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Abstract: In times of crisis, science communication needs to be accessible and convincing. In
order to understand whether these two criteria apply to concrete science communication formats,
it is not enough to merely study the communication product. Instead, the recipient’s perspective
also needs to be taken into account. What do recipients value in popular science communication
formats concerning COVID-19? What do they criticize? What elements in the formats do they pay
attention to? These questions can be answered by reception studies, for example, by analyzing
the reactions and comments of social media users. This is particularly relevant since scientific
information was increasingly disseminated over social media channels during the COVID-19 crisis.
This interdisciplinary study, therefore, focuses both on science communication strategies in media
formats and the related comments on social media. First, we selected science communication
channels on YouTube and performed a qualitative multi-modal analysis. Second, the comments
responding to science communication content online were analyzed by identifying Twitter users who
are doctors, researchers, science communicators and those who represent research institutes and then,
subsequently, performing topic modeling on the textual data. The main goal was to find topics that
directly related to science communication strategies. The qualitative video analysis revealed, for
example, a range of strategies for accessible communication and maintaining transparency about
scientific insecurities. The quantitative Twitter analysis showed that few tweets commented on
aspects of the communication strategies. These were mainly positive while the sentiment in the
overall collection was less positive. We downloaded and processed replies for 20 months, starting at
the beginning of the pandemic, which resulted in a collection of approximately one million tweets
from the German science communication market.

Keywords: COVID-19; social media; science communication; topic modeling; sentiment analysis; Twitter

1. Introduction

The dissemination of scientific content to non-expert audiences is nowadays charac-
terized by a multitude of different successful media formats. In this context, social media
platforms have become particularly important channels for dissemination, including video
platforms such as YouTube.

In a crisis, such as the COVID-19 pandemic, it was particularly important to under-
stand the scientific facts concerning the virus. In times of crisis, media creators and, in
particular, creators of science communication formats need to know what kind of infor-
mation is needed and why some information sources are preferred over others, i.e., it
is paramount for them to understand patterns of information behavior (see [1] for an
overview). In this context, they specifically need to have an understanding of the qual-
ity expected by the audience. Information resources, in general, and media formats, in
particular, differ in the way they portray scientific information (see [2] for an overview of
different case studies). Research also needs to take into account how scientific information
is disseminatedsuccessfully and which approaches are received positively by the public.
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Abstract: In recent literature, alternative models for handling missing item responses in large-scale
assessments have been proposed. Based on simulations and arguments based on psychometric test
theory, it is argued in this literature that missing item responses should never be scored as incorrect
in scaling models but rather treated as ignorable or handled based on a model. The present article
shows that these arguments have limited validity and illustrates the consequences in a country
comparison using the PIRLS 2011 study. It is argued that students omit (constructed response) items
because they do not know the correct item answer. A different treatment of missing item responses
than scoring them as incorrect leads to significant changes in country rankings, which induces
nonignorable consequences regarding the validity of the results. Additionally, two alternative item
response models are proposed based on different assumptions for missing item responses. In the first
pseudo-likelihood approach, missing item responses for a particular student are replaced by a score
that ranges between zero and a model-implied probability computed based on the non-missing items.
In the second approach, the probability of a missing item response is predicted by a latent response
propensity variable and the item response itself. The models were applied to the PIRLS 2011 study,
demonstrating that country comparisons change under different modeling assumptions for missing
item responses.
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1. Introduction

In educational large-scale assessment studies [1], such as the progress in international
reading literacy study (PIRLS; [2]), the trends in international mathematics and science
study (TIMSS; [3]), or the programme for international student assessment (PISA; [4]),
students’ competencies are assessed using cognitive test items. However, students often do
not respond to specific items, leading to missing item responses [5]. It is not obvious how
item non-response [6,7] should be treated in the computation of values of competencies
(i.e., values of the latent trait) in item response theory (IRT) models [8–12] that are used as
scaling models.

While the treatment of missing data in statistical analyses in social sciences is now widely
used [13,14], in recent literature, there has been criticism of conventional methods of treating
missing item responses in item response models in large-scale assessment studies [5,15–17].
Typically, the treatment of item responses can be distinguished between the process of cal-
ibration (determination of item parameters) and scoring (determination of ability distribu-
tions) [18].

In PIRLS, TIMSS, and PISA (until PISA 2012), only missing item responses at the end
of a test booklet (so-called not-reached items) are omitted (i.e., ignored) in calibration in
order not to distort estimates of item parameters [2,18,19]. In the scoring step, missing
item responses are evaluated as incorrect to compute values of the latent trait as plausible
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values [20,21]. Since PISA 2015, not-reached items have been ignored in calibration and
scoring (although the proportion of missing items is used as a predictor in the latent
regression model; see [17]).

However, some researchers [17,22–26] argued that missing item responses should
never be treated as incorrect (i.e., in calibration, as well as in scoring). These researchers
proposed alternative item response models to handle missing item responses properly.
This article will first elaborate on the criticisms made in the literature [16,17,25] to treat
missing item responses as incorrect and the proposed model-based alternatives. In con-
trast to the above-mentioned literature, we argue that only for reasons of validity and
not for test-theoretical reasons should a particular method for handling (i.e., both in cal-
ibration and in scaling) be preferred. Since assumptions about the missingness of item
responses are not empirically testable, we propose two alternative item response models
that directly parametrize different assumptions of the missingness mechanism. Finally, we
discuss potential psychometric consequences in large-scale assessment for the assessment
of competencies with varying treatments for missing item responses.

2. Analysis of the Critique of Traditional Approaches to Handling Missing
Item Responses

Typically, missing item responses are scored as incorrect when determining ability
distributions in large-scale assessment studies [24]. In a series of recent publications,
it was claimed that missing item responses should never be scored as incorrect. It is
recommended that this traditional ad hoc method should never be used in large-scale
assessment studies [5,17,23–25]. In the following, we discuss the arguments of these authors
and conclude that they are based on assumptions and conclusions that are atypical in the
application of item response models. Therefore, we find the recommendations in the
above-mentioned literature somewhat doubtful.

2.1. Aleatoric and Epistemic Uncertainty

Useful for the following considerations is the distinction of Denoeux [27] in the
quantification of uncertainty in data (the item responses) and corresponding IRT models.
Denoeux distinguishes the concepts of probability and possibility. Uncertainty due to
sampling or the modeling of existing data (a dataset containing all item responses) is
denoted as aleatoric uncertainty [27]. Uncertainty (or fuzziness) for every single datum
(i.e., each individual item response) is denoted as epistemic uncertainty [27]. Epistemic
uncertainty (or systematic uncertainty) can be attributed to a lack of knowledge with respect
to determining a single datum [28]. In contrast, aleatoric uncertainty refers to the notion of
randomness. It describes the variability in the outcome of an experiment (which can be an
educational large-scale assessment study) due to inherently random (i.e., sampling) effects.
In [27], it is argued that aleatoric uncertainty can be best expressed by probabilities in a
statistical model. In the case of educational large-scale assessment studies, this means that
an IRT model for the dataset of item responses with fixed values is fitted. Each student’s
individual item responses are viewed under the concept of epistemic uncertainty, which
would result in fuzzy item responses [27,29]. Therefore, it is unclear how one should score
missing item responses.

Nevertheless, in this interpretation, we would like to emphasize that it is vital that
assumptions about the individual data points (i.e., the individual item responses) be strictly
distinguished from the assumptions in a probability model, which is a statistical model
for item responses of all students. To illustrate this conceptual distinction, we assume
a distribution of the running times in a 50 m run for a defined population of Austrian
students in the fourth grade. For this purpose, a sample of students is drawn. The associated
uncertainty of sampling students from the population is associated with probabilities in
the context of aleatoric uncertainty. However, the measurement of the running time of
a student can never be precisely carried out (e.g., due to measurement uncertainty, the
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runtime is located in the interval between 8.75 and 8.85 s, which represents a fuzzy date).
This kind of uncertainty corresponds to the concept of epistemic uncertainty.

In summary, we reiterate that assumptions about the emergence of data (aleatoric
uncertainty) must be distinguished from assumptions about the modeling of existing data
(epistemic uncertainty). It does not seem wise to mix up these two processes. Unfortunately,
this is precisely the case in the reasoning of why missing item responses should not be
scored as incorrect [15,23–25].

2.2. Reasoning Based on Foundations of Psychometric Test Theory

The criticism of treating missing item responses as incorrect is based on simulations
and test-theoretical arguments [16,25], which we will discuss in detail below.

Most simulation studies convey that scoring of missing item responses as incorrect
provides distorted item parameters and ability distributions [30]. In these simulation
studies, a missing item response is mostly simulated due to a dependence on latent variables
or person covariates but not depending on the item itself. Then, that the model would
produce biased estimates when treating missing item responses as incorrect obviously
(see [30,31]) follows because the simulation is based on a data-generating model that is
not in correspondence with the analysis model (i.e., treating missing item responses as
incorrect). In contrast, if a particular IRT model fits, and missing values are generated for
all items for which the item was solved incorrectly, then scoring missing item responses
not as incorrect will consequently provide distorted model parameters (see [30]). Whether
simulation-based reasoning against the scoring of missing item responses as incorrect
is valid depends on the plausibility of the data-generating model for the missingness
process [31]. We argue that approaches that model missingness on an item independently of
the unknown item response itself are implausible. Thus, simulation studies are not helpful
in terms of justification for choosing an adequate treatment of missing item responses in
real data [31,32].

In [33], simulation studies are classified into method-centred and neutral simulation
studies. Method-centred simulation studies are included in research papers that propose
a new statistical model. These kinds of simulation studies frequently simulate data that
fit the proposed model. The criticized papers on missing item responses [15,17,24] are
particular papers that include method-centred simulation studies. Neutral simulation
studies are studies aiming at comparing different methods. They should not intentionally
prefer one particular statistical approach. The issue with some method-centred simulation
studies like [17,34] in the literature on missing item responses is not that they propose new
models. However, they make recommendations on how to generally handle missing item
responses based on generated datasets that were perfectly suited to their item response
models implemented in their favorite toolbox. Therefore, we would like to emphasize that
simulation conditions and studied models must be as wide as possible if there is a desire to
derive recommendations for practitioners. Otherwise, it sounds more like an advertisement
than serious research practice if researchers only focus on their selective toolbox.

In a reasoning based on psychometric test theory, the core of the criticism is that
scoring missing item responses as incorrect would model missing item responses deter-
ministically [16,25]. This modeling strategy would contradict model-implied item response
probabilities in an IRT model, and it is therefore deemed invalid [17,25]. Let us denote
the missingness indicator variable with Rpi, that for a person p an item i is observed (i.e.,
Rpi = 1). Then, formally, for the incorrect scoring, a missing item response Ypi is set to zero;
thus, P(Ypi = 1|Rpi = 0) = 0, independent of the latent trait θp of person p. This would
lead to a contradiction because the prediction in the IRT model (e.g., in a two-parameter
logistic (2PL; [35]) model) would result in a probability of P(Ypi = 1|θp) > 0, i.e., the
data handling is deterministic, but the IRT model is probabilistic [16,25]. Hence, model
assumptions in the IRT model would be violated. The contradiction can be tackled by
using the different concepts of uncertainty according to [27] because in the reasoning of [16]
or [17], epistemic and aleatory uncertainty are confounded. In this literature, the same
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probability model (i.e., the item response probability from an IRT model) for the occurrence
of a single data point and modeling all item responses in the sample is employed.

If we embed our considerations now more firmly in concepts of psychometrics, it
is noticeable that the rejection of treating missing item responses as incorrect relies on
an intraindividual interpretation of the probabilities in the IRT model. This reasoning
corresponds to a stochastic subject perspective (i.e., probabilities of the IRT model can
be interpreted for each combination of a person p and an item i; see [36]), which is not
typically employed in large-scale assessment studies [37]. If one uses a random sampling
perspective [36,38], the probabilities are interpreted as the result of a sampling of persons,
and item parameters, as well as a latent trait distribution for θ, are introduced as a repre-
sentation of a high-dimensional contingency table for discrete multivariate observations Y .
Then, formally, the IRT model for I discrete items Y1, . . . , YI can be written as

P(Y = (y1, . . . , yI)) =
∫ I

∏
i=1

P(Yi = yi|θ) f (θ)dθ , (1)

where f denotes the density function of the latent variable (i.e., latent trait or (latent)
ability) θ. In this notation, it becomes clear that in IRT models, a distribution is mod-
eled for a sample of persons, and individuals are not represented (see also [30]). How-
ever, if one assumes the intraindividual perspective in the sense of the stochastic subject
perspective, the reasoning is based on the assertion that the scoring of missing item re-
sponses as incorrect would lead to a deterministic item response probability of zero because
the scoring as incorrect leads to a wrong item response with a probability of one (i.e.,
P(Ypi = 0|Rpi = 0, θp) = 1). However, the scoring of an item response as incorrect is not
related to the probabilistic modeling of item responses of a person. This is because the
missing item responses could also have been generated by a deterministic process, which
does not contradict the probabilistic modeling in the statistical model for all item responses
of all persons. Therefore, one has to distinguish between a real response process—which
can be either deterministic or probabilistic but certainly follows the given probabilistic
specification of the IRT model in only rare cases—and the statistical model assumptions
for the definition of ability as defining elements for the construction of an ability scale θ

(see [30]).
Furthermore, we argue, in the following, that statistical reasons from the stochastic

subject perspective invalidate the criticism of scoring missing item responses as incorrect.
When modeling intraindividual distributions in an IRT model for a person, item parameters
are defined as fixed and known parameters, and the latent trait θp is required as a fixed
effect that is assigned to a person. Then, the assumption of local stochastic independence
refers to conditional independence of item responses for a fixed person p based on a set of
items, and it is therefore not empirically falsifiable but a means for identifying the ability
θp of this person. Hence, the ability θp is only defined by the specification of likelihood and
item responses Y . In the Rasch model [39], for a fixed person p and item i, the probability
of a correct item response is expressed by P(Ypi = 1|θp) = Ψ(θp − bi) (where Ψ denotes
the logistic function), which is used in the likelihood estimation for the distribution of
the trait θp. Whether the value zero or one for a single observation (xpi fits) in the Rasch
model is empirically undecidable, so scoring missing item responses as incorrect does not
necessarily violate the IRT model [30].

It becomes clear that we prefer the random sampling perspective because the item re-
sponse probabilities Ppi from an IRT model do not describe how likely a particular student p
is to correctly solve item i. In contrast, we believe that the probability is likely deterministic
at the item level. Randomness in IRT models (and, hence, probabilities between zero and
one) only emerge because we summarize interindividual differences of multivariate item
response data. For example, a particular written arithmetic item can be solved by a student
if she or he is capable of applying the necessary rules required for written arithmetic.
Hence, whether students correctly solve this item relates to opportunities to learn and
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whether items are instructionally sensitive [40,41]. As a consequence, specific item effects
are regarded as construct-relevant and not as unsystematic errors [42,43].

We would like to emphasize that our arguments only apply to missing item responses
for items that were administered to students in a test booklet. In large-scale assessment
studies such as PIRLS, planned missingness designs (i.e., balanced incomplete block de-
signs) are utilized in which only a subset of items is administered to students in a test
booklet [44]. Such missing item responses should—of course— not be scored as incorrect
because students never saw these items. Hence, lack of knowledge cannot be the reason for
planned missing data. However, in the case of administered items, we cannot rule out the
possibility that students do not provide an item response because they do not know the
solution to this item.

To sum up, in our opinion, the reasonings given in the literature [16,17,25] for not
scoring missing item responses as incorrect that are based on simulation studies or psycho-
metric test-theory-based reasoning do not seem to be typical for applications in large-scale
assessment studies. However, we note that for reasons of validity, quite different scoring
methods than incorrect ones could be adequate in applications. Central to the argumen-
tation of the authors’ criticism is that modeling the response processes of students in a
cross-sectional measurement (interindividual perspective) is erroneously confounded with
response processes associated with a single person (intraindividual perspective; see [45]).

3. Model-Based Treatment of Missing Item Responses

In this section, different model-based approaches for the treatment of missing item
responses are discussed. In the following, we only consider IRT models for dichotomous
data in Rasch models [39,46]. However, our considerations are also applicable to more
general model classes, such as 2PL models or IRT models for polytomous data [47].

Among the model-based procedures, IRT models are often used for distinguishing be-
tween ignorable and nonignorable item responses [48]. By ignoring missing item responses
for students in the likelihood function, missing item responses are omitted in the estimation.
If one ignores missing item responses in the estimation, it can be shown that the missing
item responses can be imputed (i.e., scored) under this assumption with a probability of
Ppi(θp,M) (i.e., scored) as correct. Here, θp,M denotes the ability of person p that is being
calculated exclusively with the observed item responses. This practically means that in
the IRT model, observed item responses can be used to impute missing item responses.
Since the probability Ppi(θp,M) is always larger than zero, ignoring missing item responses
always leads to larger estimated trait values θp than scoring them as incorrect. Ignoring
missing item responses does not mean that the item nonresponse is independent of the
latent trait (i.e., the missingness is not missing completely at random (MCAR); see [13]).
The missing process is characterized by the fact that the whole of the information about the
ability θp is already recoverable from the observed item responses, i.e., the missing data are
missing at random (MAR; [13]). Under this assumption, the proportion of missing item
responses might be larger for students with lower abilities than for students with higher
abilities.

The treatment of missing item responses as incorrect can be considered one extremum,
with ignoring them as the opposing pole. In the first case, there is a risk of underestimating
the ability of a person. In the second case, there is a risk of overestimating the ability of
a person.

As an alternative to ignoring missing item responses, multidimensional IRT models for
nonignorable item responses have been proposed [34,48–63]. The two-dimensional model
proposed in [48] introduces a latent individual response propensity (response tendency) ξ
(besides the latent ability θ), which predicts missingness in item responses. For the response
indicators Rpi, a Rasch model is assumed.

P(Rpi = 1|θp, ξp) = Ψ(ξp − βi) (2)
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The probability of responding to an item, therefore, depends on the response tendency ξp
and parameter βi. Whether an item is missing or not does not depend on the unknown item
response itself. This means that Ypi and Rpi are conditionally independent, given θp and
ξp. The complete information for model parameters can be extracted from observed item
responses and response indicators by specifying a particular parametric model. Formally,
missing data are missing not at random (MNAR). However, missingness can be traced
back to a further latent variable. This kind of missingness process is also denoted as latent
ignorability ([64]; see also [31,65–67]).

Note that in a joint model for item responses Xpi and response indicators Rpi, a
bivariate distribution for the latent variable (θ, ξ) is estimated [15,48,68]. Alternative
model-based procedures generalize the two-dimensional IRT model of Holman and Glas
(see [25,69]) or use mixture distribution approaches [70,71]. It should be emphasized that
for an individual person, the maximum likelihood estimate for the ability θp does not exist;
only the EAP estimate can be used [47]. As a consequence, a correlation of the ability θ and
the response tendency ξ has to be known to estimate individual ability values.

If the response tendency ξp can be expressed as ξp = ρθp + εp, one can show that
missing item responses are approximately scored as Ppi(θp,M)− ρ (see [69]). In contrast to
the model with ignorable item responses, the ability estimates are therefore adjusted by a
constant ρ. Only if the response tendency and the ability are uncorrelated (i.e., ρ = 0) do
both models lead to the same ability estimates.

4. Two Alternative Item Response Models for Nonignorable Item Responses:
Approaches for a Sensitivity Analysis

In this section, two alternative model-based approaches for nonignorable missing item
responses are discussed. In the first model, missing item responses are scored as partially
correct [72]. In the second IRT model, the two-dimensional IRT model proposed in [48] is
extended for the potential dependence of the missingness of an item from the unknown
item response itself. In this model, the treatment of missing item responses as incorrect
turns out to be a particular case. The two proposed models can be seen as a sensitivity
analysis in which different assumptions about the missingness process can be investigated
(e.g., [73]).

4.1. Pseudo-likelihood Approach for Partially Correct Scoring of Missing Item Responses

In the pseudo-likelihood approach of Lord [72], missing item responses are scored
as partially correct. The pseudo-likelihood function Lp (more precisely, the pseudo-log-
likelihood function) for person p is defined as

log Lp =
I

∑
i=1

[
wpi log Ppi + (1− wpi) log(1− Ppi)

]
, (3)

where Ppi is the probability of a correct answer to item i for person p, and wpi is the score
of person p on item i. In the case of non-missing item responses, the score wpi is equal to
either one (for a correct answer) or zero (for an incorrect answer). In [72], it is argued that in
the case of missing item responses for multiple-choice items with M alternatives, the scores
wpi can be set to 1/M, and the resulting pseudo-likelihood function (3) is maximized. As
argued above, by ignoring missing item responses, the values of the missing responses
are be scored by wpi = Ppi(θp,M), where θp,M is the ability estimate for a person p based
on the non-missing item responses. If the missing item is treated as incorrect, a score of
wpi = 0 would be chosen. These should be regarded as two extreme cases of missing item
treatment responses. Interim assumptions can be expressed by a sensitivity parameter
ρ = 0 (scoring missings responses as incorrect) and ρ = 1 (treating missing responses as
ignorable) that can be examined in the context of a sensitivity analysis. This approach
defines the score as wpi = ρPpi(θp,M), given a preliminary ability estimate θp,M. Then,
ability estimates are derived as a function of the parameter ρ. Note that one can also use
a marginal pseudo-likelihood function in (3) in which a distribution for ability values θ
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is assumed. This technique of sensitivity analysis is frequently used for imputations of
nonignorable missing data [73,74]. It should be noted that the parameter ρ itself is not
estimable but must be fixed in the estimation. This is also supported by the fact that the
maximization of the pseudo-likelihood function with respect to ρ can only result in ρ = 0
or ρ = 1.

The likelihood function (3) can be written as

Lp =
I

∏
i=1

Lpi =
I

∏
i=1

{
P

wpi
pi (1− Ppi)

1−wpi
}

. (4)

Consequently, the likelihood for person p on item i contributes with Lpi = P
wpi
pi (1− Ppi)

1−wpi .
The missing item responses can therefore be regarded as fuzzy data with values of zero and
one and an associated membership function mpi(0) = 1− wpi or mpi(1) = wpi [29]. The
multiplicative term Lpi is also denoted as partial membership (see [75]). Alternatively, for
fuzzy data, an additive likelihood term according to Lpi = wpiPpi + (1− wpi)(1− Ppi) has
been proposed (see [29]), which is also denoted as mixed membership ([75]).

When estimating the IRT model according to the pseudo-likelihood approach, scores
wpi are required in Equation (3). The concrete implementation of my proposed pseudo-
likelihood approach proceeds as follows. The scores are computed for missing item re-
sponses based on an initial first scaling step. In this first step, missing item responses
are treated as ignorable variables, and individual personal ability estimates are obtained
(e.g., weighted likelihood estimates, see [76]) , given the observed data and predetermined
item difficulties. Alternatively, plausible values can be drawn from the individual poste-
rior distribution [20]. The pseudo-likelihood approach (3) with fixed weights wpi can be
estimated with the usual EM algorithm (see, e.g., [21,77]). In this approach, the M step
remains unchanged compared to evaluations in usual IRT models. In the evaluation of the
individual likelihood and the expected counts, the pseudo-likelihood is used instead of an
ordinary likelihood.

4.2. Modeling the Missing Response Process

In the second IRT model, missing item responses are handled similarly to the two-
dimensional model by Holman and Glas ([48]; see also [15]). Let us again denote Ψ as the
logistic function so that in the Rasch model [47], the probability of a correct item response
is expressed as

P(Ypi = 1|θp) = Ψ(θp − bi) . (5)

The probability for a missing item response of item i conditional on the response propensity
ξ may now also be affected by the unknown item response Yi itself (see [6,7,78]). Hence,
we define

P(Rpi = 1|Ypi = k, ξp) = Ψ(ξp − βi − kδ) (6)

for k = 0, 1. The probability of a non-missing item response (i.e., Rpi = 1) depending
on the unknown item response Yi can be modeled with δ 6= 0. If δ = 0 is chosen, the
IRT model for nonignorable item responses in [48] is obtained. It has been shown that
the parameter δ can be identified from data ([31,79–81]; see also [82] for a similar model).
Scaling results can also be studied in a sensitivity analysis as a function of a sequence of
δ values. For very small values of δ (e.g., δ = −10), one obtains P(Rpi = 1|Ypi = 1, ξp) = 1
and, subsequently, P(Rpi = 0|Ypi = 1, ξp) = 0. This means that all students who know the
item would provide a correct non-missing item response with a probability of 1. Using
the Bayes theorem, it follows that P(Ypi = 1|Rpi = 0; θp, ξp) = 0. Hence, all missing item
responses are evaluated as incorrect for a very small value of δ. As in the pseudo-likelihood
approach, one can use the proposed model to investigate the extremes of ignoring missing
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item responses but allowing the dependence on the latent response propensity (δ = 0) and
scoring missing item responses as incorrect (δ = −10).

In the proposed IRT model, item difficulties bi, item parameter βi for response ten-
dency, and the bivariate distribution of (θ, ξ) are estimated. In the calculation of the like-
lihood for item i, the probabilities of three disjunctive events—P(Rpi = 1, Ypi = 0|θp, ξp),
P(Rpi = 1, Ypi = 1|θp, ξp), and P(Rpi = 0|θp, ξp)—are used. The probability of a missing
item response P(Rpi = 0|θp, ξp) can be computed as the total probability:

P(Rpi = 0|θp, ξp) = P(Rpi = 0|Ypi = 0; ξp)P(Ypi = 0|θp) + P(Rpi = 0|Ypi = 1; ξp)P(Ypi = 1|θp) , (7)

which can be calculated based on the item parameters and response models (5) and (6).
Hence, missing item responses Ypi are integrated analogously to missing items in large-scale
assessments studies by employing the integrated marginal maximum likelihood estimation
method ([21]; see also [6,83]).

The proposed IRT model is based on the evaluation of item response probabilities
conditional on the latent variables θ and ξ. For observed correct item responses, the
probability is expressed as

P(Ypi = 1, Rpi = 1|θp, ξp) = P(Rpi = 1|Ypi = 1, ξp)P(Ypi = 1|θp) = Ψ(ξp − βi − δ)Ψ(θp − bi) . (8)

For observed incorrect item responses, one obtains

P(Ypi = 0, Rpi = 1|θp, ξp) = P(Rpi = 1|Ypi = 0, ξp)P(Ypi = 0|θp) = Ψ(ξp − βi)Ψ(−θp + bi) (9)

using 1−Ψ(x) = Ψ(−x). For missing item responses, according to Equation (7), one obtains

P(Rpi = 0|θp, ξp) = Ψ(−ξp + βi)Ψ(−θp + bi) + Ψ(−ξp + βi + δ)Ψ(θp − bi) . (10)

The two-dimensional IRT model can be estimated using an EM algorithm. A two-dimen-
sional distribution for (θ, ξ) is estimated. Frequently, the bivariate normal distribution is
utilized. However, this assumption can be weakened [68].

5. Comparison of Four Countries in PIRLS 2011

In the following section, a comparison of reading literacy performance in PIRLS 2011
is conducted using a test booklet for four selected countries: Austria (AUT), Germany
(GER), France (FRA), and the Netherlands (NLD). The dependence of the country means is
investigated for different treatments of the missing item responses.

5.1. Data

In the following analysis, item responses of booklet 13 in PIRLS 2011 (i.e., the “PIRLS
Reader”) consisting of 35 items (15 multiple-choice items with four response alternatives;
20 constructed response items) were used. For this booklet, item responses of 968 Aus-
trian, 809 German, 901 French, and 802 Dutch students were available. For simplicity, all
polytomous items were dichotomized, and only the highest scores were recoded as correct.
The dataset has been made available as data.pirlsmissing in the R [84] package sirt [85].
Student sampling weights were taken into account in the analyses.

Descriptive analyses show that the average proportion of missing item responses
varied considerably between items and countries (AUT: 11.2%; DEU: 7.9%; FRA: 13.6%;
NLD: 2.7%). Missing proportions for constructed response items were much higher than
for multiple-choice items (e.g., for AUT, constructed response: 17.7%; multiple-choice:
2.6%). When scoring missing item responses as incorrect, Austrian students provided, on
average, 55.1% correct item responses and slightly surpassed France (53.7%) but achieved
significantly lower results than German students (63.0%) and Dutch students (64.4%).
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5.2. Analysis

For the country comparison, six different IRT models (referred to as models M1, M2,
M3, M4, M5, and M6) were specified. Student weights were taken into account in marginal
maximum likelihood estimation. For a simplified description of the results, country means
in each IRT model were transformed so that Austrian (AUT) students had a country mean
of 500 and a country standard deviation of 100. The trait distributions for Germany (DEU),
France (FRA), and the Netherlands (NLD) were subjected to the same transformation so
that country comparisons in all IRT models should always be interpreted relative to the
performance of Austria. This choice of standardization was made because Austria was
considered a reference country in the analysis, and the other three countries should be
compared to Austria (see [86,87]). However, there could also be good reasons for using a
fixed mean and a fixed standard deviation in a total population comprising all countries
(see [31,88]).

In model M1 (that corresponds to the official procedure in PIRLS), a unidimensional
Rasch model with four groups (i.e., the four countries AUT, GER, FRA, and NLD) was
specified in which missing item responses were scored as incorrect. In model M2, missing
item responses were ignored, which means that they were omitted in the computation of
the marginal likelihood. As an extension to model M2, model M3 was a two-dimensional
Rasch model with two latent variables of ability θ and the response tendency ξ. In model
M4, a pseudo-likelihood approach of the Rasch model was specified in which missing
item responses for multiple-choice items with four answer alternatives were scored with
the score wpi = 0.25. In contrast, missing item responses for constructed response items
were scored as incorrect (i.e., with a score of wpi = 0). In models M1, M2, M3, and M4,
item parameters and the distribution parameters for the trait(s) in the four countries were
concurrently estimated.

In models M5 and M6, in a first analysis, missing item responses were scored as
incorrect, and common item parameters for all four countries were obtained, which were
subsequently fixed in a second step. In model M5, the pseudo-likelihood approach was
used for the Rasch model, in which missing item responses were scored as wpi = ρPpi(θp,M),
where θp,M is the personal ability, which was computed based on the non-missing item
responses. The personal ability θp,M was a random draw from the individual posterior
distribution. The country means were calculated depending on the sensitivity parameter
ρ = 0, 0.01, . . . , 0.99, 1. In model M6, the two-dimensional model M3 is extended by model-
ing the missingness process dependence of the absence on the item response itself. This
model was calculated depending on the sensitivity parameter δ = −10,−9.5, . . . ,−0.5, 0.

Additionally, we empirically determined the imposed missingness mechanism defined
by Equation (6) for all four countries. In this model, the correlation ρ between the latent
trait θ and the response propensity ξ can be fixed to zero or can be estimated (i.e., ρ 6= 0).
Moreover, the parameter δ can be fixed to 0 (i.e., ignoring the missing item response), fixed
to −10 (i.e., treating the missing item response as incorrect), or be estimated from the data
assuming a common δ parameter across items. Hence, five different model specifications
of the two-dimensional IRT model result. The analysis models were defined as N1: δ = 0,
ρ = 0; N2: δ = −10, ρ = 0; N3: δ estimated, ρ = 0; N4: δ = 0, ρ estimated; N5: δ = −10,
ρ estimated; and N6: δ estimated, ρ estimated. The models were compared using the
Bayesian information criterion (BIC). Because the models were separately estimated for
each country, the distributions of the latent trait θ were subsequently brought onto a
common metric across countries using the mean–mean linking method [89].

For all item response models, the country means of Austria, Germany, France, and
the Netherlands were compared. The entire data preparation and estimation of the models
was conducted in the R software [84]. For estimation of models M1, M2, and M3, the R
package TAM [90] was used. The models M4, M5, M6, and N1 to N6 were estimated with
the rasch.mml2() function of the R package sirt [85].



Knowledge 2023, 3 224

5.3. Results

In Table 1, the country means for all models (M1 to M6) are shown. It is noteworthy
that the two extreme treatments of missing item responses in model M1 (missing item
responses were scored as incorrect) and model M2 (missing item responses were ignored)
resulted in slight differences for Germany and France in comparison to the country mean of
Austria (GER: M1: 537.5, M2: 534.2; FRA: M1: 488.7, M2: 492.4), while the different model
specification led to significant differences for the Netherlands (NLD: M1: 540.3, M2: 523.4).
These findings can be explained by the fact that the proportion of missing item responses
for Dutch students (2.7%) was substantially lower than that for Austrian students (11.2%).

In models M5 and M6, the sensitivity parameters ρ and δ are varied within the
framework of sensitivity analysis that refers to different assumptions of the missing process
for item responses. In practice, the findings presented in Table 1 span the range of the
country means between the extremes of treating missing responses as incorrect (model M1)
and treating them as ignorable (model M2).

Table 1. Country means for Austria (AUT), Germany (GER), France (FRA), and the Netherlands
(NLD) in PIRLS 2011 for different treatments of missing item responses.

Model AUT GER FRA NLD

M1: missing = incorrect 500 537.5 488.7 540.3
M2: missing = ignorable 500 534.2 492.4 523.4
M3: 2-dim. model 500 534.9 492.5 524.8
M4: pseudo-likelihood 500 537.6 489.4 539.5(for multiple-choice items)
M5: pseudo-likelihood

ρ = 0 500 537.3 488.9 539.9
ρ = 0.3 500 537.0 490.1 535.9
ρ = 0.7 500 535.9 491.8 529.5
ρ = 1 500 534.6 493.1 524.0

M6: 2-dim. model
δ = −10 500 538.0 489.1 540.7
δ = −1.5 500 535.9 490.6 532.4
δ = −0.5 500 535.1 491.5 528.0
δ = 0 500 534.6 492.1 525.7

Note. The mean and the standard deviation for Austria (AUT) were fixed at 500 and 100 in all item response
models, respectively.

In Figure 1, the country means are shown as a function of the sensitivity parameters in
models M5 and M6. The ranks of Germany and the Netherlands switch depending on the
parameters ρ and δ. Notably, the country means are continuous and monotone functions of
the sensitivity parameters ρ and δ, respectively.

In Table 2, the BIC is displayed for all five estimated models (N1, ..., N5) and the four
countries (AUT, DEU, FRA, and NLD). It turned out that for three of the four countries
(i.e., AUT, FRA, and NLD), the most general model was preferred that estimated both
missingness parameters ρ and δ. Hence, the latent response propensity is not fully sufficient
to explain missing item responses. The true but unobserved item response itself also
governs the occurrence of missing item responses. Only for DEU, model N3, which
includes a correlation ρ between the latent trait and the latent response propensity but does
not allow an influence of the item response on the response indicator, was the best-fitting
model in terms of the BIC.

From model N6, country-specific missingness parameters can be extracted. The latent
trait θ and the latent response ξ moderately correlated positively (AUT: ρ = 0.31; DEU:
ρ = 0.40; FRA: ρ = 0.47; NLD: ρ = 0.23). The parameter δ was smaller than zero,
indicating that students who omitted items did so because they did not know the item
(AUT: δ = −0.96; DEU: δ = −0.75; FRA: δ = −0.57; NLD: δ = −2.02). Interestingly, the δ
parameter was slightly more negative in model N3, in which the correlation ρ between the
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trait and the response propensity was set to zero (AUT: δ = −1.20; DEU: δ = −1.08; FRA:
δ = −0.58; NLD: δ = −2.39). Importantly, these findings demonstrate that the response
mechanisms differ across countries.

Figure 1. Sensitivity analysis for the country means of Austria (AUT), Germany (GER), France (FRA), and
the Netherlands (NLD). Left figure: Pseudo-likelihood estimation (model M5) as a function of the sensitivity
parameter ρ. Right figure: Two-dimensional model M6 as a function of the sensitivity parameter δ.

Table 2. Model comparison based on the Bayesian information criterion (BIC) for Austria (AUT),
Germany (GER), France (FRA), and the Netherlands (NLD) in PIRLS 2011.

Model AUT DEU FRA NLD

N1: δ = 0, ρ = 0 47,741 36,366 45,029 33,142
N2: δ = −10, ρ = 0 47,827 36,414 45,263 33,144
N3: δ estimated, ρ = 0 47,722 36,365 45,028 33,130
N4: δ = 0, ρ estimated 47,677 36,285 44,888 33,127
N5: δ = −10, ρ estimated 47,790 36,355 45120 33134
N6: δ estimated, ρ estimated 47,666 36,288 44,887 33,120

Note. The parameter ρ is the correlation between the latent trait θ and the latent response propensity ξ. The
parameter δ indicates the dependency of the item response indicator Rpi from the (unobserved) item response Xpi
(see Equation (6)). The model with the lowest BIC is printed in bold.

In Table 3, country means for the five different model specifications (N1 to N5) are pre-
sented. The largest relative changes across models occur for NLD because this country had
the lowest missing item response rates. The models do not substantially differ regarding
the question of whether the correlation ρ between the trait θ and the response propensity θ

is estimated or fixed to zero.

Table 3. Country means for Austria (AUT), Germany (GER), France (FRA), and the Netherlands
(NLD) in PIRLS 2011 for different model specifications of the missingness mechanism

Model AUT DEU FRA NLD

N1: δ = 0, ρ = 0 500 535.4 494.1 526.9
N2: δ = −10, ρ = 0 500 537.6 489.8 542.0
N3: δ estimated, ρ = 0 500 537.1 497.9 530.9
N4: δ = 0, ρ estimated 500 535.1 493.3 526.9
N5: δ = −10, ρ estimated 500 537.6 489.9 542.0
N6: δ estimated, ρ estimated 500 537.4 495.8 530.4

Note. The mean and the standard deviation for Austria (AUT) were fixed at 500 and 100 in all item response
models, respectively.
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6. Discussion

In contrast to statements in the literature [17,24], our analyses of PIRLS 2011 showed
that ignoring missing item responses has an impact on the central results of a study. Country
means varied considerably in different treatments of missing item responses, which raises
the question of the choice of a valid scaling approach.

We argued that the criticism against the scoring of missing item responses as incorrect
based on test-theoretical arguments [17,25] utilizes an intraindividual interpretation of item
response probabilities. In this reasoning, the concepts of aleatoric uncertainty (the statistical
model) and epistemic uncertainty (concerning the assessment of data) are erroneously
confounded. It was also argued that simulation studies to choose the appropriate way to
handle missing item responses are irrelevant to choosing a scaling method (see also [30]).
Since defining an adequate scoring rule for missing responses is not empirically deter-
minable, two different IRT models were proposed, which served as a sensitivity analysis of
different assumptions about missing item responses.

The first alternative one-dimensional IRT model (model M5) is based on a pseudo-
likelihood approach in which the missing item responses can take values between zero
and one. However, this approach has the disadvantage that for item responses, weights
wpi have to be computed. In the second model (model M6), the additional latent response
tendency is introduced, which can be correlated with ability. The missingness of an item
response is allowed to be dependent on the unknown item response itself.

Typically, the sensitivity analyses performed in this paper are preferred to more
complex model specifications, such as pattern mixture models [34]. When imputing missing
data, a range of analysis results can be obtained by varying plausible assumptions on the
missingness [74]. If a prior distribution for a sensitivity parameter characterizing the
assumptions of the missingness process is specified, then a multimodel inference analysis
can be conducted that weighs different theoretical assumptions about the missingness
process [91].

Within the scope of our analysis, we restricted ourselves to the Rasch model. However,
the analysis can be extended to more complex IRT models such as the 2PL, the 3PL, or the
generalized partial credit model. Instead of using a common sensitivity parameter for all
items, this parameter can be separately estimated for each individual item or for individual
item groups (such as multiple-choice items and constructed response items; see [31,80]). If
a country-specific missingness process is estimated (i.e., by assuming country-specific δ
parameters), the comparability of the country means obtained from such IRT models could
be strongly questioned.

As an alternative to model-based treatments of missing item responses, missing values
on items can be multiply imputed [92–94]. The advantage of imputation-based procedures
might be that more complicated (e.g., multidimensional) IRT models might be used for
imputation, while the analysis model is simpler and typically mis-specified (see [31,95]).

Undoubtedly, the best strategy for handling missing data would be to avoid their ap-
pearance [96]. In computerized administered tests, missing item responses can be avoided
by forcing students to respond to an item. However, careless or unmotivated responses
cannot be excluded by such modifications. Students who do not know a constructed
response item will unlikely provide a valid item response if forced by the computer.

We would like to emphasize that we think that the choice of how to score missing
item responses should mainly be made under from a validity perspective [97,98]. That is,
a particular missing data treatment implies a scoring rule for obtaining ability estimates.
The validity of the scoring rule must be discussed regarding the use of the score and
its interpretations [99]. In this sense, we think that scoring missing item responses as
incorrect is the most valid strategy for country comparisons in official reporting of large-
scale educational assessment studies such as PIRLS but may be inappropriate for research
questions involving relations of student abilities and questionnaire scales such as motivation
or self-concept [32]. Hence, there cannot be a general optimal rule for how to handle missing
item responses in all potential applications of a dataset. Our motivation for writing this
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article was that we find scoring strategies inappropriate that do not score missing item
responses as incorrect (see [5]) in studies that involve reporting and comparison of several
states or countries.

As pointed out by an anonymous reviewer, missing item responses should be classified
into omitted and not-reached item responses [100]. Our arguments mainly apply to omitted
item responses within a test. For speed tests, it might be preferable not to score not-
reached item responses as incorrect. However, large-scale assessment studies such PIRLS
are not strongly speeded, and we also think that not-reached items should be scored
as incorrect [32]. However, the recently introduced use of multistage adaptive testing
in educational assessment studies complicates the meaning of not-reached items across
students [101].

The consequences of treating missing item responses as ignorable or incorrect can
also be significant for scaling in longitudinal studies if missing proportions vary by grade,
school track, or time point. In IRT models that assume ignorable missing item responses,
the meaning of the identified ability remains unclear. If an ability in a particular domain is
just defined by the correctly solved items in a test, in our view, a non-circular and more
valid definition of ability is obtained. Consequently, it can be concluded that missing item
responses cannot be ignorable or partially ignorable.

7. Conclusions

In this article, we argued that treating missing item responses as ignorable or partially
ignorable in IRT models involving a latent response propensity does not necessarily lead to
valid substantive conclusions. To handle such nonignorable item responses, we proposed
two types of statistical sensitivity analyses that include scoring missing item responses
as incorrect and the treatment as ignorable as two extreme cases. By doing so, a range of
plausible parameter estimates can be obtained. The two types of sensitivity analyses were
illustrated using PIRLS 2011 with four countries. It has been shown that assumptions about
the missing data mechanism did impact the country means and the ranking, as well as
differences between countries.
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