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Abstract: Predicting the post-blast re-entry time precisely can improve productivity and reduce
accidents significantly. The empirical formulas for the time prediction are practical to implement,
but lack accuracy. In this study, a novel method based on the back-propagation neural network
(BPNN) was proposed to tackle the drawbacks. A numerical model was constructed and 300 points
of sample data were recorded, with consideration to fresh air volume, occupational exposure limit,
toxic gas volume per kg of explosives and roadway length. The BPNN model with six neurons
in a hidden layer was then developed and prediction performance was discussed in terms of four
indicators, namely, the root mean square error (RMSE), the coefficient of determination (R2), the
mean absolute error (MAE) and the sum of squares error (SSE). Furthermore, one representative
empirical formula was introduced and calibrated for the comparison. The obtained results showed
that the BPNN model had a more remarkable performance, with RMSE of 21.45 (R2: 0.99, MAE: 10.78
and SSE: 40934), compared to the empirical formula, with RMSE of 76.89 (R2: 0.90, MAE: 42.06 and
SSE: 526147). Hence, the BPNN model is a superior method for predicting the post-blast re-entry
time. For better practical application, it was then embedded into the software.

Keywords: post-blast re-entry time; back-propagation neural network; underground mine

1. Introduction

The number of underground mines is increasing due to the depletion of resources on
the surface. The drill and blast (D&B) and tunnel boring machines (TBM) have been used
in underground mines for excavation. Although TBM has been adopted at sites such as
San Manual Mine and Stillwater Mine [1], many difficulties, including cutter wear and
rock popping, etc., have hindered its development [2]. Consequently, D&B is still the
main excavation method due to its flexibility and economy [3,4]. However, one of the
shortcomings of D&B is that it emits a substantial amount of toxic gases, including carbon
monoxide (CO), nitric oxide (NO) and nitrogen dioxide (NO2). Among them, CO is the
primary research object, due to its stability and large quantity [5]. For the purposes of
improving cleaning efficiency and enhancing the production capacity, ventilation has been
identified as one of the most effective methods and has been used widely [6].

The ventilation time taken to reduce the toxic gas concentration below the occupational
exposure limit is defined as the post-blast re-entry time [5]. Additionally, a report has shown
that most mines have more than four blasts per day, so estimating the post-blast re-entry
time as accurately as possible will avoid the loss of significant amounts of production
time [7]. Several methods have been studied and applied. For example, many mines have
relied on the fixed-time interval to determine when the miners can re-enter the heading
face to work continuously [8]. However, it should be noted that this may lead to a number
of associated safety and health issues for workers. In order to improve accuracy, some
empirical formulas were developed by using the flow balance, fitting the data obtained
from numerical simulations, site tests, and laboratory experiments [4,7,9–15]. Despite
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the considerable advantages of empirical formulas, such as being simple, convenient,
and timesaving, the calculation is less universal so that some parameters such as the
dilution efficiency factor, need to be calibrated according to the particular mine where the
concentration data can be monitored [15].

As opposed to the empirical formulas, artificial intelligence (AI) technologies have a
good history of performance in prediction [16]. The technique has gained popularity in
many fields, including UCS of rock [17,18], shear strength of rockfill material [19], backbreak
in open-pit mines [20], ozone concentration [21] and carbon monoxide concentration [22].
Additionally, the AI technologies have the ability to consider several factors, and the results
can be obtained directly based on the optimized AI model. AI can also avoid the above-
mentioned limitations of the empirical formula. However, AI technologies have rarely been
implemented into the re-entry time prediction, to the author’s knowledge.

Gathering reliable sample data is necessary for the construction of AI models [23].
Field data is of course the most reliable type, but one that is not easy to access, due to
the harsh environment in the mines [24]. On the contrary side, numerical simulation has
gained worldwide attention in the study of the migration behaviors of blasting production
in the underground roadway, owing to the superiority of visualization, data richness
and ease of operation [25–28]. However, the length of these models is typically short,
as numerical simulation requires a high level of computational performance, especially
for long roadways with a significant amount of nodes. The Ventsim software, which is
based on the Hardy Cross algorithm, and which has been used to study the post-blast
re-entry time in some complex roadways with affordable computation time [15,29], was
thus selected to calculate the time under various conditions in this study.

Therefore, this paper aims to develop a BPNN model for predicting the post-blast
re-entry time. The rest of this study is organized as follows. The section titled “Model
process and data preparation” introduces the construction of models used, as well as the
process of database establishment, including the selection and analysis of parameter ranges.
The section titled “Methodology” describes the algorithm of BPNN as well as the process of
calibrating the empirical formula in detail, in addition to four indicators adopted to evaluate
the performance of proposed models. The section titled “Results and discussions” contains
the description of building the architecture of the BPNN and a performance comparison of
both models for the time prediction. The section titled “Algorithm embedding” exhibits one
software developed based on the proposed models. In the last section, the main conclusions
and future development are given.

2. Model Process and Data Preparation
2.1. Model Construction

The research object is one cross-section of the roadway at a depth of approximately
580 m below the surface. The section’s size and its corresponding 3-D model constructed in
Ventsim are shown in Figure 1. It is a three-core arch structure with an area of 14.04 m2. The
width, wall height and arch height are 3.95 m, 2.8 m and 0.95 m, respectively. Facilities such
as cables and supports inside the roadway were not taken into consideration. The amount
of explosives used each time are about 40 kg and the temperature is around 300 K. It is
worth pointing out that the ventilation duct was placed off the roadway in this software for
the convenience of real-time viewing of ventilation performance.
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Figure 1. Geometry of researched model.

2.2. Database Generation

Four parameters, namely, average velocity within the roadway, occupational exposure
limit, toxic gas volume per kg of explosives and length of roadway, have frequently been
considered when calculating the relevant time [11,15]. Hence, these four parameters were
also used for developing the BPNN model in this study. Due to the fact that the fresh-air
volume of the ventilation duct has a considerable impact on the average velocity within
the roadway, the minimal average velocity in the excavation roadway was set at 0.25 m/s
and the highest average velocity was set at 4 m/s in the mining area, given in the safety
regulations for metal and nonmetal mines of China [30]. As a consequence, the average
velocity ranged from 0.25 m/s to 4 m/s in this study. Moreover, some indexes for assessing
occupational exposure limit have been proposed, depending upon the actual requirements.
For example, time weight average (TWA) is defined as the average permissible concen-
tration within a normal 8 h workday and 40 h work-week. Short term exposure limit
(STEL) considers the permissible concentration limit for up to 15 min with the serious
implementation of the TWA. Table 1 shows the TWA and STEL of different countries for
CO. It can be seen that China has the strictest regulations for exposure concentration, so
24 ppm was used as the monitoring standard rather than the 16 ppm level found in some
regulations [31]. Taking all of the above factors into account, the occupational exposure
limits in this study were taken to be between 24 ppm and 50 ppm, in order to meet a variety
of requirements.

Toxic gas production is susceptible to a variety of influencing factors, such as the sort
of explosives [32], the environment of the roadway [33], the type of blasting design, the
method of detonation, and so on [34]. Therefore, the amount of toxic gases produced in
each detonation varies slightly. The #2 rock emulsion explosive was adopted in this study.
The toxic gas volume per kg of explosives in the underground roadway is from 36 L/kg to
42 L/kg, as given by Wang [35]. In addition, the length of the roadway is increased with
the continuous construction of excavation engineering. Herein, the range from 200 m up
to 1500 m was studied. Figure 2 presents the minimum, lower quartile, median, upper
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quartile and maximum for each parameter in boxplots. It illustrates that each parameter
shows a uniform distribution.

Table 1. Occupational exposure limit for CO in different countries [13].

TWA/ppm STEL/ppm

ASM-2 50 100
NIOSH REL 35 200

NOHSC 30 200
OSHA PEL 35 200

CHINA 16 24
Note: ASM-2 is Instructions Technique Complementary to Mining Safety Actions (Spain); NIOSH is the National
Institute for Occupational Safety and Health; NOHSC is the National Occupational Health and Safety Commission;
OSHA is the Occupational Safety and Health Administration.
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A total of 300 input samples were generated based on the ranges mentioned above,
and then these models with specific parameter values were constructed and simulated
in Ventsim software to predict the post-blast re-entry time. In total, 300 pieces of data
were archived herein as described in Appendix A. The correlation matrix of the dataset is
presented in Figure 3. The distributions and correlation coefficients for any two parameters
are presented in the lower and upper of this figure, respectively. For the lower, it is
clear that the relationship between the inputs and outputs is nonlinear where only the
relationship of velocity versus time reveals a distribution similar to a negative exponential.
For the upper, the darker the blue, the stronger the negative correlation. Conversely, the
lighter the red, the weaker the positive correlation. As can be observed, the correlation
coefficient between the four input parameters is low, as they are independent of each other.
Additionally, both length and velocity show statistically significant relationships with the
time, after significance tests. Despite the fact that gas and limit have lower correlation
coefficients, these parameters still remain valid for the subsequent comparative analysis
with the empirical formula.
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3. Methodology
3.1. BPNN Algorithm

BPNN is a classical supervised learning method fusing the feedforward neural network
and the back-propagation algorithm. It has been used in many fields and achieved excellent
performance because of its capabilities of outstanding nonlinear fitting and generalization.
For instance, Li et al. [23] have successfully used a BPNN model to predict the stress values
when evaluating pillar stability. Zhao et al. [36] applied an integrated model based on the
traditional BPNN to predict air pollution concentration and demonstrated that the method
is more practical. Hence, BPNN was chosen in this study for predicting the post-blast
re-entry time. There are five steps, namely, initialization of weights and biases, feedforward
propagation of data, back-propagation of error, optimization of weights and biases and
judgment of termination conditions.

At first, weights w and biases θ at the hidden layer and output layer are initialized
with random numbers. The magnitude of each weight stands for the degree of influence
of the connected neurons on the output, while the bias represents the level of difficulty in
generating activation. After that, the accumulation of yj in the hidden layer and zk in the
output layer can be calculated by the following formulas, respectively:

yj = f

(
n

∑
i=1

(
wij × xi

)
− θj

)
(i = 1, 2, · · · n ; j = 1, 2, · · ·m) (1)

zk = f

(
m

∑
j=1

(
wjk × yj

)
− θk

)
(j = 1, 2, · · ·m ; k = 1, 2, · · · l) (2)

where f is an activation function; x, y and z are the output values of the input layer, hidden
layer and output layer, respectively; and n, m and l represent the number of neurons at the
input layer, hidden layer and output layer, respectively.

Afterward, the back-propagation is performed. The neuron error in the hidden layer
and the output layer are Ej and Ek, respectively. As the error is the functions of weights,
the tuning weights ∆wij between the input layer and the hidden layer as well as the tuning
weights ∆wjk between the hidden layer and the output layer are as follows:

∆wij = −η
∂Ej

∂wij
(3)

∆wjk = −η
∂Ek
∂wjk

(4)

where η is the learning rate.
Subsequently, the updated weights wij (t + 1) and wjk (t + 1) are given as:

wij(t + 1) = wij(t) + ∆wij (5)

wjk(t + 1) = wjk(t) + ∆wjk (6)

where t represents the number of iterations.
Finally, the process of training is conducted until the convergence conditions are

satisfied, or otherwise, these steps (except for the initialization) are looped. In total, the
framework of this research based on the BPNN model can be found in Figure 4.
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3.2. Calibrating Empirical Formula

The schematic of ventilation in the longitudinal profile of the roadway is presented
in Figure 5. It is given that the length of the working area and roadway are L0 and L,
respectively. The area of roadway is S. The fresh air volume discharged from the ventilation
duct is Q and the toxic gases concentration uniformly distributed in the working area of
volume V is C0 at the initial moment. According to the flow balance, the amount of toxic
gases removed after ∆t time of ventilation is Q × ∆t. Hence, the concentration C after T
time of ventilation can be calculated by the following:

C = lim
n→∝

C0(
V −Q∆t

V
)

n
= lim

∆t→0
C0(1−

Q∆t
V

)

T
∆t

= C0e−
TQ
V (7)

where n is the ratio of T to ∆t.



Knowledge 2023, 3 135Knowledge 2023, 3, FOR PEER REVIEW 8 
 

 

 
Figure 5. Schematic of ventilation. 

Furthermore, some other empirical formulas shown in Table 2 have been developed 
by using different techniques such as mathematical derivation, data fitting and formula 
calibration. Among them, the empirical formula given by [15] was selected for comparison 
with the BPNN model because it provides some optimization based on Equation (8) and 
is more representative than others. 

Table 2. Empirical formulas for time prediction. 

Reference Equation Way 

[4] 
( )2

4

2 π

 − −
  
 =

L uT
DTGVC e

A DT
 Calibration 

[7] 
.

.
60 119

12 924
− − 

 =
Q

T e  Calibration 

[7] .. 1 5742383 7 −=T Q  Calibration 
[9] 1 2 1 1n n n nC p T p T p T p− += + + + +  Fitting 

[9] 
.

.

26 464
0 86761048
− − 

 =
T

C e  Fitting 

[10] .. 0 001713 118= LT e  Fitting 

[11] ln
 

=  
 T

CT n
C

 Derivation 

[11] 
( ) ( )
( ) ( )ln
 + − +
 =

+  + − + 

g g g

g g g g T

Q QB Q Q CVT
Q Q Q QB Q Q C

 Derivation 

[15] ln
 

=  ×  
w

d T

V CT
Q f C

 Calibration 

Note: T: ventilation time required, min or s; Q: fresh air quantity, m3/s; C: gas concentration at the 
beginning of ventilation, ppm; p1, p2, …, pn+1: fitting constants; VW: volume of working space, m3; fd: 
dilution efficiency factor; CT: gas concentration at time T, ppm; VG: volume of gas at the heading and 
beginning of time, m3; A: area of cross-section of roadway, m2; D: effective axial dispersion factor, 
m2/s; L: distance away from the heading, m; u: average air velocity, m/s; n: numbers of fresh air 
which is passing through the working space; Qg: inflow rate of the toxic gases, m3/s; and Bg: concen-
tration of toxic gases in the ventilation duct, %. 

To acquire dilution efficiency factor fd in the formula given by [15], the sample with 
the post-blast re-entry time of 86 s, velocity of 3.79 m/s, length of 474 m, gas production of 
36.2 L/kg and exposure limit value of 34 ppm was randomly picked. Some other parame-
ters, namely the working space Vw, fresh air quantity Q and gas concentration C need to 
be calculated as follows, respectively: 

Figure 5. Schematic of ventilation.

Moreover, Equation (7) can be further written by taking the logarithm as:

T =
V
Q

ln
C0

C
(8)

Furthermore, some other empirical formulas shown in Table 2 have been developed
by using different techniques such as mathematical derivation, data fitting and formula
calibration. Among them, the empirical formula given by [15] was selected for comparison
with the BPNN model because it provides some optimization based on Equation (8) and is
more representative than others.

To acquire dilution efficiency factor fd in the formula given by [15], the sample with
the post-blast re-entry time of 86 s, velocity of 3.79 m/s, length of 474 m, gas production
of 36.2 L/kg and exposure limit value of 34 ppm was randomly picked. Some other
parameters, namely the working space Vw, fresh air quantity Q and gas concentration C
need to be calculated as follows, respectively:

Vw =
G× b

x0
(9)

Q = u× A (10)

C =
28× G× b

29× l × A− G× b
(11)

l = 15 +
G
5

(12)

where G is the mass of the explosive, kg; b is the toxic gas volume per kg of explosives,
m3/kg; x0 is the peak concentration of gas at the entrance monitored, ppm; and l is the
throwing distance of toxic gas, m.



Knowledge 2023, 3 136

Table 2. Empirical formulas for time prediction.

Reference Equation Way

[4] C = VG

2A
√
πDT

e(
−(L−uT)2

4DT ) Calibration

[7] T = e−(
Q−60.119

12.924 ) Calibration
[7] T = 2383.7Q−1.574 Calibration
[9] C = p1Tn + p2Tn−1 + · · ·+ pnT + pn+1 Fitting
[9] C = 1048e−(

T−6.464
0.8676 )

2
Fitting

[10] T = 13.118e0.0017L Fitting
[11] T = n ln

(
C

CT

)
Derivation

[11] T = V
Q+Qg

ln
[
(Qg+QBg)−(Q+Qg)C

(Qg+QBg)−(Q+Qg)CT

]
Derivation

[15] T = Vw
Q× fd

ln
(

C
CT

)
Calibration

Note: T: ventilation time required, min or s; Q: fresh air quantity, m3/s; C: gas concentration at the beginning
of ventilation, ppm; p1, p2, . . . , pn+1: fitting constants; VW: volume of working space, m3; fd: dilution efficiency
factor; CT: gas concentration at time T, ppm; VG: volume of gas at the heading and beginning of time, m3; A: area
of cross-section of roadway, m2; D: effective axial dispersion factor, m2/s; L: distance away from the heading, m;
u: average air velocity, m/s; n: numbers of fresh air which is passing through the working space; Qg: inflow rate
of the toxic gases, m3/s; and Bg: concentration of toxic gases in the ventilation duct, %.

After that, the dilution efficiency factor of 0.73 can be obtained. The final empirical
formula, which was employed to calculate the post-blast re-entry time and then compared
to the BPNN, is given below:

T =
Vw

0.73Q
ln
(

C
CT

)
(13)

3.3. Performance Indicators for the Assessment of Models

Four performance indicators, the root mean square error (RMSE), the coefficient of
determination (R2), the mean absolute error (MAE) and the sum of squares error (SSE) were
chosen to evaluate the performance of the models developed in this study [37]. Among
them, RMSE is taken to measure the deviation between the actual value and the predicted
value, where the smaller the value, the better the model’s performance. R2 is available
to represent the goodness of fit of the model to the sample data. The closer it is to 1, the
stronger the fit is. MAE can reflect the extent of actual prediction error, with smaller values
indicating that the prediction is closer to the actual value. SSE is the accumulation of
squared error between the predicted value and the actual value. A larger value means
a worse quality model when the number of samples is the same. They are defined by
the following:

RMSE =

√
1
n

n

∑
i=1

(Timeo,i − Timep,i)
2 (14)

R2 = 1−

n
∑

i=1
(Timeo,i − Timep,i)

2

n
∑

i=1
(Timeo,i − Timeo)

2
(15)

MAE =
1
n

n

∑
i=1

∣∣Timeo,i − Timep,i
∣∣ (16)

SSE =
n

∑
i=1

(Timeo,i − Timep,i)
2 (17)

where n is the number of samples; Timeo,i, Timep,i are the post-blast re-entry time of actual
value and the predicted value, respectively; and Timeo represents the mean value of actual
post-blast re-entry time.
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4. Results and Discussion
4.1. Building the Architecture of the BPNN

An excellent BPNN model, one which has the best weights obtained from the training
phase, can predict the post-blast re-entry time precisely. In this study, the BPNN model
built on MATLAB was trained and tested with 210 samples (70%) and 90 samples (30%),
respectively. The changes in RMSE and R2 were recorded while the model had a different
number of neurons at the hidden layer, as shown in Table 3. It can be summarized that
the model with six neurons in the hidden layer performed best in which the lowest RMSE
of 12.6171 and the highest R2 of 0.9975 can be acquired. At the same time, it also has
a remarkable performance in the testing phase. Hence, this model was served as the
final post-blast re-entry time prediction model and the schematic diagram is presented in
Figure 6.

Table 3. Performance of BPNN models with different numbers of neurons in the hidden layer.

Model Neurons
RMSE R2

Training Testing Training Testing

1 2 16.0196 21.9249 0.9959 0.9922
2 3 55.9012 37.0202 0.9502 0.9776
3 4 72.4646 60.601 0.9163 0.9401
4 5 61.6996 50.5617 0.9393 0.9583
5 6 12.6171 21.3421 0.9975 0.9926
6 7 14.3551 21.026 0.9967 0.9928
7 8 14.7677 21.4577 0.9965 0.9925
8 9 14.2703 22.0516 0.9968 0.9921
9 10 13.1419 21.6439 0.9973 0.9924

Note: the line in bold type indicates the best model.
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4.2. Performance Comparison between BPNN and Formula

The BPNN and empirical formula previously developed were run to predict the post-
blast re-entry time in the training set and the test set. The models’ performance, including
RMSE, R2, MAE and SSE, was summarized in Table 4. As can be seen in this table, the
BPNN model has a better performance in both the training set and the test set than does
the empirical formula. The average prediction error of BPNN in the test set is only 10.78 s,
which is approximately a quarter of the empirical formula. Additionally, the goodness of
fit of BPNN is closer to 1, indicating that it can better account for the relationship between
the inputs and output than can the empirical formula. It should be noted that the delay
caused by the empirical formula each time will accumulate with the increasing number
of detonations. To reduce the losses, the BPNN model should be adapted to predict the
post-blast re-entry time.

Table 4. Performance comparison of both models.

Indicators
Training Testing

Empirical BPNN Empirical BPNN

RMSE 61.81 12.61 76.89 21.34
MAE 38.34 7.66 42.06 10.78

R2 0.94 0.99 0.90 0.99
SSE 798352 33429 526147 40934

In order to compare the performance of both models more exactly, the regression
diagrams in the training phase and the testing phase are described in Figure 7. The
horizontal axes represent the actual time. The vertical axes render the prediction value
obtained from the BPNN and the empirical formula. The slope of diagonal lines with the
black color is 1. Other radical lines with deviations of 10% and 30% from the diagonal
lines are also drawn in this diagram. Taken as a whole, the BPNN model has a higher
accuracy than does the empirical formula in both sets, because the data points are closer to
the diagonal line, whereas some data points obtained from the empirical formula are far
outside of the line of 30%, especially in the testing phase. It can also be seen that most of
them are larger than the actual time when the ventilation time required is larger than 400 s.
At the same time, the BPNN in the testing phase has a larger error than in the training
phase, but these data points are almost limited to the radical line of 10%. Hence, the BPNN
model can offer more stable performance and more accurate results.
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Figure 7. Regression diagrams of both models in the training and testing phase: (a) BPNN in training
phase; (b) empirical formula in training phase; (c) BPNN in testing phase; and (d) empirical formula
in testing phase.

Figure 8 illustrates the error distributions of both models in the training phase and
testing phase and some statistical indicators, i.e., the minimum of error (Errormin), the
maximum of error (Errormax), the mean of error (Errormean) and the standard deviation
of error (ErrorSt.D) are contained in this figure as criteria. The horizontal axes represent
the error values between the actual time and the predicted time. The vertical axes are the
count within a specified error range. Accordingly, the higher the error bar near the origin
and the lower the statistical indicators are, the smaller the model error. As can be realized,
the BPNN shows promising results because the region of horizontal axes of the first bar
is only from 0 to 10 in the BPNN model when the count of the first bar is almost equal
in both models. Additionally, it can be observed that the empirical formula has similar
performance in both the training phase and the testing phase.
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5. Algorithm Embedding

Given the complicated environment on the site and the inconvenience of running
code in the engineering practice, some scientists have performed a lot of work on the
application of construction schedule methods, such as the use of software. Song et al. [38]
developed a universal engineering construction system simulation software for the con-
struction schedule visualization simulation of hydraulics and hydropower. Wang et al. [10]
embedded a ventilation time function in existing software to replace the empirical values
for the construction processes and schedule arrangement. In this study, the trained BPNN
model was embedded into an existing software module named Simulation Software for
Post-blast Re-entry to enhance the performance and facilitate practical use in the central
control room located on the surface (see Figure 9). It can be seen that the prediction time
obtained from the BPNN model is displayed as both numeric and bar values. Additionally,
some optimizations have been applied to the software based on this study. For example,
the standard concentration can be input more flexibly according to the requirements rather
than using the fixed one. The dilution efficiency factor in the empirical formula was also
appended to this software to provide more reference information for users in the period of
decision-making. Furthermore, the software can also be utilized to support the formulation
of a preliminary schedule. To respond to the call to develop an intelligent mine, interfacing
with the mine’s integrated system will be the object in future research.
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6. Conclusions

Determining the post-blast re-entry time is essential in the excavation field of tunnel
and mining to prevent the occurrence of poisoning and asphyxiation incidents. In this
paper, a BPNN model was proposed with consideration of four parameters most used in
former studies. An empirical formula was calibrated to compare the performance with
the proposed BPNN model. It found that the BPNN model with six neurons in the hidden
layer outperforms the others. Furthermore, the results show that the BPNN model has a
higher reliability and accuracy (RMSE: 21.45; R2: 0.99; MAE: 10.78; SSE: 40934) compared
with the empirical formula (RMSE: 76.89; R2: 0.90; MAE: 42.06; SSE: 526147). In order
to facilitate the engineering use of the BPNN model developed in this study, the model
has been embedded in one software application. The operator can not only set schedules
for production tasks in advance but also can perform some ventilation optimization by
adjusting parameters in this software to facilitate the cleaning efficiency of toxic gases.

This study provides an effective tool for the prediction of post-blast re-entry time in
excavation engineering. However, some other influence factors, such as the temperature
and the interactions between the wall roughness and the velocity of airflow, etc., may also
affect the results; a fact which should be considered to achieve a better agreement between
the predicted results and the actual situations. This will be discussed in future research.
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Appendix A

Length/(m) Gas/(L/kg) Velocity/(m/s) Limit/(ppm) Time/(s)

1 469 40.47 1.31 38.52 246
2 921 39.53 2.57 31.90 140
3 1475 40.77 2.33 32.69 185
4 893 37.50 0.38 32.40 1040
5 393 40.27 1.34 24.62 246
6 243 38.16 2.37 37.60 121
7 256 40.40 3.25 33.73 90
8 439 40.02 2.10 41.43 152
9 324 40.61 0.69 29.08 448
10 347 41.58 1.77 44.34 166
11 510 38.91 2.31 31.86 145
12 474 36.20 3.79 33.98 86
13 954 36.09 3.50 38.44 107
14 1145 37.83 1.59 30.45 246
15 1381 36.61 1.99 40.52 201
16 967 39.21 1.72 34.15 221
17 385 41.72 3.21 36.36 94
18 601 38.99 1.03 36.23 336
19 977 36.35 1.92 30.20 200
20 1028 38.84 2.40 38.10 169
21 957 40.69 2.92 41.64 129
22 733 37.23 3.53 25.00 101
23 1459 41.48 3.54 49.79 120
24 307 36.69 0.77 31.24 401
25 363 41.33 0.79 39.60 377
26 535 37.85 3.66 46.26 89
27 1358 37.93 1.17 42.51 337
28 1490 40.42 2.49 34.57 174
29 891 39.11 3.62 35.44 109
30 1388 36.72 3.89 36.69 104
31 1287 38.94 1.65 39.18 270
32 865 41.51 1.08 30.82 354
33 1089 38.02 0.30 27.91 1419
34 271 41.53 0.42 37.10 679
35 799 38.20 3.26 26.70 121
36 1056 40.83 0.92 35.32 456
37 1218 39.50 1.45 24.92 289
38 1261 41.46 2.26 41.85 193
39 540 39.51 3.22 41.22 102
40 1160 36.17 0.55 42.26 729
41 454 41.63 2.36 45.01 131
42 875 39.01 0.47 47.88 723
43 1343 36.12 1.73 26.25 270
44 1414 41.35 1.38 38.31 299
45 606 40.44 3.77 26.08 92
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Length/(m) Gas/(L/kg) Velocity/(m/s) Limit/(ppm) Time/(s)

46 1002 41.98 1.80 48.54 219
47 1449 37.53 2.19 47.50 193
48 266 39.80 2.53 45.38 115
49 302 41.93 3.31 25.87 95
50 1383 41.23 0.85 45.80 471
51 1033 40.59 1.70 37.31 240
52 1134 38.15 2.47 40.43 157
53 530 41.75 0.88 28.33 395
54 1495 37.79 3.83 28.24 114
55 1302 38.35 2.76 29.16 163
56 779 36.96 2.51 29.41 152
57 931 36.44 1.63 43.76 224
58 487 39.94 1.22 44.68 257
59 246 36.57 1.04 40.81 282
60 322 36.89 3.92 42.72 74
61 1114 36.37 3.69 27.95 120
62 373 39.85 3.13 30.66 98
63 1322 40.91 3.38 37.06 136
64 591 41.14 3.61 29.78 94
65 1363 39.36 2.08 36.44 228
66 467 37.42 1.89 24.50 182
67 771 36.16 1.30 27.20 290
68 317 41.21 2.79 39.35 107
69 738 39.38 1.75 47.09 205
70 809 37.48 1.40 28.99 254
71 916 37.14 1.46 34.98 244
72 1048 41.88 3.02 40.39 138
73 952 39.93 2.24 46.67 167
74 236 38.77 0.34 43.09 831
75 520 36.46 0.61 34.48 558
76 566 36.22 0.94 30.24 372
77 1332 38.68 1.91 44.88 242
78 1221 37.90 0.32 37.69 1332
79 946 37.95 2.94 45.17 126
80 759 40.64 2.03 30.86 183
81 936 38.12 1.19 36.65 307
82 1279 38.09 2.96 43.64 149
83 406 36.83 3.60 45.72 85
84 642 36.32 3.86 44.55 88
85 352 37.98 2.87 27.74 110
86 449 39.46 0.50 25.21 652
87 1211 38.54 3.55 35.19 117
88 1373 37.21 0.64 49.75 618
89 489 37.68 1.69 49.96 187
90 855 37.75 3.56 39.77 106
91 1231 41.73 2.56 47.25 166
92 225 41.01 2.23 27.08 133
93 1292 40.32 1.18 26.87 379
94 446 40.91 1.84 30.32 177
95 804 41.65 0.49 32.07 717
96 1424 38.79 3.72 30.41 111
97 860 38.52 1.52 25.46 250
98 1246 40.86 3.64 25.66 118
99 495 38.49 2.67 35.65 120

100 708 38.59 3.85 32.11 89
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Length/(m) Gas/(L/kg) Velocity/(m/s) Limit/(ppm) Time/(s)

101 1180 39.75 3.03 49.13 134
102 1038 37.36 1.00 26.04 409
103 576 40.05 3.05 38.77 107
104 1297 36.15 2.32 35.23 194
105 1063 41.38 2.82 26.29 150
106 1068 37.06 3.63 31.65 117
107 814 39.68 1.16 34.36 309
108 794 37.80 2.38 43.72 146
109 1119 38.47 3.45 33.32 111
110 413 37.38 0.68 43.97 463
111 203 41.79 1.15 49.04 242
112 210 40.52 2.59 42.10 109
113 220 39.48 0.86 39.39 331
114 1444 41.80 0.39 24.58 1284
115 748 36.07 2.97 40.02 123
116 1378 39.56 1.78 32.32 269
117 291 36.30 1.82 37.94 164
118 784 39.28 3.78 49.33 91
119 1368 41.60 2.95 29.82 161
120 850 40.00 2.39 44.80 157
121 677 39.98 3.95 38.14 91
122 1282 36.47 3.99 48.92 111
123 934 41.57 2.06 25.12 202
124 703 36.62 1.33 32.90 283
125 690 40.24 3.67 36.56 90
126 1348 39.19 2.90 48.34 135
127 1470 39.83 1.06 27.33 404
128 251 38.96 3.58 28.37 84
129 873 40.39 1.61 42.60 241
130 429 36.25 3.07 28.74 107
131 1226 38.05 1.98 33.57 214
132 261 37.70 2.09 33.15 145
133 545 40.81 1.93 44.59 173
134 698 41.19 0.75 27.54 496
135 1454 39.65 2.63 42.47 161
136 1129 37.65 2.25 37.27 172
137 332 40.72 1.21 31.49 251
138 568 41.50 2.52 42.80 128
139 1124 40.20 1.11 44.38 345
140 926 40.99 3.70 46.63 98
141 880 41.16 2.13 37.73 183
142 1251 36.02 3.17 31.03 136
143 718 37.60 0.81 35.02 430
144 1178 41.13 0.46 43.84 883
145 1241 39.14 0.93 40.18 461
146 444 37.78 3.23 36.48 100
147 1327 37.31 1.27 32.94 363
148 357 39.35 3.52 33.11 87
149 629 40.09 0.82 33.24 404
150 1256 38.44 1.09 46.88 397
151 1434 36.40 1.10 38.93 378
152 682 40.68 2.98 24.08 122
153 657 36.49 2.28 25.25 153
154 652 40.35 0.62 40.60 555
155 1340 38.24 0.99 31.36 468
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Length/(m) Gas/(L/kg) Velocity/(m/s) Limit/(ppm) Time/(s)

156 1353 40.62 3.48 43.30 113
157 886 36.54 2.48 24.79 159
158 1155 40.74 3.28 47.30 121
159 434 38.86 0.96 46.46 326
160 548 38.39 3.75 25.96 90
161 789 40.37 1.02 48.75 340
162 1170 40.46 2.75 29.28 146
163 992 37.41 2.74 38.98 142
164 688 36.67 1.86 48.96 178
165 1312 37.43 1.79 41.01 254
166 1480 36.52 0.45 31.70 966
167 1150 39.43 1.26 48.29 314
168 378 40.84 0.26 48.50 1113
169 459 37.28 2.71 39.97 116
170 609 39.57 0.76 45.92 417
171 550 36.02 2.61 37.48 129
172 1139 41.68 3.84 39.56 102
173 812 41.28 2.29 47.80 155
174 555 39.16 0.27 32.53 1254
175 710 37.05 0.28 41.56 1213
176 337 36.10 2.02 46.21 147
177 743 41.06 0.95 42.05 381
178 835 40.17 2.69 25.62 137
179 1236 37.04 1.37 45.22 312
180 662 38.10 2.86 30.61 123
181 1216 40.22 3.08 40.64 136
182 1317 39.41 3.81 44.18 120
183 1195 38.81 0.63 26.91 649
184 723 39.88 1.94 28.95 180
185 627 37.26 0.48 36.27 687
186 284 37.57 3.14 41.76 92
187 368 37.09 1.96 38.73 154
188 941 40.30 3.97 32.74 93
189 479 38.32 3.32 47.67 93
190 987 40.10 0.72 35.81 539
191 1462 39.28 0.53 37.40 797
192 342 38.07 0.60 49.38 479
193 286 40.12 3.87 47.05 75
194 1175 37.33 3.46 29.20 116
195 1109 41.28 1.64 28.53 270
196 223 36.39 2.68 32.20 109
197 281 38.67 2.70 33.36 113
198 616 38.30 1.29 43.14 250
199 972 40.89 1.24 24.83 307
200 728 41.56 2.85 37.52 124
201 1404 37.58 2.84 33.94 143
202 1185 41.85 0.98 35.86 414
203 1307 40.49 0.52 46.05 865
204 241 41.11 1.47 45.84 191
205 754 38.25 0.70 39.14 527
206 528 37.13 2.22 33.44 157
207 621 41.95 1.87 34.77 192
208 693 39.09 2.80 43.93 119
209 1023 37.19 2.05 41.06 197
210 901 36.05 0.91 49.17 387
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Length/(m) Gas/(L/kg) Velocity/(m/s) Limit/(ppm) Time/(s)

211 1015 36.24 1.53 46.96 262
212 1198 37.72 1.07 46.76 385
213 1190 36.84 2.15 27.70 190
214 312 39.60 1.88 40.22 155
215 1409 38.64 0.73 41.26 560
216 1165 39.31 2.34 24.17 171
217 418 39.73 1.49 36.85 214
218 505 36.74 1.14 26.50 290
219 830 38.74 2.21 36.90 166
220 647 38.89 3.39 45.63 101
221 1360 41.05 2.43 28.04 195
222 764 37.35 2.45 48.71 136
223 388 38.02 3.68 42.68 83
224 1073 39.04 0.83 29.62 513
225 464 39.26 1.55 41.47 205
226 304 39.05 1.35 48.84 217
227 1200 40.02 1.54 32.28 268
228 1393 39.06 3.09 25.41 157
229 825 36.77 3.40 37.89 107
230 1058 39.90 1.39 42.89 302
231 1485 38.17 1.62 46.42 268
232 649 37.94 1.76 39.48 195
233 769 39.78 0.40 41.68 830
234 1271 39.95 0.57 29.57 774
235 713 41.36 3.15 46.84 110
236 1421 40.16 3.44 48.00 120
237 327 39.23 2.99 35.40 100
238 962 36.94 0.58 28.78 653
239 853 39.79 3.29 38.64 115
240 383 36.59 2.78 47.71 108
241 1053 37.56 0.71 47.92 504
242 296 38.62 0.80 24.37 400
243 581 37.73 0.41 26.45 872
244 586 39.70 2.44 24.42 150
245 974 38.61 2.83 49.88 135
246 911 41.70 0.29 43.55 1209
247 820 41.83 3.74 40.85 96
248 525 38.00 1.32 34.40 261
249 870 36.81 3.01 34.19 128
250 1094 41.78 2.16 31.28 201
251 896 40.57 3.18 27.29 125
252 423 41.04 3.51 34.82 92
253 1007 36.68 0.84 43.51 472
254 365 39.13 2.60 26.16 121
255 398 37.88 0.87 29.99 363
256 1013 39.33 2.93 28.16 136
257 1104 39.63 0.37 34.61 1016
258 1137 37.28 3.37 27.00 135
259 632 38.69 1.85 28.12 198
260 1266 37.63 3.43 24.21 127
261 637 40.94 2.72 49.58 123
262 1299 41.94 3.90 34.28 115
263 611 37.46 3.33 31.45 105
264 774 40.79 1.57 35.61 241
265 1419 37.11 2.55 25.04 194
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Length/(m) Gas/(L/kg) Velocity/(m/s) Limit/(ppm) Time/(s)

266 1035 39.72 2.14 31.16 191
267 1398 40.07 1.90 28.58 256
268 982 38.72 3.35 41.89 115
269 276 36.99 1.56 25.83 197
270 845 38.46 1.68 39.68 222
271 205 38.42 1.42 29.37 208
272 500 41.43 3.93 27.49 83
273 1338 40.67 0.56 38.56 834
274 731 38.83 3.06 30.12 116
275 561 40.54 1.41 45.59 225
276 667 41.41 1.67 33.78 212
277 1205 36.27 2.41 42.93 172
278 484 40.15 0.33 30.03 1030
279 906 38.40 2.17 44.13 162
280 215 37.51 3.76 36.02 71
281 1096 38.91 3.98 40.72 94
282 1079 40.25 2.00 49.54 184
283 840 36.42 0.35 44.97 1062
284 1018 41.09 0.65 33.53 614
285 515 41.31 3.41 43.34 91
286 1084 36.64 3.10 36.06 139
287 1099 36.79 2.64 46.01 142
288 1464 37.01 3.30 44.76 129
289 672 36.91 1.23 47.46 290
290 1277 41.26 2.62 31.07 168
291 403 38.22 2.01 27.12 160
292 1439 38.37 3.16 38.35 133
293 571 38.57 2.11 48.09 154
294 1259 36.91 2.91 35.52 150
295 408 41.90 2.46 32.49 125
296 230 37.16 3.20 48.13 89
297 997 39.58 3.91 26.66 100
298 1043 38.27 3.49 45.42 118
299 1429 40.96 1.44 39.81 288
300 596 36.86 1.50 42.30 228
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