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Abstract: Background: Infections caused by multi-drug resistance (MDR) strains are potentially fatal
public health issues worldwide that need pressing attention. Previous reports suggested using snake
venom fractions as an effective alternative mechanism to the already available antibacterial drugs.
In this study, we conducted a systematic review to analyze the bactericidal effects of snake venom
phospholipases (PLA2s). Methods: From the beginning through 30 March 2022, we searched the
PubMed and Embase databases in accordance with the most recent PRISMA recommendations. We
also conducted a manual search to identify relevant reports to improve literature coverage. Results:
A total of 24 studies were included based on the selection criteria to compile this review. Of them,
16 studies were obtained from the abovementioned databases and eight through manual searches.
The other 8 studies were obtained through the references of the included studies. According to the
review, we reported that some PLA2s showed more vigorous bactericidal activity on some Gram-
negative and a moderate effect on Gram-negative and Gram-positive. Furthermore, we reported that
the presence of p-bromophenacyl bromide (p-BPP) showed a significant decrease in enzymatic and
associated antibacterial activities. Moreover, we observed that about 80% of the PLA2s reported in our
systematic review study were those from the Viperidae family, whereas 20% came from the Elapidae
family. Moreover, some variations were revealed in the current study regarding the mechanism
of actions of the snake venom PLA2s (svPLA2s). Conclusion: This systematic review provides a
comprehensive overview of the bactericidal effect of snake venom PLA2s and the analysis of the
minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PLA2s
for bacterial strains. Varying bactericidal effects from various snake species and South American
rattlesnakes were reported, presenting compelling concepts to the alternative search for therapies
against bacterial resistance. Thus, further analysis of the bactericidal effects of other snake venoms
PLA2s considering different strains is needed. Moreover, more data are needed to investigate other
bacteria of public health priority using peptides and other purified snake toxins.

Keywords: antimicrobial resistance; bactericidal effect; snake venoms; multi-drug-resistant; system-
atic review
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1. Introduction

Antimicrobial resistance is one of the most substantial risks to public health world-
wide, including in developed countries in Europe [1]. According to the World Health
Organization (WHO), infections caused by the multi-drug-resistant (MDR) strains are
among the top ten reasons for mortality globally [2]. It is noteworthy that evidence about
the development and spread of antibiotic-resistant bacteria is increasingly growing [3].
Furthermore, previous investigation has demonstrated that the improper use of antibi-
otics, such as vancomycin, can result in the development of vancomycin-intermediate
(VISA) and vancomycin-resistant strains of bacteria such Enterococci [4]. Similarly, various
bacteria, including Pseudomonas, Klebsiella, Enterobacter, Acinetobacter, and Salmonella, can
resist several antibiotics [5]. Thus, laboratory- and clinical-based research geared toward
discovering new and potent bactericidal candidates with unique mechanisms of action that
could overcome antimicrobial resistance is warranted.

Studies on crude snake venoms and/or their fractions often result in potential ther-
apeutic molecules against bacteria and other parasites [6]. Snake venoms are composed
of a spectrum of protein-based constituents. These components could be categorized into
four broad groups [6], namely: (1) The dominant group, which consists of the three-finger
toxins (3FTx), phospholipases A2 (PLA2), snake venom metalloproteases (SVMP), and
snake venom serine proteases (SVSP), (2) The second group consists of a small number of
proteins, which includes Kunitz peptides (KUN), cysteine-rich secretory proteins (CRiSP),
L-amino acid oxidases (LAAO), C-type lectins (CTL), disintegrins (DIS), and natriuretic
peptides (NP), (3) The third group contains the rarely observed snake venom proteins,
including venom nerve growth factor (VNGF), vascular endothelial growth factor (VEGF),
acetylcholinesterases, hyaluronidases, 5′-nucleotidases, phosphodiesterases (PDE), and
snake venom metalloprotease inhibitors, and (4) finally, the fourth group includes cobra
venom factors (CVF), galactose-binding proteins, aminopeptidases, and waprins.

However, the proteins mentioned above may only be readily available in some ven-
omous snakes. For instance, elapids snakes have Group I PLA2s and 3FTx, whereas the
mambas are known to consist mainly of Kunitz peptides that are also known as dendrotox-
ins. The viperids consist of PLA2s and proteases as the most abundant protein groups with
varying quantities of serine proteases and metalloproteases [7].

In this study, we present a thorough review based on the existing literature on the
bactericidal effect of snake venom PLA2s, alongside an analysis of the given minimal
inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against the
bacterial strains listed under the study, highlighting the potential of snake venom fraction
as promising candidates against several species of antimicrobial resistant bacteria.

2. Methods
2.1. Search Strategy

Relevant studies that reported the bactericidal effects of PLA2s were searched from
PubMed and Embase databases from inception until 30 March 2022. We utilized the search
terms (“Bactericidal OR bacterial effect OR Antibacterial”) and (“Snake Venom PLA2s
OR Venomous snake PLA2 OR Snake Venom Peptides OR Snake venom Components OR
Fractions OR Enzymes OR Proteins”). The outcome of the searches from the two terms was
then combined using the Boolean operator ‘AND’. We conducted a manual search of the
literature to ensure more comprehensive coverage of the studies in the area of research.
Reference lists of included articles that met eligibility criteria were also manually searched
to identify any additional articles.

2.2. Eligibility Criteria

We included only original articles published in the English language that reported
the bactericidal effect of snake venom PLA2s in our review. The study excluded reviews,
articles on bactericidal effects of snake venoms’ fractions other than PLA2s, those published
in a language other than English, and studies that employed the use of commercial venoms
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in which the snake specie information was not mentioned, as well as studies involving the
effects of venoms on other parasites instead of bacteria.

2.3. Study Selection, Data Extraction and Data Synthesis

PRISMA systematic review procedure was utilized in the process of selecting the
most relevant articles to be included in the study [8]. To avoid any potential bias in the
search and/or inclusion of studies, two authors (ZUA and SSM) conducted the article
screening processes at the title, abstract, and full-text phases. The same authors conducted
the extraction of relevant data for the review. A customized excel sheet was used for
the data extraction. Any disagreements during the article screening processes and the
data extraction were resolved and discussed with all the other authors and then agreed
upon by consensus. Data extracted included authors’ names, date of publication, snake
species, PLA2s, bacterial isolates, minimum inhibitory concentration, minimum bactericidal
concentration, and activities of PLA2s on the tested bacteria. The synthesis of the extracted
data was guided by the “synthesis without meta-analysis” (SWIM) protocol [9].

3. Results
3.1. Search Results

We retrieved 223 reports from searching the databases, 91 and 124 were from PubMed
and Embase, respectively. Furthermore, additional eight studies were identified manually
through the search of the references of the included studies. After removing all duplicates
and the screenings at the titles and abstract phases, the remaining articles were consid-
ered for further screening, which led to the exclusion of 163 unrelated articles as well as
17 duplicates. Furthermore, we examined the full texts of the remaining 43 articles, from
which 19 studies were excluded (Figure 1). Finally, twenty-four studies met the eligibility
criteria and were included. Furthermore, additional eight studies were identified manually
through the search of the reference lists, totaling the included reports in this study 26.
Table 1 lists the distinguishing features of the included studies, and Figure 1 shows the
flowchart of the research search and screening procedures. Moreover, the summary data
for MIC and MBC, as well as sequence data for the PLA2s extracted from the included
studies, are provided in Table 2.

Table 1. Features of the analyzed studies.

Study Snake Specie(s) PLA2s Bacterial Specie(s) Activity on Bacterial Strains

Nunes et al. [5] Bothrops
Erythromelas BE-I- PLA2

Acinetobacter baumanniii,
Staphylococcus aureus,
Escherichia coli

Showed bactericidal activity against S. aureus
and antibiofilm activity against A. baumanniii.

Sudarshan et al. [10] Najanaja PLA2
(NN-XIb-PLA2)

S. aureus, Bacillus subtilis, E. coli,
Vibriocholera, Klebshiella pneumonia,
Salmonella typhi

Inhibited the growth of all isolates, but more
active on S. aureus and B. subtilis.

Alves et al. [11] Crotalusdurissusterrificus Crotoxin
PLA2-Crotoxin B Ralstonia solanacearum PLA2-CB showed 52% growth inhibition.

Vargas et al. [12] Porthidiumnasutum PnPLA2
E. coli (ATCC 25922), S. aureus
(ATCC 25923)

Showed bactericidal activity against S. aureus
in a dose-dependent manner but not on E. coli.

Samy et al. [13] Echiscarinatus PLA2-EcTX-I

Bulkholderia pseudomallei (KHW
and TES), Enterobacter aerogenes,
E. coli, Proteus vulgaris, P. mirabilis,
P. aeruginosa, S. aureus

Strong bactericidal activity was observed in
B. pseudomallei (KHW) and E. aerogenes. It
showed only moderate effect on other
bacteria.

Sudarshan et al. [14] Daboia russelliipulchella PLA2 fraction V
(VRV-PL-V)

S. aureus. B. sub, E. coli, V. cholerae,
K. pneumoniae, S. paratyphi

Exhibited bactericidal activity against
S. aureus and B. subtilis more than on E. coli,
V. cholerae, K.pneumoniae, S. paratyphi

Torres et al. [15] B. marajeonsis BmarPLA2 P. aeruginosa, S. aureus Could not promote any inhibitory activity

Samy et al. [16] C. adamanteus PLA2-CaTx-II

S. aureus, B. pseudomallei (KHW),
B. pseudomallei (TES), E. coli,
K. pneumoniae, Streptococcus
pneumoniae, P. vulgaris,
P. aeruginosa, E. aerogenes

Resulted in bactericidal effect by forming
pores and damaging the cell wall membrane
of the bacterial isolates.
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Table 1. Cont.

Study Snake Specie(s) PLA2s Bacterial Specie(s) Activity on Bacterial Strains

Jia et al. [17] Agkistrodon
piscivorusleucostoma, PLA2

B. subtilis, S. aureus, E. coli,
V. cholera

A. pleucostoma PLA2 proteins namely
AplAsp49 and AplLys49 did not show any
bactericidal activity against any of the
bacterial isolates.

Samy et al. [18] A. halys PLA2- AgkTx-II

S. aureus, P. vulgaris, P. mirabilis,
B. pseudomallei, E. coli, E. aerogenes,
B. pseudomallei (TES and KHW),
P. aeruginosa

Caused potent bactericidal activity against
S. aureus, P. vulgaris, P. mirabilis, and
B. pseudomallei with rapid killing effect on
S.aureus, P. vulgaris, B. pseudomallei in a dose
dependent pattern. It was suggested that the
activity was through membrane permeability
and damage.

Samy et al. [19]

C. durissuterrificus,
Vipera ammodytes
ammodytes,
C. scutulatusscutulatus,
Bungarusmulticinctus,
Oxyuranus
scutellatusscutellatus,
Pseudechis australis,
D. russelli

C.d.t- CA
C.d.t-CB
V.a.a-a
C.s.s-m
B.m- β-b
O.s.s-t
P.a-m
D.r-d

B. pseudomallei (KHW),
B. pseudomallei (TES)

Presented bactericidal activity which was
incriminated to be due to activity of cytotoxin
and the PLA2.

Samel et al. [20]
N. oxiana,
Viperalebetina,
V. berusberus

NNOPLA2
VLPLA2
VBBPLA2

B. subtilis, E. coli, Vibrio fishera,
S. aureus

Only VBBPLA2 from V. berusberus completely
inhibited the growth of B. subtilis. Moreover,
the effect of VBBPLA2 was reported to be due
to other properties of the protein rather than
catalytic activity. To S. aureus,
NNOPLA2 (from Najanaja) inhibited its
growth and resulted in just a slight inhibition
of the growth of B. subtilis. However, none of
the three svPLA2s showed inhibitory effect on
E. coli even at the highest concentration tried.

Roberto et al. [21] B. jararacussu BthA-I-PLA2
E. coli (ATCC 29648)
S. aureus (ATCC 25923)

Presented bactericidal activity against
both bacteria.

Xu et al. [22] Bungarusfasciatus BPFA-PLA2 E. coli, S. aureus Showed activity against both bacteria.

Corrêa et al. [23] B. neuwiediurutu BnuTX-I PLA2

E. coli (ATCC 25922), S. aureus
(ATCC 29213), K. pneumoniae
(ATCC 13883) P. aeruginosa (ATCC
27853)

Showed bactericidal activity against both
Gram-positive and Gram-negative isolates,
with greatest inhibitory effect on P. aeruginosa.

Denegri et al. [24] B. alternatus Ba SpII RP4- PLA2
S. aureus (ATCC 25923), E. coli
(ATCC 25922)

Showed no bactericidal activity against the
two bacteria.

Abid et al. [25] Walterinnesia aegyptia WaPLA2-I
WaPLA2-II

B. subtilis (ATCC 6633), B. cereus
(ATCC 14579), E. faecalis (ATCC
29122), S. aureus (ATCC 25923),
S. epidermis (ATCC 14990), E. coli
(ATCC 25966), K. pneumoniae
(ATCC 700603), P. aeruginosa
(ATCC 27853), Salmonella enterica
(ATCC 43972)

WaPLA2-I presented bactericidal activity
against all the gram positive and negative
bacteria with the highest activity recorded
from E. coli, S. enteric and S. aureus. Lower
WaPLA2-II bactericidal effect was recorded
from P. aeruginosa. Notably, E. faecalis,
S. epidermis, S. aureus, E. coli and S. enteric
showed more sensitivity to WaPLA2-II than to
WaPLA2-I. Using agar dilution method to
determine IC50, WaPLA2-II presented an IC50
of 9 ± 0.2 to 20 ± 1 µg/mL against the human
pathogenic strains whereas WaPLA2-I
presented 10 ± 0.3 and 17 ± 1.4 µg/mL.
Noteworthy is that, WaPLA2-II was more
effective than WaPLA2-I against S. epidermis,
E. coli, P. aeruginosa, and S. enteric.

Barbosa et al. [26] B. jararacussu BthTX-I
BthTX-II

Xanthomonas
axonopodispv.passiflorae

Both PLA2 presented bactericidal activity
against Gram-negative bacteria.

Shebl et al. [27]

B. arietans,
N. naja,
C. cerastes,
P. australis,
N. nigricolis,
V. lebetina,
E. carinatus

PLA2s

S. aureus
E. coli
S. typhimurium
P. aeruginosa

The highest PLA2 activity was identified in
B. arietans, P. australis, N. naja and N. nigricolis.
Moderate effect was recorded from V. lebetina
and C. cerastes. N. haje presented the
least activity.

Almeida et al. [28] C. oreganusabyssus CoaTX-II

P. aeruginosa (31NM)
E. coli (ATCC 25922)
S. aureus (BEC 9393)
S. aureus (Rib1)

Presented bactericidal activity against
P. aeruginosa, E. coli, MRSA S. aureus (Rib1
and BEC9393).
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Table 1. Cont.

Study Snake Specie(s) PLA2s Bacterial Specie(s) Activity on Bacterial Strains

Toyama et al. [29] C. durissusterrificus F15
X. axonopodis.pv.passiflorae,
Claribacter michiganensis
michiganensis

Reduced the bactericidal activity of X.
axonopodis.pv.passiflorae by up to 58.2% and
that of C. michiganensis michiganensis by up
to 98%.

Bacha et al. [30] Walterinnesiaaegyptia WaPLA2

B. cereus, B. subtilis, E. faecalis,
S. epidermis, S. aureus, E. coli,
K. pneumoniae, P. aeruginosa,
S. enteric

Presented highly significant bactericidal
activity against all Gram-positive and
Gram-negative strains B. cereus, B. subtilis,
E. faecalis, S. epidermis, S. aureus, E. coli, K.
pneumoniae, P. aeruginosa, S. enteric.

Santamaría et al. [31]

B. asper, Bothriechis
schlegelii, Cerrophidion
godmani, Atropoides
nummifer

B.a- myt- I, II and III
B. s-myt I,
C.g-myt- I, II,
A.n- myt- I
B.a-spo-myt- II

S. typhimurium, S. aureus,
Brucella abortus

The eight
PLA2myotoxinsincludingL ys49 and
Asp49-type isoforms presented bactericidal
effect, with an indication that the activity
could be due to group IIA PLA2 protein family.
In vitro assay for bacterial, cytolytic, and
anti-endotoxic effects of the peptides implies a
correlation between the number of tryptophan
substitutions presented and microbicidal
potency, against S. typhimurium and S. aureus.

Costa et al. [32] B. brazili MTX-I
MTX-II E. coli (ATCC 29648) Showed bactericidal effect.

Abbreviations: s. p. o = short peptide of D. ruselli, B. a-myt- = B. asper myotoxin, B.s-myt = B. schlegelii myotoxin,
C. g-myt = C. godmani myotoxin, a. m-myt = A. nummifer myotoxin.
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Table 2. Summary table for MIC, MBC, and sequence data extracted from the included studies.

Author Minimum Inhibitory
Concentration(s) (MIC)

Minimum Bactericidal
Concentration (MBC) PLA2 Sequence Data

Nunes et al. [5] NA NA SLVQFETLIMKIAGRSGVWYYGSYGCYCGSG

Sudarshan et al. [10]

26.1 ± 3 µg/mL

NA NA

21.3 ± 2 µg/mL

23.3 ± 3 µg/mL

25.1 ± 1 µg/mL

19.3 ± 3 µg/mL

21.4 ± 2 µg/mL

Alves et al. [11] NA NA NA

Vargas et al. [12]
32 µg/mL 32 µg/mL

DLLQF-DMMKCC
DPIA DPBA

Samy et al. [13]

DPIA DPBA

SVVELGKMIIQETGKSPFPSYTSYGCFCGG
(N)
SLLELGKMILQETGKMPSKSYGAYGCNCGVLGR

120 µg/mL 18 µg/mL

60 µg/mL 26 µg/mL

60 µg/mL 25 µg/mL

30 µg/mL 2 µg/mL

60 µg/mL 9 µg/mL

15 µg/mL 1 µg/mL

60 µg/mL 22 µg/mL

Sudarshan et al. [14]

13 ± 2 µg/mL

NA NA

12 ± 3 µg/mL

15. ± 1 µg/mL

12. ± 2 µg/mL

14. ± 3 µg/mL

12 ± 3 µg/mL

13 ± 1 µg/mL

Torres et al. [15] DPIA DPBA SLLELGKMILQETGKMPSKSYGAYGCNCGVLGR

Samy et al. [16]

7.8 µg/mL 7.8–15.6 µg/mL

NA

7.8 µg/mL 7.8–15.6 µg/mL

15.6 µg/mL 7.8–15.6 µg/mL

62.5 µg/mL NA

250 µg/mL NA

31.25 µg/mL NA

62.5 µg/mL NA

31.25 µg/mL NA

125 µg/mL NA

Jia et al. [17] DPIA DPBA Apl Lys49 = KK-YKA YFKLKCKK
Apl Asp49 = SKTYWK YPKKNCKE

Samy et al. [18]

10.63 µM

NA HLLQFRKMIKKMTGKEPVVSYAFYGCYCGSGGRGKPKD

21.25 µM

21.25 µM

85 µM

42.5–85 µM

21.25 µM

(KHW)—10.63 µM

85 µM
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Table 2. Cont.

Author Minimum Inhibitory
Concentration(s) (MIC)

Minimum Bactericidal
Concentration (MBC) PLA2 Sequence Data

Samy et al. [19]

Cdt-Cb and CDt-Ca
0.5–0.03125 mg/mL

NA NA
Cb and Dt-
0.5–0.03125 mg/mL

V.a-aa, Cs- m, Bm-β-b,
P.a-m, O. sst, D.r-d = DPIA

Samel et al. [20] NA NA NA

Roberto et al. [21] NA NA MRTLWIMAVLLVGVEGSLWQ

Xu et al. [22] NA NA MNPAHLLVLLAVCVSLLGAA

Corrêa et al. [23] NA NA SLFELGKMILQETGKNPPAKSYGAYGCNCGVLGRGKPKD
ATDRCC

Denegri et al. [24] NA NA DLLQFEGMLKIAGKSGFWYYGAYGCYCGAGGQCTPVDA
TDRCCQVHDCCYKKTNCN

Abid et al. [25] NA NA NLQFGMIKLTTGKPEALSYNAYCGWGGQGKPQDATDHC
CFVHDCC

Barbosa et al. [26] NA NA NA

Shebl et al. [27]

B.a—NA
P.a—625 µg/mL
N.g—NA
N.n.n—625 µg/mL
V.l—NA
E.c—NA
C.c—1250 µg/mL

NA

B.a—312.5 µg/mL
P.a—156 µg/mL
N.g—312.5 µg/mL
N.n.n—156 µg/mL
V.l—625 µg/mL
E.c—625 µg/mL
C.c—625 µg/mL

B.a—NA
P.a—312.5 µg/mL
N.g—625 µg/mL
N.n.n—312.5 µg/mL
V.l—625 µg/mL
E.c—1250 µg/mL
C.c—1250 µg/mL

B.a—NA
P.a—NA
N.g—1250 µg/mL
N.n.n—1250 µg/mL
V.l—NA
E.c—NA
C.c—NA

Almeida et al. [28] NA NA SLVELGKMILQETGKNAIPSYGFYGCNCGWGGRGKPKDA
TDRCCFVHKCC

Toyama et al. [29] NA NA

HLLQFNKMIKFETRKNAVPFYAFYGCYCGWGGQRRPKD
ATDRCCFVHDCCYGKLTKCNTKWDIYRYSLKSGYITCGK
GTWCKEQICECDRVAAECLRRSLSTYKNEYMFYPKSR
CRRPSETC
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Table 2. Cont.

Author Minimum Inhibitory
Concentration(s) (MIC)

Minimum Bactericidal
Concentration (MBC) PLA2 Sequence Data

Bacha et al. [30]

>9 µg/mL

NA

NLYQFKNMVQCVGTQLCVAYVKYGCYCGPG
>12 µg/mL

>7 µg/mL

>12 µg/mL

>5 µg/mL

>7 µg/mL

>8 µg/mL

>10 µg/mL

>9 µg/mL

Santamaría et al. [31] NA NA KKWRWWLKALAKK

Costa et al. [32] NA NA

MTX-I =
SLWEFGQMIIKETGKLPFPYYGAYGCYCGWGGRRGPK-
DATDRCCYVHDC
MTX-II =
SLFQLGKMILQETGKNPAASYGAYGCNCGVLGRGKPK-
DATDRCCYVHKC

Abbreviations: NA = not available, DPIA = did not promote inhibitory activity, DPBA = did not promote
bactericidal activity, C.d.t CB = C. dirussus terrificus CrotoxinB, C.d.t CA = C. dirussus terrificus Crotoxin A,
V. a-aa = V. ammodytes ammodytoxin, Cs-m = C. scutulatus mojave toxin, Bm-β-b = B. multicinctus β-bungarotoxin,
P.a-m = P. australis mulga toxin, O. sst = O. scutellatus taipoxin, D. r-d = D. ruselli daboia toxin.

3.2. Bactericidal Effects of Snake Venom PLA2s

Snake venom PLA2s (svPLA2s) are enzymatic proteins with low molecular weights.
They catalyze the hydrolysis of the 3-sn-phosphoglyceride-dependent calcium 2-acyl ester
bond, yielding lysophospholipids and fatty acid products [6]. Snake venom PLA2s have
similar toxicological profiles, including cytotoxicity, myotoxicity, oedema, inflammation,
neurotoxicity, hypotension, anticoagulant activity, hemolysis, hyperalgesia, and micro-
bicidal activity [5]. Some of the evaluated PLA2s (either acidic or basic) could present
an IC50 against at least Gram-positive or Gram-negative bacteria, whereas others could
not show any activity against any strain. Nunes et al. [1] reported that the acidic PLA2
from B. erythromela presented IC50 against Gram-positive bacteria but not negative bacte-
ria. Torres et al. [15] reported that the basic PLA2 isolated from B. marajeonsis showed no
inhibitory effect on neither P. aeruginosa or S. aureus.

Moreover, Jia et al. [17] reported that the PLA2 from Agkistrodon piscivorus leucostoma,
AplAsp49, and AplLys49, presented no bactericidal effect against any of the bacterial strains.
Moreover, Sudarshan et al. [10] reported that the basic PLA2 of D. russelliipulchella showed
higher bactericidal activity against Gram-positive bacteria when compared with Gram-
negative bacteria. It has been reported that the bactericidal activity of PLA2, especially the
basic is related to the disturbances of bacteria membrane integrity [23]. Gram-negative
bacteria have a cell wall that is made up of an inner membrane formed of phospholipids,
an outer membrane made of asymmetric lipids, and a layer of peptidoglycans. This
structure acts as a barrier to medications that have been established. A similar scenario
exists for the PLA2, as the outer membrane naturally resists its activity [33]. On the other
hand, Gram-positive bacteria possess just one layer of peptidoglycans and then an internal
cell membrane, showing their prompt susceptibility to the action of PLA2. As such, the
low bactericidal activity of some PLA2s in Gram-negative bacteria compared with Gram-
positive bacteria could be due to the difference in the structure of their respective cell walls.
Sudarshan et al. [10] reported that there was a strong, established relationship between the
hemolytic and bactericidal activity of D. russelliipulchella PLA2.

Furthermore, it was reported that p-bromophenacyl bromide (p-BPP) presents a
significant decrease in enzymatic activity and associated antibacterial activities, thereby
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destabilizing the membrane bilayer. Regarding PLA2 crotoxin A or B (PLA2- CA and
PLA2- CB), Alves et al. [11] reported that both from C. durissus terrificus showed high
bactericidal activity against R. solanacearum. Similarly, Samy et al. [19] reported that
crotoxin B of C. durissus terrificus and daboiatoxin of Daboia russelli presented the most
robust bactericidal activity against the two strains of B. pseudomallei (TES and KHW). Some
PLA2s were reported to have shown bactericidal activity against both Gram-positive and
Gram-negative bacteria [16,31]. Others presented a bactericidal effect on Gram-positive
and not Gram-negative bacteria [12]. Of interest to note is that some PLA2 showed more
vigorous bactericidal activity on some Gram-negative bacteria and moderate on other
Gram-negative and Gram-positive bacteria [13].

3.3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC) for Bacterial Strains

Minimum inhibitory concentrations (MICs) are the lowest concentration of an antimi-
crobial that could inhibit the visible growth of a microorganism after overnight incubation.
MICs are utilized by diagnostic laboratories mainly to confirm resistance but are most often
used as a research tool to determine the in vitro activity of new antimicrobials [34]. In the
works of Samy et al. [13] and Samy et al. [16], Vargas et al. [12], and Jia et al. [17], broth
micro-dilution assay was employed. The procedure entails suspending fresh overnight
bacterial cultures to a turbidity of 0.5 McFarland units and further subjecting them to a
dilution in Mueller Hinton (MH) and tryptic soy (TS) broth, followed by a dilution to ap-
proximately 1.5 × 105–3.2 × 106 CFU/mL (CFU = colony forming unit). On the other hand,
minimum bactericidal concentration (MBC) is referred to as the minimum bactericidal
density required to kill bacteria; as such, it is opposed to mere bacteriostatic densities [35].
According to Samy et al. [13] and Samy et al. [16], the plating technique was carried out
whereby the broth from the MICs well and those from above the wells were plated for
each bacterial strain 3.2 × 106 CFU/mL onto approximate drug-free growth media MH
and TS agar plates used for determining antibacterial activity. Surviving bacteria were
then quantified using the dilution plate technique. On the starting inoculums, the quanti-
tative colony counts were assessed. The lowest concentration that killed up to ≥99.9% of
the starting inoculums was defined as the MBC. In the work of Jia et al. [17], the plating
technique involved adding two hundred microliters of 1/1000 diluted overnight bacterial
cultures to 1 mg/mL, 0.75 mg/mL, 0.1 mg/mL 50 µg/mL 25 µg/mL, 10 µg/mL PLA2 in
the 96-well plates in parallel 50 µg/mL of the control (antibiotic), and PLA2 buffer as a
negative control. Bacterial cultures that presented no growth were then plated on agar and
incubated overnight to achieve colony-forming unit (CFU) enumeration.

4. Discussion

Overall, our systematic search identified 24 articles on the bactericidal effect of
svPLA2s. The majority of the studies (80%) found through the search were on the PLA2s
of snakes from the Viperidae family, whereas 20% were on the PLA2s from snakes of the
Elapidae family. There are considerable variations in the composition of snake venoms
recorded even from closely related species and within species [6]. Evidence of intra-genus
or intra-specific variation in venom compositions has been documented in pit vipers and
adders [36]. This variation was attributed to diet [37] or topography [38]. Repeated toxin-
encoding genes, production processes, as well as functional and structural diversifications
are other attributable factors [39]. For instance, the sea snake Laticauda Semifasciata S. venom
has a simple composition, with only two prominent protein families, the 3FTxs and the
PLA2s. However, about 50–100 peptides or proteins representing about 10–20 protein fami-
lies are present in the venoms of rattlesnakes and mambas [7]. In general, cobra, kraits, and
the hydrophids particularly have more negligible toxins such as 3FTxs and PLA2, whereas
the venoms of vipers are composed of the more significant fractions with enzymatic roles
such as snake venom metalloproteinase and snake venom serine protease [7]. For instance,
amino acids, small peptides, carbohydrates, lipids, biogenic amines, and enzymes are
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contained in the venom of C. durissus terrificus, whereas that of B. jararaca is composed of
peptides serine and metalloproteases [40]. As such, the activity of snake venoms varies due
to differences in concentrations and compositions.

It has been reported that svPLA2s makes a considerable component of the venoms of
the vipers and elapids [41] due to their biomedical importance over the other compositions
of snake venoms [42]. They are proteins that belong to groups I and II. The group I
PLA2s are those of snakes from the Elapidae family (Elapidae and Hydrophiinae) [7]. In
contrast, those belonging to group II are from snakes of the Viperidae family (Viperinae and
Catalina) [7]. The latter comprises two subgroups: the catalytically active Asp49-PLA2 and
the catalytically inactive PLA2 homologs containing Lys49 residue [43]. The GIIA PLA2s
were reported to have an essential role in the defense against bacteria. The ASP49- PLA2
and LYS49- PLA2 homologs were reported to have acted synergistically, increasing Ca2+
ions in the plasma membrane, resulting in the rapid death of myotubes [43].

Crotoxin is a non-covalent heterodimeric neurotoxin of two subunits; an active PLA2
and a chaperone peptide called crotaperone. The molecule has three peptide chains con-
nected by seven disulfide bridges [44]. It is the main neurotoxin in the venom of the South
American rattlesnake (C. durissus terrificus) and accounts for about 50% of its dry weight and
it acts at the presynaptic membrane level. Pharmacologically, crotoxin promotes pre- and
post-synaptic effects, indicating several interactions with excitable cells [29]. Crotoxin B, a
basic neurotoxic phospholipase A, has three chain proteins that promote the lethal potency
of crotoxins [19]. In contrast, crotoxin A (CA) is the acidic subunit of the crotoxin (Crtx) on
which the essential subunit crotoxin B (CB) depend for the ability to bind specifically to the
cell membrane [45].

There are variations in the mechanism of actions of svPLA2s. For instance, CaTx-II
from C. adamanteus was reported to have inhibited the growth of E. aerogenes through the
disintegration of its cell wall by generating pores in the membrane. Furthermore, the
protein has been reported to promote the healing of wounds [16]. It is noteworthy that
peptides produced by the breakdown of svPLA2 can interact with lipopolysaccharide
(LPS), specifically, the lipid A component of S. aureus, causing membrane permeabilization
and acting as a bactericide [16]. Various cationic peptides from B. asper’s svPLA2s exhibit
bactericidal activity against K. pneumoniae, protect mice from S. enterica-induced peritonitis,
and cause membrane permeabilization in S. aureus when they are derived from cationic
peptides [31,46,47]. The derivatives of the carboxy terminus of svPLA2s found in these
peptides, which range from ten to twenty-two amino acids, are crucial. Compared to the
parent compounds, they are less toxic to eukaryotic cells and have greater bactericidal ac-
tivity. Similarly, it has been documented that the C-terminal cationic/hydrophobic segment
(residues 115–129) of svPLA2s has bactericidal potential. As such, identifying bactericidal
positions in svPLA2s because of developing new therapeutics is promising [48–50]. Fur-
thermore, there have been reports of varying MICs and MBCs against various bacterial
strains, as well as sequence data of each PLA2.

4.1. Strength

Our systematic review has the following strengths; firstly, we conducted a thorough
and extensive search of literature via PubMed and Embase databases, as well as a man-
ual search of the literature, which enriched our search coverage. Secondly, we adopted
appropriate quality rating tools for assessing the qualities of the included studies.

4.2. Limitations

The study is associated with some limitations that should be considered when inter-
preting the reported findings. Firstly, we excluded studies based on language (only those
published in English), thereby limiting the ability to incorporate relevant data from studies
in languages other than English. Moreover, most of the included studies did not include
information on accession numbers. However, we have included the sequence information
found from each study in our work to have representative information for at least each
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included study. Nevertheless, in our future research, we will deeply investigate the DNA
sequence of PLA2 with nucleotide accession numbers when the data become available.

5. Conclusions

This systematic review provides a comprehensive overview of the bactericidal effect
of snake venom PLA2s and analyses the minimum inhibitory concentrations (MICs) and
minimum bactericidal concentrations (MBCs)of PLA2s for bacterial strains. Varying bac-
tericidal effects of various PLA2s were reported, presenting compelling concepts to the
alternative search for therapies against bacterial resistance. However, more data are needed
to investigate the bactericidal effects of other snake venoms PLA2s using purified snake
toxins. Thus, it is imperative to study other bacteria of public health importance using
snake venoms and their associated purified snake toxins.
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