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Abstract: With colon cancer being one of the deadliest and most common cancers, understanding the
mechanisms behind colon cancer is crucial in improving therapies. One of the newest approaches in
cancer research is the concept of proteogenomics. While genomic data is not sufficient to understand
cancer, the integration of multi-omics data including proteomics in conjugation with protein modeling
has a better potential to elucidate protein structural alterations and characterize tumors. This enables
a more efficient diagnosis of cancer and improves remedial strategies. In this review, we aim to
discuss the linkage between gene mutations and protein structural alterations that lead to colon
cancer. Topics include alterations in the glycoproteome and structures of proteases that impact
colon cancer development. Additionally, we highlight the importance of precision oncology with
an emphasis on proteogenomic approaches, protein modeling, and the potential impact on colon
cancer therapy.
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1. Introduction

The projected annual incidence of cancer is around 18 million, with colorectal cancers
(CRC) ranking third among male cancers and second among female cancers [1]. The second
most deadly cancer in the world, CRC is also the third most common cancer overall and
has a high mortality rate of 9.2% of all cancer deaths [2]. More recently, the age group with
higher incidence rates has fallen below the usual recommendation for starting colon cancer
screenings [3]. This pattern is concerning since more colon cancers are now likely to occur
in individuals that have not yet been screened and remain undiscovered for longer. In
addition to being deadly and frequently occurring, CRC is a very complicated illness with
many interrelated variables. The many environmental and genetic factors that affect the
etiology of CRC contribute to its complexity.

Nearly 42% of all cancer cases have risk factors that may be preventable, such as
smoking, eating poorly, getting too little fiber, being overweight, and not getting enough
exercise [4]. However, only around 10% of CRC cases are due to family history or genetic
ties, and the majority of CRC incidences are indirectly caused by a number of reasons
which are primarily sporadic in combination with some hereditary factors [5]. The effect of
the gut microbiota, including its activities, byproducts, and interactions with the host, on
the risk of developing CRC is also intertwined with these factors. When there is dysbiosis
or a lack of certain functions required for homeostasis, the microbiota can negatively or
positively affect the immune system and colon [6]. Therefore, the complete picture of
CRC development is probably not best captured by genomic-only techniques because
CRC risk factors are complicated. Multi-omics methods are a fantastic tool for capturing
many biological vantage points and can reveal new facets of complex diseases like CRC,
which involve a wide variety of risk factors [7]. To progress diagnoses and the finding of
biomarkers, other methods must be taken into consideration because genetics and familial
history only have a minor impact on the total caseload.
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Proteomics deal with the identification, localization, regulation, and quantification of
proteins in a biological system. This method can be used to investigate significant protein
modifications that genomic-only approaches overlook, like posttranslational alterations
that significantly change a protein’s functional capabilities [8]. Proteogenomics, which
combines genomic techniques with a proteomics approach, has the potential to identify
more protein markers for CRC, allowing for earlier identification of risk factors and the
implementation of therapy or preventative measures. In order to understand the functions
associated with these proteins, proteogenomics has been employed in the field of colon
cancer to identify the protein abundance profiles of CRC samples and link the abundance to
functional genomic data [9,10]. Even with recent developments in treatment, improvements
in the early diagnosis of CRC are essential since they increase survival rates [11].

CRC is leading contributor to morbidity, difficult to treat, and has significant long-term
health impacts. Therefore, it is essential to further the study of CRC by considering several
viewpoints, such as protein modifications and their role in the emergence of cancer. The
significance of protein mutations in CRC that result in altered functionalities will be briefly
covered in this review, along with when and how proteogenomics can be used to provide
high resolution information on protein status and function and how it can be optimally
used to diagnose or treat CRC.

2. Colorectal Cancer and Proteogenomics
2.1. Mutations That Lead to CRC

CRC tumorigenesis is associated with (1) microsatellite instability (MIN) (2) chromoso-
mal instability (CIN), and (3) mutations involving a wide range of tumor-suppressor genes,
proto-oncogenes, and epigenetic changes [12].

Chromosomal instability refers to the loss of one allele which might be associated
with tumor-suppressor genes [12]. The genomic changes associated with the chromosomal
instability pathway include activation of proto-oncogenes like K-Ras and loss of p53
and Adenomatous polyposis coli (APC) [13]. Microsatellite instability is a consequence
of mutations in DNA mismatch repair genes, and that fail to perform repairs during
the process of DNA replication. That often results in frameshift mutations, ultimately
showing hallmarks of CRC such as angiogenesis and limitless replicative potential which
is also the characteristic of stem cells [14,15]. In addition, there are point mutations of
different oncogenes associated with CRC. The genes that are susceptible to mutations are
KRAS [12,16,17], TP53 [12,18,19], APC [12], BRAF [12,20], SMAD4 [12,21–24], β-Catenin [12],
and AXIN [12,25] (Table 1).

Table 1. Molecular mutations that lead to colorectal cancer. The genes listed are susceptible to
mutations in colorectal cancer along with the locations of genes in the chromosome, the pattern of
mutations, and the outcomes.

Genes Locations Function Mutation Outcomes

KRAS 12p12 Proto-oncogenes have
intrinsic GTPase activity

Trigger the transduction of
differentiative signals, even without
any extracellular stimuli [12,16,17]

TP53 short (p) arm of
chromosome 17

Ensures cell cycle arrest and
apoptosis to maintain

genomic integrity

Results in the formation of a stable
protein that no more can bind the DNA

and activates target genes [12,18,19]

APC 5q21 Controls transcription of
several cell proliferation genes

Increases transcription of β-Catenin
targets including cyclin D, ephrins,

caspases, and C-myc [12]

BRAF 3p22-p21.3 Proto-oncogene Results in being constitutionally active
in a RAS independent manner [12,20]
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Table 1. Cont.

Genes Locations Function Mutation Outcomes

SMAD4 long arm (q) of chromosome
18 at band 21.1

Regulate transcription of
target genes, and act as a
tumor-suppressor gene

Unable to regulate gene transcription,
disrupt TGF-β signaling [12,21–24]

β-Catenin 3p22-p21.3
Transactivate target genes that
inhibit apoptosis or encourage

cell proliferation
Wnt-signaling activation [12]

AXIN1 and AXIN2 16p13.3 and 17q24.1 Down-regulate WNT pathway Unable to regulate targeted
pathways [12,25]

This review will focus on the structural abnormalities in the proteins translated from
these mutated genes.

2.2. Functional Alterations from Molecular Mutations

Molecular mutations in the genes alter the normal functioning of the resultant proteins.
RAS proteins can regulate several pathways such as apoptosis, differentiation, and cell
growth [26]. Molecular mutations in the KRAS genes deregulate the protein to constitutive
nature and are active even when there are no external stimuli [17,27]. TP53 is a transcription
factor having pro-apoptotic activity, enabling cell-cycle arrest [28–31]. Mutations in the
TP53 gene lead to a stable mutant protein that fails to bind to the DNA and triggers a
set of target genes [19,32]. BRAF gene encodes for a protein belonging to the RAF family,
and mutations lead to the constitutive activation of the RAS pathway [33]. Targets of
APC include proteins such as C-myc, cyclin D, caspase, and ephrins. APC controls the
transcription of these cell proliferation genes [34]. APC can also control microtubules [12].
Mutation in the C-terminal sequence of the APC can lead to the deregulation of APC and
initiate colon tumorigenesis [35]. β-Catenin also transactivates a set of target genes which
may induce proliferation of the cells or is inhibitory towards apoptosis [36]. Mutations
in the β-Catenin lead to its stabilization and ultimately lead to activation of the WNT-
signaling [37]. SMAD and AXIN are also tumor suppressor genes, and mutations of these
genes would lead to the activation of CRC [12]. It is also worth mentioning another layer of
complexity that complicates CRC is the post-translational modifications (PTM) in the form
of glycosylation [38], phosphorylation, acetylation, and ubiquitination [39]. PTMs resulting
in amino acid modifications lead to the structural and functional diversity of proteins [40].
In CRC, PTMs can regulate a wide range of cellular processes such as transduction of cell
signaling, energy generation and consumption, and DNA reparation [41].

To sum up, we deduce the impact of molecular mutations on the functions of the
different players regulating CRC. A current knowledge gap exists on how these mutations
can cause structural aberrations in the proteins, which in turn give rise to functional
abnormalities. The tumor-suppressor proteins have a target set of genes and understanding
the anomalies of the structure-function relationship can be challenging.

2.3. Protein Modifications in CRC
2.3.1. Post-Translational Modifications in CRC

Post-translational modification (PTM) has a significant role in the development of can-
cer [42]. Such alterations can lead to the structural and functional diversity of proteins [40].
In CRC, PTMs like phosphorylation, ubiquitination, and acetylation are modifications of
high biological significance [39]. For CRC development, the modifications were identified
on the surface of proteins like Plasma protease C1 inhibitor (IC1), vitamin D-binding pro-
tein (VDBP), albumin (ALBU), X-ray repair cross-complementing protein 6 (XRCC6), and
complement C4-A (CO4A) [39].
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2.3.2. Alterations in the Patterns of Glycoproteins and Proteases That Impact
CRC Development

Protein glycosylation has received considerable interest in cancer research owing to
its relation to cancer development [43]. Plasma glycoproteins have been used to screen
different types of cancer such as cancer antigen 125 (CA-125) in ovarian cancer, cancer
antigen 15-3 (CA15-3) in breast cancer, and prostate-specific antigen (PSA) in prostate can-
cer [44–46]. Although, there was a knowledge gap regarding the impact of altered patterns
of glycoproteins in CRC until recently [47]. Similarly, cysteine proteases like cathepsin
L (CATL) and Cathepsin B (CATB), and serine proteases like tissue-type plasminogen
activator (TPA) and urokinase-(UPA) and their inhibitor type-1 (PAI-1) have prominent
functions in the CRC development [48]. Such proteins have been upregulated in CRC [48].

The impact of protein glycosylation and proteases is well-known in CRC development,
however, there are outstanding questions about the structural alterations in the proteins
that might lead to changes in protein functions.

2.4. Proteogenomics Approaches in Cancer, Specifically in CRC

CRC is intricately complex and relying only on the information from genomics can be
insufficient for cancer diagnosis and treatment. This gives a half-cooked story of the events
happening. Information about proteins is welcoming since it can help us to comprehend
completely the underlying molecular pathology of cancer [49]. Transcriptomic profiling
could be an upgrade that could add to the genome information. Moreover, transcriptomic
information could improve the characterization of tumors that could facilitate specific
cancer treatments [50]. However, as the target of most anticancer drugs are proteins, the
limitation of the transcriptome lies in the fact that it fails to identify the changes in the
functional status of the proteins involved in cancer [49]. That said, genomic information
could be very useful in deciphering the somatic genomic and epigenomic modifications
in the tumor cells [51]. However, there should be cohesiveness in preparing a catalog of
these modifications along with systematic functional investigations to uncover the role of
these modifications in inducing malignant transformation [51]. One of the large collabo-
rative projects that exist currently is The Clinical Proteomic Tumor Analysis Consortium
(CPTAC) [49]. The network initiated by the National Cancer Institute enhanced the com-
prehension of the molecular basis of cancer [52]. Although CRC is one of the focus areas of
this network, it is now populated by ovarian, breast, and other types of cancer as well [52].

PTMs such as ubiquitinylation, phosphorylation, and glycosylation can impact protein
stability in CRC [53]. Additionally, PTMs have the potential to alter antibody recognition
and affinity. Proteogenomics could yield holistic means to address issues related to CRC
by correcting both gene and protein sequences and circumvents the limitations of only
genomic and transcriptomic investigations. Proteogenomics approaches in CRC could
be used as a useful technique in biomarker discovery. In CRC, searching for predictive
biomarkers has been a difficult task [54]. Proper biomarker discovery for a cohort affected
by CRC would be helpful for the physicians to recommend specific targeted treatment
for that group, thereby reducing the overall health expenses [55]. It has been shown
previously that in cancer, the mRNA transcript abundance does not correlate with protein
abundance [9]. This study along with several other studies [55–58] highlights the need for
proteogenomics in resolving issues associated with cancer. Moreover, these studies also
indicate that proteins in CRC are involved in the apoptotic process regulation and cellular
protein metabolic process.

The molecular function of proteins is governed by the interaction selectivity with the
partner molecules [39]. Such type of interactions often needs a stable and rigid structure
of a protein. PTMs may induce small structural changes that would lead to complete loss
or switching in the biological activity of the protein. Therefore, the comprehension of the
tertiary environment of protein modification is required to understand the function and
contributions of such altered proteins in pathophysiological processes.
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Identification of global proteomic differences between normal and CRC tumor tissues
is necessary to unravel cancer biomarkers and neoantigens. Yet, the current understanding
is lacking in CRC cohorts. Global phosphoproteomics, ubiquitomics, and protein glyco-
sylation analyses on human CRC are inadequate at this moment. Phosphoproteomics
data suggested that Rb is amplified in CRC and Rb phosphorylation could be a target in
CRC [10]. Likewise, phosphoproteomics data from CRC can help in targeting signaling
proteins and pathways, providing information to generate therapeutic targets. In CRC, al-
tered ubiquitination of CDK1 could be a pro-metastatic factor in colon adenocarcinoma [59].
Likewise, aberrant protein glycosylation, which resulted in pathological alterations that
are widespread in CRC, and the underlying mechanisms for the contributions to CRC
tumor progression are largely unknown. Enrichment of genes such as B3GNT2, B4GALT2,
ST6GALNAC2 has been associated with biosynthesis of N- and cores 1-3 O-linked glycans
in the colon, and accounts for 16% of CRCs evaluated [60]. However, such studies are few
and need more concerted efforts to understand CRC. Moreover, it is worth noting that
the colon cancer-associated proteins and phosphites had little similarities and overlaps
with already known cancer genes available in the Cancer Gene Census, further warranting
future proteogenomics investigations of proteins, PTMs and associated pathways involved
in CRC, so that novel biomarkers and neoantigens are deciphered [10].

2.5. Information from Proteogenomic Approaches and Precision Oncology

Proteogenomics is the area of research at the interface of genomics and proteomics [61]
(Figure 1).
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Figure 1. The concept of proteogenomics workflow. DNA, RNA and protein extracted from the
colorectal cancer patients to be used to understand the genomics, transcriptomics, and proteomics.
Protein modeling will provide solution to resolve the structure-function relationship of the proteins
involved in CRC.

The field integrates information from genomics, transcriptomics, and proteomics [62].
Proteomics aims at producing a quantitative and complete map of the proteomes for a
species [61]. Proteomics can yield a range of information on the cellular localization of pro-
teins, entail details about the protein’s interaction partners and networks, post-translational
modifications in proteins, whereas phosphoproteomics is able to generate a substantial
amount of information about the signaling pathways [63]. This makes proteomics a perfect
tool to understand cancer biology as most of the abnormalities will be at the protein levels.
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As previously discussed, genomics would not be able to comprehend the events associated
with alterations of the protein structures, functions and post-translational modifications.
On the contrary, the proteome has the potential to bridge the analytical distance between
the cancer genotype and the phenotype [49]. A typical approach to applying the concept of
the proteome to cancer is to use the mass-spectrometry-dependent proteomics data and
then pairing up with a proper database search algorithm such as MASCOT (Matrix Science
Inc., Boston, MA, USA) [49,64]. It is worth mentioning that MASCOT algorithm has been
successfully applied to identify novel diagnostic protein biomarkers in CRC [65,66]. There
is also the need to include genomics and transcriptomics with proteomics while studying
CRC. The introduction of the genomic and transcriptomic information would suffice the
limitation of the proteome information alone on the novel proteins that would have no
reference in the reference protein database [49]. Genomics, transcriptomics, and proteomics
together could capture activity patterns in proteins driven by events like chromosomal
deletion and amplification events, DNA copy number, and alterations in the expression of
microRNA [49].

This brings us to the discussion of precision oncology—a newer approach to tackling
cancer [67]. Precision oncology is the concept of implementing targeted treatments that
could be customized based on individual tumor signatures and takes genomic, transcrip-
tomic, and proteomic information into account [67]. There has been significant progress
on targeted customized therapies in breast, lung, and melanoma tumors [68]. However,
there have been only a few attempts to characterize the CRC using the proteogenomics
approach, which could encourage precision oncology [9,10,69]. Till now, proteogenomics
of CRC revealed distinct mutational profiles, therapeutic approaches, and candidate driver
genes [7,9,10]. In CRC, proteogenomics approaches have the potential to promote cus-
tomized drug development, however, need improving functional annotation resulting from
genomic aberrations [49]. The multidimensional approach is promising for application to
precision oncology [9,10,70–74].

Proteogenomics can drive therapeutic hypothesis generation and encourage precision
oncology [75]. We propose that predictive biomarkers discovery through proteomics
could generate the most efficient drugs to upgrade the current treatment paradigm of
CRC. Additionally, newer and novel targets of CRC could provide a rationale for future
drug development [75]. However, these approaches in CRC experience a “large p, small
n” issue because the number of genes, mutations, proteins, and modification sites that
could be evaluated in a study is several times more than the number of samples that
can be evaluated in a possible timeline using techniques like LC-MS/MS. These putative
candidates for therapeutic applications must be further examined before implementing
clinical applications. This review hypothesizes the need for proper, efficient downstream
analysis through incorporating proteogenomics approaches coupled with protein modeling.

2.6. Proteomics to Understand Structures of Proteins

Combination of Two-dimensional difference gel electrophoresis (2D DIGE) and Matrix-
Assisted Laser Desorption/Ionization—Time of Flight (MALDI-TOF) mass spectrometry
was successfully applied to identify biomarkers of CRC [76]. Proteins in extracellular
vesicles (EVs) of CRC were evaluated using combination of absolute quantification labeling
(iTRAQ) [77] and multidimensional liquid-chromatography-tandem mass spectrometry
(MS/MS) [78]. Moreover, CRC biomarkers have been successfully identified using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) [79]. So, it is evident that mass
spectrometry has a successful and considerable application in the identification of proteins
associated with CRC.

Native Mass Spectrometry (NMS) has recently evolved and has the potential to be
applied in cancer research [80]. NMS can successfully dissect the native contacts between
the proteins, protein complexes [81], and protein kinetics [80]. NMS can yield information
about protein conformation, cofactor content, topography, and protein complex stoichiome-
try [82,83]. As reported before, CRC is due to mutations of oncogenic mutants including
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KRAS. KRAS mutations are prevalent in CRC amounting to 45% in the United States and
as high as 49% in China [84]. NMS could be ideal to study energetics and kinetics of GTP
hydrolysis of such oncogenic mutants and makes NMS suitable particularly for CRC [80].
KRAS protein is a membrane-bound GTPase (GTP hydrolase) which can control a range of
cellular signaling pathways like the MAPK and PI3K pathways [84]. When bound to the
GDP form, KRAS remains in an inactive state, and upon GTP-bound, the protein becomes
active. In CRC oncogenic status, it is often observed that the KRAS exists in active status
as its intrinsic GTPase function and GTPase activating proteins are hindered [85,86]. So,
GTP hydrolysis status is key in CRC patients, and the effectiveness of NMS could help in
the detailed investigation of such GTP hydrolysis. Mutant alleles with strongly hindered
GTP hydrolysis including G12R and Q61R/K/L mutants, are less effectively degraded
by direct pan-KRAS proteolysis targeting chimeras (PROTACs) targeting the GDP-bound
form [84]. More investigations into such and other mutation forms would potentially
help to establish newer KRAS-targeting drugs as a concept of precision therapy and can
substitute for existing chemotherapeutic approaches.

Hydrogen/deuterium exchange (HDX) is another technique that can reveal substantial
information about the dynamics of the protein [81]. HDX-MS thus has the potential to
be applied in elucidating the PTMs associated with CRC by giving a clear account of the
conformational dynamics of proteins and protein complexes [87]. Although this technique
is nascent in being applied to the field of cancer investigation but could be beneficial if it
could be applied. HDX-MS can easily bridge the existing knowledge gap of the protein
structure-function relationship [81].

We emphasize on proteogenomics approach that uses the information from DNA
sequencing, expressed sequence tags (ESTs), RNA sequencing, and ribosome profiling to
generate customized protein sequence databases. This information would then help to
interpret the proteomics data from MALDI-TOF-MS, LC-MS/MS, and iTRAQ-LC. This
customized data would then encourage validation at the protein level of the gene expression
data, and in turn refine gene models [61].

A typical proteogenomics approach workflow involves the extraction of DNA, RNA,
and proteins from the tumor samples [88]. The DNA extracted will be used to obtain the
genomic information, mRNA for transcriptome profiling, and proteins to understand the
proteome [89]. For DNA and RNA sequence data generated, the first approach will be
to trim the low-quality sequences. DNA data could be used to detect mutations, somatic
copy number alterations, and microsatellite instability prediction, while RNA data can
be used to obtain transcriptome profiles [89]. Workflow for proteome involves extraction
of proteins, tryptic digestion, labeling of proteins by TMT-10, peptide fractionation by
liquid chromatography, metal affinity chromatography to perform the phosphopeptide en-
richment, and implementation of a mass spectrometry technique such as LC-MS/MS [90].
High-Performance Liquid Chromatography and a combination of Mass Spectrometry
(HPLC-MS/MS) have been successfully applied to identify and characterize the PTMs
associated with CRC when compared with normal patients [39]. Specifically, a bioinfor-
matics approach was put forward for CRC patients and compared with healthy samples to
identify acetylation, phosphorylation, and ubiquitination which eventually aimed at deter-
mining the altered biological activity of the proteins [39]. Acetylation, phosphorylation,
and ubiquitination have significant contributions to CRC. Phosphorylated retinoblastoma
proteins (Rb) have been linked with reduced apoptosis in CRC cells [91]. Phosphorylated
Rbs interact with different protein partners and show different Rb functions in CRC [91].
Protein lysine acetylation could impact CRC metastasis through several pathways. PTMs
involving proteins like isocitrate dehydrogenase (IDH1) are seen to influence hypoxia-
inducible factor 1-alpha (HIF1α) dependent transcription of steroid receptor co-activator
(SRC) transcription which further control CRC progression [92]. A very recent approach for
cancer treatment is to eliminate oncogenic proteins by regulating the ubiquitin-proteasome
system (UPS) [93]. Deubiquitinating enzymes (DUBs) tend to play important role in CRC
formation and development by increasing the oncogenes stability [94]. Specifically, in CRC,
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the Wnt-signaling pathway has been observed to be impacted by USP14 by enhancing Wnt
signaling pathway [95]. USP4 and USP7 enhance the β-catenin and results in CRC tumor
progression by modulating Wnt signaling [96,97]. This reiterates the study of such PTMs in
CRC and forms the theoretical background for the application of such protein PTMs.

2.7. Approach to Protein Structure Modeling, and In Silico Mutations

One of the resources the scientific community has is the rich depository of crystal
structures of the various tumor-suppressor proteins [98–101]. This review proposes to
optimally utilize the crystal structure depositories so that the investigators can generate
the necessary tertiary structure of various proteins linked to CRC. One popular way to
generate the wild-type and mutated structure of the proteins is to use the power of protein
structure modeling and in silico mutations using the information from these protein crystal
structure depositories such as RCSB Protein Data Bank.

Protein mutations can lead to six possible outcomes—(1) protein activity alter-
ations [102–107] (2) impacting protein–protein interactions [108–111] (3) affecting pro-
tein folding [103–105] (4) modifications in protein localization [112,113], (5) changing
the half-life [114], and (6) combination of all these effects [102,103,108,109,112–114].
The knowledge from protein structure modeling and in silico mutations can address the
knowledge gaps involving altered protein activity, structural abnormalities, protein–
protein interactions, and protein folding.

Protein modeling, molecular dynamics simulation, and in silico mutations have been
successfully employed to gain insights into the tumor-suppressor proteins in various cancer
studies [115–117]. Additionally, this approach has even been applied to proteins involved
in CRC [118–120]. However, there should be more concerted efforts to apply these in
silico approaches to solve the mysteries involving cancer, and with a pool of proteomics
data coming up, that should provide an ideal platform to implement this concept in near
future [121].

2.8. Protein Modeling to Assess the Tertiary Structure (3D) of Proteins in CRC

Mass Spectrometry over the years has yielded a wealth of information on the identi-
fication of biomarkers of CRC [122,123]. Biomarkers can differentiate between a healthy
patient with a cancer patient as biomarkers are only detected in the patient’s blood or body
fluids [124]. However, we want to highlight the importance of the structural aberrations in
the proteins associated with CRC. The proteogenomics approach will generate insights into
the gene levels, mRNA levels, and protein levels as well. A well-planned approach to ap-
plying mass spectrometry and in silico protein modeling could open new frontiers in cancer
research, including CRC. Protein modeling would provide insights into the mechanisms of
the functions of the altered proteins [125].

The usual approach from the mass spectrometry technique is to generate a spectrum
from which peptide sequences can be detected [126]. Then, the sequences are searched
against the NCBI database to identify the candidate proteins from which the sequences
have been obtained [126]. As discussed previously, this approach could be problematic
when novel proteins need to be identified. The absence of the necessary information in
the database might pose challenges to identify those novel candidates. This is where
proteogenomics could be useful, and conjugating proteogenomics with protein modeling
would not only identifying the novel proteins but could also entail insights into the detailed
mechanisms of such proteins [49,127].

Future cancer research investigations should focus on the tertiary structures of the
proteins rather than on the sequences. The peptide sequences coming out of the mass
spectrometry studies could be used as an input for the protein modeling techniques.
One of the typical workflows could include the involvement of standard crosslinking
techniques in which a crosslinker reacts with a definite residue and the second one form
the crosslink [128]. A crosslinker is a reagent that has two functional groups separated by a
spacer region. Two types of cross-linkers could be used for protein structural modeling—(1)
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Standard crosslinkers, (2) Photo-crosslinkers. The crosslinker form covalent bonds when
the crosslinker reacts with protein. For using photo-crosslinkers, the photoreactive groups
are required to be activated with ultraviolet light [128]. The user then needs to comprehend
the upper distance bound of the involved crosslinked residues. The two residues of the
proteins can only react if the distance of the reactive groups is within the range of the
crosslinker. The reactive crosslinkers would then store the spatial information. To elucidate
the spatial information, the experimenter then digests the protein using enzymes like
trypsin or other proteases [128]. Then, mass spectrometry of the generated peptides is
carried out. After that, specialized and customized database search software evaluates the
crosslinks resulting from the mass spectrometry data. The crosslinks finally dictate the
input data to data-driven protein structure modeling [128].

Primarily, three protein modeling methods exist currently (Table 2):

(1) Homology modeling: This method also known as comparative modeling could be
used when a protein with a crystal structure is available in the database [129]. The
query protein must possess >30% sequence identity with the protein available in
the database [130]. The homology model could be built using efficient tools like
MODELLER [131]. Previously, a wide range of proteins associated with cancer has
been studied by this method [132–134].

(2) Modeling by threading/fold recognition: Information on the protein folds based on
similar proteins is used in predicting the structure of the proteins the users want to
model. I-TASSER online server [135–137] can be used for modeling where different
databases are used and the workflow is user-friendly.

(3) Ab initio strategy: This is a powerful approach to predict protein structures when an
appropriate homolog structure is unavailable in the database. The model is initiated
and built using the information on the most favorable energy conformations of the par-
ticipating amino acids, and also calculates the potential chemical interactions among
the amino acid sequences [138]. However, this technique can be time-consuming and
computationally intensive [139]. I-TASSER can apply the ab initio modeling when
an appropriate template is absent [135]. QUARK [140,141] and CONFOLD2 [142] are
other useful web servers for generating ab initio protein structures from amino acid
sequences. While QUARK uses Monte Carlo simulation under the influence of an
atomic-level-knowledge-based force field, CONFOLD2 uses a subset of input contacts
to understand the protein fold space guided by a soft square energy function.

Table 2. Three protein modeling strategies with advantages and disadvantages of each system.

Protein Modeling System Advantages Disadvantages Reference

Homology modeling High-resolution structures can
be generated

Physicochemical principle of protein
modeling cannot be deciphered [143]

Modeling by threading/
fold recognition

Works better for proteins when
templates available are of

distant homologies

The structures are less reliable than
homology modeling [144]

Ab initio strategy
Answers on how the protein takes a

specific structure out of many
structural possibilities

Less reliable for larger protein
structures composed of more than

150 residues
[145]

To model the proteins with PTMs, PyTMs, a plugin devised for PyMOL is very
useful [146]. The workflow enables easy standardization techniques, and ensures fast and
easy user controls [146].

Although the techniques are independent, these can be intertwined to solve the protein
structures. For example, the homology modeling approach and ab initio strategies could be
used simultaneously. The ab initio can predict the areas of the proteins without homology,
while the homology modeling approach can be applied to the other parts of the protein
where there is a template to work with [81]. The generated structure can then be validated
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using chemical cross-linking coupled to mass spectrometry (XL-MS) and surface labeling
coupled to MS (SL-MS) [81]. The downsides of the protein modeling approach are its
incapability of predicting multimeric protein complexes [81]. The downside however can be
solved by using protein docking tools that can predict the models of protein complexes [81].

Often studies related to cancer might demand insights into various protein complexes,
and so a definite strategy should be important. In CRC development, it is often observed
that multiple candidates or protein complexes are involved either independently or in
cascades, and so a definite strategy should be in place to deal with such instances [147].
Even the involvement of protein complexes in chemotherapy resistance for CRC has been
observed [148]. However, such findings on the involvement of multimeric protein com-
plexes and cascades are still in infancy and the involvement of proteogenomics approaches
could be useful to understand CRC more extensively. A tool like ClusPro2.0 utilizes a
thermodynamics-based approach to predict the lowest energy well for interacting pro-
teins [149]. During the protein–protein docking, one protein is kept static and another
forms several conformations. Similar conformations are kept together, and the conforma-
tions with the highest frequency are selected. The selected candidates are then refined and
energy-minimized, and could be further validated using solution techniques like SL-MS
and XL-MS [149]. If multiple subunits are required to generate a protein complex, this
strategy can be repeated several times to consider additional subunits one at a time.

In cancer, cofactors often play roles in protein functioning and these need to be
considered while generating protein 3D structures [150,151]. A usual approach could
be to use SwissDock to locate the cofactor position within the protein and then perform
the energy minimization to obtain the best possible confirmation of the protein with the
cofactor [152].

For visualizing the monomeric and multimeric proteins, Chimera is a productive
software with the plugin Xlink Analyzer that analyzes the protein structure validation
using cross-linking data [153,154].

The target sites of colon cancer-related proteins are often nucleic acids, which then
guide the downstream processes [155]. Modeling such protein-nucleic acids can be chal-
lenging, although there have been some recent breakthroughs [156,157]. Structure-based
methods are preferred over sequence-based methods, and PRIME 2.0.1 is useful in predict-
ing such complex protein-DNA structures [158].

2.9. Protein Docking of Mutated Proteins to the Substrates to Understand the Impact on Functions,
the Need for Energy Minimization and Molecular Dynamics Simulation

Proteins that have structural alterations should have a profound effect leading to
cancer [159]. So, understanding the mutational implications of the structural stabilities
of the proteins is critical. There are reports of understanding the mutants of the key
proteins [160,161], however, there should be more initiatives from the scientific community
that could decipher the mutated protein’s functional mechanisms. One approach to induce
amino acid alterations is to use Swiss PDB viewer [162], and then use appropriate protein
docking software to dock the involved partners of the mutated proteins. There are several
protein docking tools available currently with Autodock [163] and Autodock Vina [164,165]
being the most reliable ones. The users will be able to easily compare the wild-type protein
with the mutated counterparts and how the mutation impacts the overall binding affinities
or specificities with the interacting partners. The change in the functions could also be
tracked by such an approach [161].

Energy minimization, structural refinements, and molecular dynamics simulations
are critical steps that need to be followed during protein molecular docking. Energy
minimization of protein structures ensures the proper molecular arrangement of amino
acids in space as the initial structures might not be energetically favorable [166]. Structural
refinements of the protein structure are then carried out by adding missing atoms and
neutralizing charges [167]. Energy minimization and structural refinements are steps
under molecular dynamics simulation studies. Trajectory data from simulation should be
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analyzed carefully to select the best energy-minimized structure of proteins, interacting
partners and the protein-ligand structures [167]. Energy-minimized refined structures
with appropriate simulation techniques ensure the stability and near-naiveness of the
protein structures and interactions [168]. Currently, several useful tools are available to
perform the simulation of proteins, with AMBER [169], NAMD [170], GROMACS [171],
and CHARMM [172] being the most popular ones.

2.10. Combining Hydrogen Exchange Mass Spectrometry and Protein Modeling to Understand
3D Structures

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a sophisticated
and powerful technique that can elucidate the behavior of proteins by resolving the
structure, dynamics, and function [173]. One of the interesting ways to optimize the
HDX-MS experimental data is by conjugating the data to guide computational modeling
tools like molecular docking and molecular dynamics [174,175]. In the past, molecular
dynamics simulations have been used to decipher the structural properties obtained
from HDX-MS data [176–182], even complementing the HDX-MS data by applying
short time scales [183–186]. So going forward, there is a huge scope for integrating the
strength of HDX-MS and modeling techniques to study the protein structure alterations
in CRC [187].

3. Conclusions

Studies carried out in microorganisms like bacteria and yeast indicated a 50% cor-
relation at the mRNA and protein levels [188]. However, the correlation significantly
decreases when the genome complexity increases as in the case of humans, where only
30% of variations in protein levels could be explained by corresponding changes in the
levels of mRNA [189]. This is due to various post-transcriptional (variable mRNA transla-
tional efficiency, siRNA regulation) and post-translational regulations (phosphorylation,
glycosylation) which impact the protein stability [190]. So, it is difficult to comprehend the
proteome dynamics from functional genomics data alone, and there is a need to comple-
ment the proteomics approach to genomics and transcriptomics resulting in the complete
proteogenomics approach [190].

CRC is one of the deadliest cancers in the world [191]. Human genome sequencing
has enabled the scientific community to fathom the genetic alterations in CRC in a compre-
hensive manner [192]. However, interpreting CRC only at the genomic level will not give
the full picture, instead, the review suggests incorporating the information from the RNA
and protein levels to gauge the functional alterations.

Proteogenomics approaches in CRC can facilitate the concept of precision oncology
and encourage the applications of customized targeted treatments. In CRC, the proteoge-
nomics approaches have been successfully applied to reveal new therapeutic avenues [10].
Specifically, personalized neoantigens for CRC patients were identified that could be used
for the generation of therapeutic hypothesis [10].

The review highlights the importance of proteomics, and the way it could be integrated
with protein modeling to grasp the underlying knowledge gaps in understanding the
structural alterations in CRC, and also cancer in general. The major takeaways are: (1) From
the clinical perspective, CRC is caused due to genetic changes involving KRAS, TP53,
APC, BRAF, SMAD4 and several other alterations (2) These alterations are not only a
phenomenon occurring at the genomic or transcriptomic level, but does show up at the
protein level owing to mutated structures and changed functions of such proteins (3) So, it
is the best bet to correlate the genotype-phenotype attributes to capture the full extent of
the CRC diagnosis, biomarker discovery and treatment (4) Proteomics has the potential
to resolve the existing issues of understanding CRC by providing new insights regarding
protein profiling, biomarker discovery and PTMs (5) The MS-based proteomics data would
be coupled with protein modeling, protein docking, in silico mutations to understand the
differences in protein’s behavior between healthy and CRC patients. This knowledge would
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then complement the information from clinical studies that relies on targeted proteomics to
yield a better understanding of CRC. We not only discussed the existing information and
questions associated with understanding CRC but also provided the avenues that can be
explored to meet the current challenges.
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