by Nippon Gohsei
Europe GmbH, with two different ethylene contents and two different melt flow rates. All
the details about the copolymers are listed in Table S1.

Plate count agar (PCA) and Ringer solution for the microbiological analysis were
purchased from Oxoid, Basingstoke, UK. Chicken breast slices were bought in a local
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supermarket (UNES Supermarkets, via Fratelli Cervi, 11 27100 Pavia) on different days
from the supplier’s delivery.

For the microbiological analysis, chicken minced meat was bought in a local super-
market (CONAD Supermarkets, Via Bruno Schreiber 15, 43100 Parma).

2.1. Optodes Preparation: From Synthesis to Miniaturization

A selection of commercial EVOH copolymers, characterized by different ethylene
contents and melt flow rates (MFR), were functionalized with a panel of pH-indicators
belonging to the sulfonphthalein class [26–31]. The commercial EVOH copolymers and
the dye used are listed in Tables S1 and S2. The dye anchoring was achieved following
the patented procedure reported in the literature [29–35]. Dye-EVOH@ were obtained in
blocks of irregular shape that are pressed under heating to obtain thin sensing films. The
pressing procedure was performed using a dual heated plate manual press and the setting
parameters, reported in Table S3, were identified by full factorial design [29]. Miniaturized
circular sensors (0.5 cm in diameter) were cut from Dye-EVOH@ films, which show uniform
coloration, by a hole punch for paper.

2.2. Sensors Thickness Selection

EVOH copolymers characterized by high MFR resulted in films with less homogeneous
thickness, as could be expected. As sensors’ thickness is strongly related to their sensitivity
and sensing rate, a rapid method to verify and keep this parameter under control was
developed. A large number of sensors with various thicknesses were equilibrated at
acid or alkaline, as described above, and, from the sensors’ pictures, RGB triplets were
extrapolated and used as the input dataset for PCA. Then, a few sensors, representative
of the various thicknesses, were selected and tested on real samples to evaluate the most
effective thickness for the final application. The suitable thickness range was thus identified,
and only sensors within this interval were used for vapor analysis.

2.3. Experimental Set-Up for Vapors Analysis

Dye-EVOH@ sensors were tested for the detection of acid–base analytes in vapor
phase, released both by synthetic and real samples, in closed containers of defined volume.
The procedure for volatile analyte detection consists of two steps: first, Dye-EVOH@ sensors
were equilibrated at a specific acid–base form by 1-hour immersion of each sensor in 2 mL
NaOH or HNO3 0.1 M, whether the detection of respectively acidic or alkaline analytes is
required. Then, sensors were rinsed with water and dried on paper. Second, the sensors
were fixed on an adhesive strip, placed forming a sort of bridge taped to closed container
walls so that the sensing units make contact only with the headspace and never with the
samples. To avoid the undesirable reaction of the sensors with the acid–base components
of the adhesive strip, several commercial tapes had been previously tested and 3 M Magic
Tape had been identified as inert [26–29].

As for synthetic samples, ammonia and acetic acid were selected as vapors-generating
solutions, respectively alkaline and acid, due to their volatility; the vapor analysis was
performed at different solution concentrations and storage temperatures to test the sensors’
sensitivity. Next, 50 mL of NH3 and CH3COOH solutions at various concentrations (0.1 M
and 0.01 M) were poured into a plastic box (16.5 cm × 10.5 cm × 6 cm; 2 L), sensors were
located in the box headspace, the container was sealed by food-grade plastic film and
pictures of the sensors were acquired at fixed times, storing the box at 22 or 4 ◦C. Obviously,
sensors were equilibrated at alkaline pH, i.e., violet color (b-CR-EVOH@), to detect acidic
analytes and at acidic pH, i.e., pink color (a-CR-EVOH@), to detect alkaline species. A
picture of this experimental setup is reported in Figure S1a. The same experimental setup
was also used to test the sensors’ colour stability in the absence of acid–base analytes,
substituting vapor-generating solutions with phosphate buffer (pH = 7).

As for real samples, chicken breast slices were used as test protein food to verify the
applicability of the sensors for freshness monitoring. Chicken breast slices of similar weights
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(around 300 g) were purchased at the local supermarket and carried to the laboratory within
10 min. The sensors were located directly inside the sales package (22.5 cm × 16 cm × 2.5
cm; V~0.9 L) which was sealed by food-grade plastic film. To better mimic home conditions,
chicken samples were stored in a domestic fridge at 4 ◦C for 10 days, and pictures of
the sensors were acquired 2 or 3 times per day until complete degradation. In this case,
being interested in jointly detecting acidic and alkaline volatile by-products, a dual-sensor
array was used, made up of one sensor equilibrated at alkaline pH, i.e., the sensor in its
violet fully deprotonated color (b-CR-EVOH@), and one at acidic pH, i.e., the sensor in its
pink fully protonated color (a-CR-EVOH@), to detect alkaline species. A picture of this
experimental setup is reported in Figure S1b.

2.4. Pictures Acquisition and Multivariate Data Elaboration

Pictures of the sensors were taken by a NIKON COOLPIX S6200 portable camera
equipped with a 1/2.3” (6.16 mm × 4.62 mm, crop factor 5.6) 16 mpx CCD sensor. A
portable led lightbox (23 cm × 23 cm × 23 cm), equipped with 20 LEDs (550LM, colour
temperature 5500 K) was used to guarantee the reproducibility of the photos (PULUZ,
Photography Light Box, Shenzhen Puluz Technology Limited, Shenzhen, China). A picture
of the lightbox is shown in Figure S2.

Setting ISO at the lowest possible for the camera (80) and using the lightbox, all the
pictures were acquired at shutter speed 1/60 s and aperture f/3.2. The white balance was
kept constant for all the images by setting a white reference point inside the lightbox. The
pictures (4608 × 3456 pixels) were acquired as a .jpg file using a neutral photo profile
from the camera. GIMP software was used to acquire the RGB triplets from the .jpg files
straight from the camera, manually selecting the region of interest (ROI) by exploiting the
“Intelligent Scissors” tool. [36]

In addition to naked-eye evaluation, RGB triplets were submitted to principal compo-
nent analysis (PCA) to rationalize the colour evolution during the vapor analysis. Since
RGB indexes are intrinsically scaled between 0 and 255, centering was the only pretreatment
exploited. The chemometric elaborations were performed using the open-source software
Chemometric Agile Tool (CAT) [37].

Both in the case of vapor analysis performed using synthetic and real samples, PCA
outputs were firstly evaluated and then the score values were plotted vs. time to better high-
light the kinetic of analytes detection and to jointly analyze the preliminary corroboration
results.

2.5. TVB-N Quantification

TVB-N values were determined by adapting the method reported by the European
Commission Regulation, as widely proposed in the literature [38,39]. The sample to be
analyzed was ground carefully by a grinder; 10 g of the ground sample were weighed in
a suitable container, mixed with 90 mL of 6% perchloric acid solution, homogenized for
two minutes with a blender and then filtered. Steam distillation of 50 mL of the extract
after sufficient alkalinization with 20% NaOH (6.5 mL) controlled by the pink color change
of several drops of phenolphthalein (1 g/100 mL 95% ethanol) began immediately. The
distillation out-flow tube was submerged in a receiver with 100 mL boric acid solution, 3%
to which five drops of the indicator solution, Tashiro Mixed Indicator (0.2 g methyl red and
0.1 g methylene blue are dissolved in 100 mL 95% ethanol), were added. The distillation
was ended when 100 mL extract was collected. The volatile bases contained in the receiver
solution were determined by titration with standard hydrochloric solution 0.01 M until the
colour of the Tashiro Mixed Indicator changed from green/blue to violet.

This procedure was performed on three replicates at Day 1, 4, 8 and 10 and TVB-N
values, expressed as mg/100 g of chicken meat, were calculated according to Equation (S1),
reported in the Supplementary Materials. The results obtained are perfectly in agreement
with the values found in the literature, as summarized by Bekhit and coworkers [38].
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2.6. Microbiological Analysis

Microbiological analysis was performed according to European Commission Regula-
tions. [40] The minced meat samples were portioned into 4 packs of 150 g and stored at
4 ◦C ± 1. During this preliminary phase, the samples were analyzed at different times,
chosen based on the results reported in the following section. The microbiological analysis
was carried out on the same day of packaging (Day 1) and after 5 (Day 5), 8 (Day 8) and
10 (Day 10) days. Specifically, 25 g of the sample were diluted in Ringer’s solution and
homogenized in a Stomacher device (Lab Blender 400, Seward Medical, Worthing, UK) for
120 s at room temperature. The microbial load was evaluated using serial decimal dilution
in Ringer, and 0.1 mL of the appropriate dilution was spread on plate count agar (PCA)
medium and incubated at 37 ◦C for 48 h. The results were logarithmically transformed and
expressed as log colony-forming unit (CFU)/g.

3. Results and Discussion
3.1. Sensing Approach for 3-Step Degradation Detection

As hinted before, animal-based protein food degradation can be divided into three
main steps, freshness (F), early spoilage (ES) and spoilage (S), which are characterized
by the bacterial release of by-products with different acid–base behaviors and volatility.
Immediately after animal death, bacterial activity leads to the production and release
of volatile fatty acids in the package headspace, provoking an ever-increasing acidity in
the atmosphere; considering the low toxicity of these compounds and always bearing in
mind the large-scale application, it is pointless to detect the beginning of acidic volatile
by-products release, which occurs in the very first step of degradation (F).

Nevertheless, the detection of these analytes turns out to be interesting when high
amounts of acids are released, which means when the early spoilage (ES) is ongoing and
food is still eatable but no longer fresh; for this reason, our idea is to detect only considerable
amounts of acidic by-products using one pH indicator with a logKa value slightly above 7,
equilibrated at alkaline form, which shows a complete transition to the neutral form only
when the environment is definitely acidic.

Oppositely, during spoilage (S), an assortment of amines is released, characterized
by different dimensions, molecular weights and acid–base behaviors among which only a
few are actually volatile, mainly NH3. For instance, the most significant class of amines,
in terms of toxicity, is represented by biogenic amines (BA), but these molecules, at the
buffered pH typical of foodstuffs, are protonated and cannot pass into the vapor phase [41].
Having this problem clear in our minds, the only way to detect the production of toxic
by-products, occurring during the third step (S), is to exploit a pH indicator extremely
sensitive towards alkaline molecules, ideally with logKa value much below 7, equilibrated
at acidic form, which shows a complete transition to the neutral form even in the presence
of very low concentrations of volatile amines.

3.2. Sensors’ Components Selection

Considering the paramount importance of sensitivity tuning required for freshness
sensors, a panel of Dye-EVOH@ sensors was synthesized, including commercial EVOH
copolymers with different monomers ratios and MFR and, thus, properties [42] and sul-
fonphthaleins with various logKa values. Both the solid supports and the dyes under
investigation are listed in the Supplementary Materials (Tables S1 and S2). Having defined
our target sensing approach, described above, the smartest way to select both the receptors
and the solid support is to test all the candidates directly on chill-stored protein foods.

These screening experiments, whose most prominent results are reported in Fig-
ures S3 and S4, led to the selection of EVOH copolymer with 29% ethylene content and
MFR = 8 as the most permeable and thus sensitive material, particularly for the early
detection of the spoilage step, characterized by toxic by-products. As for the receptor, the
choice fell on o-cresol red (CR), since this pH indicator is involved in two protonation
equilibria, one at slightly alkaline and one at extremely acidic pH, and thus, depending
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on the pH of equilibration, it could ensure both ES and S detection. The logKa values in
solution for this molecule are reported in the literature [43,44], but it must be underlined
that, after the covalent linkage to EVOH, an increase of around 1 unit for each log Ka value
is observed [29–31]. In Figure 1, the protonation equilibria with the corresponding logKa
values and color shade, both in solution and after functionalization, are reported. Further
investigation of this aspect is still ongoing.
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3.3. Sensors Effective Thickness Selection

As is thoroughly discussed in the literature [45], MFR influences thermoplastic poly-
mers’ behavior during both pressing and extrusion; in fact, the selection of an EVOH
copolymer with high MFR results in sensitive films with ununiform thickness. It being
impossible to avoid or control this issue by changing the pressing parameters and consider-
ing the strict correlation between sensors’ thickness, sensitivity and sensing rate, a rapid
method to select only sensors with suitable thickness is developed. We must not forget
that EVOH is industrially used as barrier film and, obviously, the thickness of EVOH films
affects their permeability and, in this case, the diffusion rate of volatile by-products within
the polymer matrix and, thus, the receptors’ detection and colour change. Both weighing
each sensor and measuring each one’s thickness using a profilometer are discarded as con-
trol strategies, respectively resulting in the sensors having too low of an average mass and
requiring too much experimental effort, while exploiting the relationship between sensors’
thickness and colour intensity represents a much quicker and more reliable approach.

Therefore, a large panel of CR-EVOH@ sensors was made up to investigate the widest
range of thicknesses; part of it was equilibrated at acidic pH and part at alkaline pH,
because these two sensors are required for real sample analysis. Sensors’ RGB triplets
were collected and used as input datasets for PCA to reduce the data’s dimensionality and
obtain a single parameter representative of sensor thickness [31]. As an example, the case
of sensors equilibrated at alkaline pH is shown in Figure 2, while the other case is reported
in the Supplementary Materials (Figures S5b and S6). In the PCA score plot, shown in
Figure 1a, the sensors are ordered alongside PC1 (99.67% explained variance) with the
lower score value of PC1 associated with the higher sensor thickness, as clearly highlighted
in the loading plots in Figure S5a. Thus, the score value on PC1 can be used to measure
sensor thickness, both for the training set and any other following sensor, by projection in
the score plot.
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Once having summarized this information in one single parameter, the most effective
thickness range is identified by testing the CR-EVOH@ sensors directly on chill-stored
protein foods, following the approach previously described. Therefore, from the starting
sensors reported in Figure 2b, ordered by increasing score on PC1 and thus by decreasing
thickness, 8 sensors representative of various thicknesses were selected and used in pre-
liminary real sample monitoring. Three out of the eight sensors, highlighted in green in
Figure 2a,b, presented a suitable color transition during chicken breast slices’ freshness
monitoring, being neither too thick to react slowly with the analytes nor too thin to exhibit
faded colors.
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3.4. Detection Kinetic of Acid–Base Analytes in Vapor Phase

Once the best solid support and receptor and the effective thickness range were defined,
the sensing performances of CR-EVOH@ sensors towards acid or alkaline analytes in vapor
phase were evaluated. As described in Section 2.3, ammonia and acetic acid were selected
as vapor-generating synthetic samples, the experimental set-up, in terms of solution and
container volume and sensor location, is kept constant, while the concentration of ammonia
and acetic acid and the storage temperature is decreased to evaluate the sensors’ sensitivity.

In Figure S7, the pictures of CR-EVOH@ sensors acquired during vapor analyses are
displayed. As expected and required, the sensitivity shown by CR-EVOH@ equilibrated at
acidic pH, from now named a-CR-EVOH@, towards alkaline analytes is higher than the
one presented by CR-EVOH@ equilibrated at alkaline pH, from now named b-CR-EVOH@,
towards acidic analytes. This very first result confirms the suitability of CR-EVOH@ to
detect both ES and S, depending on the equilibration.

For a systematical investigation of sensors sensitivity and sensing rate, RGB triplets’
trends were rationalized by PCA, and the score values on PC1, which account for more
than 85% of explained variance in most cases, were exploited as parameter representative
for analyte detection by color change. For brevity’s sake, the % explained variance, the
loading and score values for each vapor analysis are reported, respectively, in Table S4
and Figure S8 in the Supplementary Materials. To compare detection kinetics for different
analytes concentrations, considering that PCA leads to soft models and thus score values
cannot be directly compared, per each vapor analysis the normalized Euclidean distance
(nED) between PC1 score value at given time and at the end of the analyses was calculated
according to Equation (S2). In Figure 3, nED vs. time plots are displayed in the case of am-
monia (Figure 3a) and acetic acid (Figure 3b) at different concentrations and temperatures.
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This data treatment may sound a bit laborious, but it led to easy-to-interpret kinetic curves,
similar to those typically obtained by kinetic experiments even if relying on multivariate
data treatment.
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end of the analysis vs. time in the case of a-CR-EVOH@ exploited for ammonia detection (a) and
b-CR-EVOH@ for acetic acid detection (b). Both of the vapor-generating compounds were tested at
0.1 M (22 ◦C) and 0.01 M (22 ◦C and 4 ◦C).

As is clearly visible in Figure 3a, the a-CR-EVOH@ sensor exhibits huge sensitivity
towards ammonia and no significant kinetic slowdown was observed lowering the analytes
concentration or the temperature, while b-CR-EVOH@ detection of acetic acid in vapor
phase (Figure 3b) is slower and further decreased by lowering the concentration or the
temperature. Apart from slight differences in analytes volatility, the main reason for the
different kinetics and relationship between detection rate and concentration has to be found
in the protonation equilibria: ammonia detection is performed by exploiting a protonation
equilibrium occurring at a definitely acidic pH, as highlighted in Figure 1, and therefore a
distinctly low amount of NH3 in vapor phase can provoke a complete colour change while,
on the other hand, acetic acid detection relies on a protonation equilibrium occurring at a
slightly alkaline pH, and a higher concentration of AcOH is required to obtain the complete
color transition. Therefore, this analysis has to be read as a further demonstration of the
suitability of CR-EVOH@ sensors for 3-step degradation monitoring.

3.5. Sensors’ Stability

Before sensors’ application on real samples, not only sensors’ sensitivity toward the
target analytes but also sensors’ stability in the absence of analytes must be checked to
avoid, respectively, both false-negative and false-positive results. In this case, the stability
of both b-CR-EVOH@ and a-CR-EVOH@ is checked, using the same experimental set-up
used for vapor analyses but replacing vapor-generating solutions with phosphate buffer.
Pictures of both the sensors, acquired over 10 days, similarly to the real food monitoring, are
reported in Figure S9: no difference can be observed in the sensors’ color during the time
range investigated, thus confirming the stability of the sensors in the absence of analytes.

3.6. Application on Real Samples: Chicken Breast Slices Freshness Monitoring during Chilled
Storage

After the characterization step, both of the CR-EVOH@ sensors were collected in a
sensor array made of one b-CR-EVOH@ and one a-CR-EVOH@ sensing unit and tested
for the detection of 3-step spoilage in chicken breast slices under chilled storage. The
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experiments were performed using five samples of similar mass purchased on the same
day as the delivery from the supplier, according to the procedure reported in Section 2.3.
Then, two new samples of similar mass were used as a test set, one purchased the same
day as the delivery and the other two days after. This test aims to verify the correct device
behavior even if implemented in foods already under degradation.

In Figure 4a, the array pictures, acquired two or three times per day during the
degradation of the training set, are displayed, while the pictures of the test set are reported
in Figure S10. For this specific application, naked-eye analysis of colour evolution represents
a crucial step since, aiming at a large-scale implementation in food packaging, such a
device must be readable also for untrained consumers, without the need for applications or
readers. Therefore, the device has to show a clear and glaring colour transition according
to headspace composition and thus food freshness.

AppliedChem 2022, 2, FOR PEER REVIEW  10 
 

 

 

 
(b) 

 
(a) (c) 

Figure 4. CR-EVOH@ dual-sensor array’s color evolution over chicken breast slices stored at 4 °C in 
the case of training samples; in each array b-CR-EVOH@ is placed on the left and a-CR-EVOH@ on 
the right (a). PCA score plot of the first two principal components, built on the training set (colored 
spots) and corroborated by projection of the test sets (black and blue diamonds) for chicken breast 
slices (b). PC1 (colored spots) and PC2 (colored diamonds) average score values for the training set, 
as reported in (b) and plotted vs. time in (c). 

From a naked-eye evaluation of Figure 4a, we can observe that the sensors’ colour 
remained unchanged for the first three days, in correspondence with the first degradation 
step, labelled as freshness (F). Then, during early spoilage (ES), the high amount of weak 
acid volatile by-products, which bacteria had been releasing since animal death, was 
detected by b-CR-EVOH@ which turned its colour from violet (CR-) to yellow (HCR) 
between Day 4 and Day 6, with a slightly different timing between the replicates due to 
the intrinsic variability of foods under investigation. Finally, when spoilage (S) began, the 
release of thiols and amines was immediately detected by a-CR-EVOH@ changing its 
colour from pink (H2CR+) to yellow (HCR) within Day 7 and 9. 

To rationalize the sensors’ color evolution, at every acquisition time RGB triplets 
were acquired, as described before, and the overall matrix of 6 columns (3 RGB indexes 
per 2 CR-EVOH@ sensors) and 135 rows (27 acquisition times per 5 replicates) was 
submitted to PCA, only centering the data. The model was built considering the first two 
principal components which together explain 93.7% of the variance (85.43% PC1, 8.26% 
PC2); the loading values on these two components are reported in the histogram in Figure 
S11, for brevity’s sake. 

The score plot, shown in Figure 4b, perfectly rationalizes the sensors’ behavior as 
previously described. PC1, which accounts for the main % explained variance, generally 
represents the ongoing spoilage process; the samples’ score values on the x-axis increase 
during spoilage, with a more evident increase during ES between Day 4 and 6, in 

Figure 4. CR-EVOH@ dual-sensor array’s color evolution over chicken breast slices stored at 4 ◦C in
the case of training samples; in each array b-CR-EVOH@ is placed on the left and a-CR-EVOH@ on
the right (a). PCA score plot of the first two principal components, built on the training set (colored
spots) and corroborated by projection of the test sets (black and blue diamonds) for chicken breast
slices (b). PC1 (colored spots) and PC2 (colored diamonds) average score values for the training set,
as reported in (b) and plotted vs. time in (c).

From a naked-eye evaluation of Figure 4a, we can observe that the sensors’ colour
remained unchanged for the first three days, in correspondence with the first degradation
step, labelled as freshness (F). Then, during early spoilage (ES), the high amount of weak
acid volatile by-products, which bacteria had been releasing since animal death, was
detected by b-CR-EVOH@ which turned its colour from violet (CR-) to yellow (HCR)
between Day 4 and Day 6, with a slightly different timing between the replicates due to
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the intrinsic variability of foods under investigation. Finally, when spoilage (S) began,
the release of thiols and amines was immediately detected by a-CR-EVOH@ changing its
colour from pink (H2CR+) to yellow (HCR) within Day 7 and 9.

To rationalize the sensors’ color evolution, at every acquisition time RGB triplets were
acquired, as described before, and the overall matrix of 6 columns (3 RGB indexes per 2
CR-EVOH@ sensors) and 135 rows (27 acquisition times per 5 replicates) was submitted
to PCA, only centering the data. The model was built considering the first two principal
components which together explain 93.7% of the variance (85.43% PC1, 8.26% PC2); the
loading values on these two components are reported in the histogram in Figure S11, for
brevity’s sake.

The score plot, shown in Figure 4b, perfectly rationalizes the sensors’ behavior as
previously described. PC1, which accounts for the main % explained variance, generally
represents the ongoing spoilage process; the samples’ score values on the x-axis increase
during spoilage, with a more evident increase during ES between Day 4 and 6, in con-
junction with the b-CR-EVOH@ color transition from violet to yellow. PC2, instead, is
specifically related to the S step, occurring between Day 7 and Day 10, since in this time-
lapse, samples’ score values on PC1 slightly increase while the PC2 values significantly
decrease. This interpretation is supported by the loading values reported in Figure S11.

As for test set projection, the new samples acquired the same day of the delivery
from the supplier, represented as black diamonds in Figure 4b, show a similar degradation
process and are correctly located in the score plot. Opposite, projecting the test sample
acquired two days after the delivery (blue diamond), the sensor array detects the lower
freshness of the food and, as spoilage goes on, a shift of two days is observed in the location
of the sample in the score plot, with the test sample at Day 3 aligned on PC1 to training
samples at Day 5 and so on.

To make even clearer the sensors’ color evolution and the consequent spoilage process,
hinted by naked-eye evaluation and rationalized by PCA, the average score values on PC1
and PC2 for the five samples of the training set at each acquisition time were calculated and
plotted vs. time, expressed in hours, together with the respective standard deviations, as
displayed in Figure 4c. The corresponding sensor array’s coloration at each step is added
in Figure 4c to ease the comprehension of the results presented. Three steps are clearly
highlighted in this plot:

• Freshness (F): both the PC1 and PC2 score values remain constant, meaning that
none of the sensors is changing its color (Day 1–Day 3). In this step, the dual-sensor
array still presents its starting coloration—violet for b-CR-EVOH@ and pink for a-CR-
EVOH@.

• Early spoilage (ES): PC1 score values undergo a steady increase related to b-CR-
EVOH@ color transition from violet to yellow as a consequence of acidic volatile
by-products’ detection (Day 4–Day 6). A slight increase is observed also for PC2
score values.

• Spoilage (S): PC1 score values’ increase becomes much less evident, while PC2 score
values significantly lower as a consequence of a-CR-EVOH@ detection of a slightly
more alkaline environment, and consequently, the color turns from pink to yellow.
(Day 7–10).

3.7. CR-EVOH@ Dual-Sensor Array Corroboration

Projection of unknown test samples was exploited as a very first attempt at PCA
model corroboration, but the correlation between sensor array color evolution and food
samples’ freshness must be verified by independent methods. To fulfil this aim, two
different approaches are followed. On one hand, TVB-N is determined on three replicates
at a given time during degradation, being the most common chemical parameter applied
to evaluate the quality of fish and other meat products [38,39]. The TVB-N average values
and correspondent standard deviations calculated on three independent samples per each
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measurement time, determined during chicken breast slices’ spoilage, are reported in
Figure 5a.
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Before commenting on the results, it must be underlined that in the literature, an
agreement on TVB-N value to be considered as the freshness threshold for chicken meat was
still not found. As perfectly summarized in a recent review by Bekhit and coworkers [38], in
different papers the TVB-N values of 15, 23, 25 and 28 mg/100 g are used as the threshold
to evaluate chicken freshness. As for the European Regulation, up to our knowledge,
the threshold values are reported only for fish and fishery products and not for other
types of protein foods [39]. Having this issue in our mind, we can only give a qualitative
judgment on TVB-N trend during spoilage. On the first day of monitoring, when food
is definitely fresh, TVB-N value is around 6, which is far below the range of threshold
values; at Day 4, at the beginning of ES, an increase to around 15 is observed, which means
near to the threshold values proposed in the literature, but higher growth is found at Day
8, when TVB-N value exceeds 26, and at Day 10 (TVB-N higher than 36). These two last
measurements definitely confirmed the occurred spoilage of the chicken meat, being above
all the threshold values proposed in the literature. Therefore, the TVB-N trend seems to
confirm sensors’ behavior, even if it must be underlined that amines included in TVB-N are
all those N-containing compounds extracted and purified via steam distillation in alkaline
conditions [30]. This means that this parameter includes a wider panel of amines than the
actual volatile ones at food-buffered pH, which are the ones that could be detected by the
sensor array [30].

On the other hand, a total viable counts (TVCs) analysis was performed. This pre-
liminary test was performed as a “proof of concept” to check if a correlation could be
found between the sensor array and TVCs average values, as reported in Figure 5b. TVCs
ranges from around 3 log CFU/g at Day 1, to around 6 log CFU/g at Day 5, confirming
the transition from a fresh to an early spoilt sample. Then, at Days 8 and 10, the TVCs
value rises above 8 CFU/g, higher than the acceptability limit set at 7 CFU/g [46], with
only a slight increase between the two measurements, confirming the ongoing spoilage
step and thus the samples’ unsuitability for human consumption. It must be underlined
that, in this preliminary assay, the different bacterial populations forming the SSO are not
investigated, since only the TVCs are determined. Considering the encouraging results,
further experiments will be performed to seek a direct correlation between CR-EVOH@
device color evolution and the activity of specific bacterial populations.
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4. Conclusions

Starting from a cheap commercial pH indicator and one of the most-used polymers in
food packaging, we succeeded in the development of an efficient smart label prototype.
The proposed device is able to distinguish the three main degradation steps poultry meat
experiences, i.e., freshness, early spoilage and spoilage, and the recognition of the current
step can be performed at a glance, by a simple naked-eye readout, by untrained people.
Furthermore, the device showed similar colour evolution for different samples purchased
in different moments, even if always in the same supermarket.

In addition to naked-eye analysis, multivariate analysis allows for extracting more
information, visualizing and rationalizing the spoilage process and corroborating the device
responses. Exploiting three different approaches for the preliminary corroboration turned
out to be the winning choice, since we were able to demonstrate the correct freshness
detection on unknown independent samples, the correlation between our sensors’ color
evolution and both the N-containing compounds released during bacterial degradation
and the microorganisms’ proliferation in the food.

Last but not least, the proposed device represents an eligible candidate to exit the
laboratory and reach the supermarket shelf thanks to its extremely low cost of production,
estimated below 0.10 €, the scalable production procedures and the easy implementation
in food packages, as the device is substantially made of the same polymeric mate-rial and
suitable for heat-sealing on food-grade plastic films. All these pros, together with the strong
scientific background, the deep comprehension of spoilage mechanisms and by-products’
distribution in the package and the possibility of an easy naked-eye detection, are currently
the most appreciated features by food supply chain players and operators.

As a matter of fact, the applicability of the device has been widely demonstrated for
chicken samples stored only at 4 ◦C, but further investigations regarding different storage
temperatures are actually ongoing.
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during 10-day monitoring at 22 ◦C and 4 ◦C; Figure S10: CR-EVOH@ dual-sensor array colour
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