
Citation: Omara, T.; Nagawa, C.B.;

Kyarimpa, C.; Böhmdorfer, S.;

Rosenau, T.; Lugasi, S.O.; Matovu, H.;

Odongo, S.; Ssebugere, P. Lacustrine

Cyanobacteria, Algal Blooms and

Cyanotoxins in East Africa:

Implications for Human and

Ecological Health Protection.

Phycology 2023, 3, 147–167. https://

doi.org/10.3390/phycology3010010

Received: 24 January 2023

Revised: 6 February 2023

Accepted: 8 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Lacustrine Cyanobacteria, Algal Blooms and Cyanotoxins
in East Africa: Implications for Human and Ecological
Health Protection
Timothy Omara 1,2,* , Christine Betty Nagawa 3, Christine Kyarimpa 4 , Stefan Böhmdorfer 2 ,
Thomas Rosenau 2 , Solomon Omwoma Lugasi 5, Henry Matovu 6, Silver Odongo 7 and Patrick Ssebugere 7,8,9,*

1 Food Safety Laboratories, Chemistry Division, Testing Department, Standards Directorate, Uganda National
Bureau of Standards, Bweyogerere Industrial and Business Park, Kampala P.O. Box 6329, Uganda

2 Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources
and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria

3 Department of Forestry, Biodiversity and Tourism, College of Agricultural and Environmental Sciences,
Makerere University, Kampala P.O. Box 7062, Uganda

4 Department of Chemistry, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
5 Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology,

Bondo P.O. Box 210-40601, Kenya
6 Department of Chemistry, Gulu University, Gulu P.O. Box 166, Uganda
7 Department of Chemistry, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
8 Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
9 Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ,

04318 Leipzig, Germany
* Correspondence: prof.timo2018@gmail.com (T.O.); patrick.ssebugere@mak.ac.ug (P.S.)

Abstract: Advected cyanobacteria, algal blooms and cyanotoxins have been increasingly detected
in freshwater ecosystems. This review gives an insight into the present state of knowledge on the
taxonomy, dynamics, toxic effects, human and ecological health implications of cyanobacteria, algal
blooms and cyanotoxins in the East African Community lakes. The major toxigenic microalgae in
East African lakes include Microcystis, Arthrospira, Dolichospermum, Planktolyngbya and Anabaenopsis
species. Anatoxin-a, homoanatoxin-a, microcystins (MCs), cylindrospermopsin and nodularin have
been quantified in water from below method detection limits to 81 µg L−1, with peak concentrations
characteristically reported for the wet season. In whole fish, gut, liver and muscles, MCs have been
found at concentrations of 2.4 to 1479.24 µg kg−1, which can pose human health risks to a daily
consumer. While there have been no reported cases of cyanotoxin-related poisoning in humans, MCs
and anatoxin-a (up to 0.0514 µg kg−1) have been identified as the proximal cause of indiscriminate
fish kills and epornitic mortality of algivorous Phoeniconaias minor (lesser flamingos). With the
unequivocal increase in climate change and variability, algal blooms and cyanotoxins will increase in
frequency and severity, and this will necessitate swift action towards the mitigation of nutrient-rich
pollutants loading into lakes in the region.

Keywords: Arthrospira fusiformis; cylindrospermopsin; hepatotoxicity; lesser flamingos; Lake Victoria;
microcystins; Microcystis; nodularins

1. Introduction

Industrialization has been the key driver of economic growth and inclusive prosperity
because it does not only foster economic and infrastructural development, but also enhances
the realization of some vital targets enshrined in the 2015–2030 Sustainable Development
Goals [1,2]. This is evident from the employment opportunities it creates, improved working
conditions, optimal resource use [3] and the innovations that have led to nascent and
environmentally benign (greener) production technologies [4,5]. Despite this, there are
various environmental challenges that have been associated with industrialization. One of
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the most pronounced concerns has been the occurrence of cyanobacteria (CYB), harmful
algal blooms (CYBHAB) and cyanotoxins (phycotoxins) in aquatic ecosystems, attributed
to anthropogenic pollution and accelerated climate change [6].

Algal blooms were initially not considered to be harmful because they largely occurred
in summer or typically dry months [7]. Lately, rising temperatures have doubled or tripled
algal bloom incidences in coastal countries [7]. At present, CYBHAB are at the forefront of
toxicological research because of the negative effects that they can exert on both ecosystems
and humans. Cyanobacterial phytoplankton blooms are contextualized “as noticeable, CYB-
HAB with appreciable effects, including scum formation, marked discoloration of surface waters as
well as fish, human, or other invertebrate mortalities” [8]. In other words, CYBHAB occur when
algal densities surpass baseline population levels. More than 5000 species of microalgae are
classified, but only 300 species (or less) may induce algal blooms that are toxic [9]. Despite
the spontaneous occurrence of various microalgae in bloom conditions, CYB or blue-green
algae are of primary concern because they can produce toxic metabolites (cyanotoxins).
Cyanotoxins are mostly produced by CYB, dinoflagellates and benthic diatoms from gen-
era Dolichospermum, Microcystis, Arthrospira, Anabaenopsis, Alexandrium, Protogonyaulax,
Gymnodinium, Dinophysis, Gonyaulax, Prorocentrum, Pseudonitzchia and Pyrodinium [10].

CYBHAB is a globally recognized phenomenon, and several incidences have been
reported in more than 25 countries, including India, Italy, Germany, Netherlands, Sweden,
Greece, USA, China, Madagascar, Algeria, Ghana, Ethiopia, Zimbabwe, Botswana, Egypt,
Cameroon, Mozambique, Uganda, Sudan, Kenya, Senegal, Burkina Faso, Lesotho, Morocco,
Nigeria, South Africa, Tanzania and Tunisia [7]. It is believed that the incidences of
CYBHAB and algal toxins production will continue to increase dramatically, plausibly
due to anthropogenic nutrient loading and global warming with its impact on the vertical
stratification of lakes [11,12]. Despite the central body of knowledge that CYBHAB tend
to be recurrent in high nutrient-load water resources, there is accumulating evidence that
blooms also occur in oligotrophic ecosystems [11]. Moreover, strong re-oligotrophication
(that increases light in the metalimnion) may favor CYBHAB where metalimnetic bloom-
forming CYB are present [11]. The high-nutrient paradigm as the major driver of CYBHAB
is also challenged [12], because CYB have undergone adaptations so that they can thrive
even under the harshest environmental conditions.

The East African Community (hereafter EAC), comprising seven sovereign states
(Democratic Republic of Congo, Burundi, South Sudan, Rwanda, Tanzania, Uganda and
Kenya), is bountifully blessed with water resources (Figure 1). The region’s water demands
are, to a greater extent, fulfilled by eutrophic water bodies, which, regrettably, have been
under intense land use charges and pollution pressure, and this could lead to increased
incidences of CYB and CYBHAB [13–15]. The close proximity between human settlements,
industries, cities, ports and most water bodies [16] lead to the recognition that CYBHAB
may be a common occurrence. To this end, various event-driven studies in the region have
been undertaken on the phytoplankton composition, occurrence of CYB and cyanotoxins
in lacustrine ecosystems. Three reviews in regional and continental contexts have been
published on CYB and cyanotoxins, with the EAC in focus. The first of its kind was by
Ndlela et al. [7], who gave an overview of CYBHAB incidences and the research strides in
Africa. Later, Kimambo et al. [17] synthesized data pertaining to the presence of CYBHAB
in inland aquatic ecosystems of the United Republic of Tanzania, and the linkages with
the country’s climatic conditions. The latest collation by Olokotum et al. [14] examined
the socioecological causes and consequences of CYBHAB in Lake Victoria (L. Victoria), the
largest lentic water resource in the EAC. With the inclusion of the Democratic Republic of
Congo (DRC) into the EAC in 2022, more knowledge on CYB, CYBHAB and cyanotoxins
could be revealed as it shares some lakes with Rwanda (Lake Kivu), Uganda (Lake Albert
and Lake Edward) and Tanzania (Lake Tanganyika). We built on the foregoing reviews
to examine the current understanding of the taxonomy, algal bloom dynamics, toxicity,
human and ecological health implications of CYB, CYBHAB and algal toxins in the EAC.
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Cyanotoxins are still considered to be contaminants of emerging concern, because their
toxicity mechanisms and effects on humans and ecosystems are not fully understood [10].
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Figure 1. Map of East African Community (EAC) showing the partner states and location of lakes with
reports of cyanobacteria, algal blooms, cyanotoxins, indiscriminate fish deaths and mass mortalities
of lesser flamingos. Adapted from Ayugi et al. [18].

2. Materials and Methods

Electronic search on the occurrence of CYB, algal blooms and cyanotoxins in EAC
lakes were performed in Web of Science Core Collection®, Scopus®, Science Direct, Google
Scholar®, Springer Link, Taylor and Francis Online, Scientific Electronic Library Online,
PubMed, Google search engine and EAC university repositories from August 2022 to
December 2022. The specific search terms used were cyanobacteria, blue-green algae, algal
bloom, cyanobacterial bloom, harmful algal bloom, CyanoHABs, HABs, microcystins,
saxitoxin, anatoxin, cylindrospermopsin, nodularin, brackish water and the specific names
of the EAC partner states or major lakes such as Lake Victoria, Lake Tanganyika, Lake Kivu,
Lake Naivasha and Lake Nakuru. Reports from websites of all Nile basin organizations
were searched. The review considered articles dated until December 2022.



Phycology 2023, 3 150

3. Occurrence of Cyanobacteria, Algal Blooms and Phycotoxins in EAC Lakes

Toxic and non-toxic CYB are photosynthetic prokaryotes that occur naturally in ter-
restrial as well as aquatic ecosystems [10]. They are typically larger than normal bacterial
cells, and their inherent mass production of phycobilin pigment confers upon them a
bluish tint at high concentrations, hence their naming as blue-green algae [7]. They are
Gram-negative bacteria that may be filamentous, unicellular or multicellular (occuring as
colonies), contingent on the prevailing conditions. Under suitable environmental condi-
tions that afford competitive advantages (e.g., alkaline pH, buoyancy, high sunlight-for
conversion of ferric ion to ferrous ion, moderate temperature, i.e., 20 ◦C to 30 ◦C (10 ◦C in
winter for Planktothrix rubescens), nutrients phosphorous and nitrogen, and water column
stability), CYB are capable of proliferating and forming CYBHAB or scums in the upper
sunlit layers. Such unsightly scums and blooms contain malodorous compounds such as
geosmin and methylisoborneol, which are responsible for the aesthetically unpleasant taste
of CYB-contaminated water. While the biology and ecology of CYB has been a subject of
intensive research globally, there is a paucity of clearly articulated information regarding
factors and processes that regulate toxin production in most cyanobacterial species [12].
In lentic freshwater resources (such as L. Victoria, Lake Tanganyika and Lake Kivu in the
EAC), the occurrence of CYB is favored by climate variability, anthropogenic activities, hy-
drological shifts and high nutrient loads [19]. In part (for Ugandan lakes such as Mburo and
Kachera), loading is from influx of nutrient-rich hippopotamus and cattle dung wastes [20].

Cyanobacteria are usually associated with the production of nocive cyanotoxins. The
great diversity and high metabolic potential of CYB implies that there are other unknown or
at least little studied cyanotoxins. According to CyanoMetDB (a comprehensive database of
cyano-metabolites), at least 2000 molecules, including more than 300 microcystin congeners,
are already known [21]. Cyanotoxins are contaminants of emerging concern that are poten-
tially (eco)toxic. They can adversely impact ecosystem services provided by water resources
by depleting oxygen, altering food webs, species assemblages and poisoning animals and
humans [22]. Examples of cyanotoxins include cyclic hepatotoxic peptides (microcystins,
nodularins), dermatoxic, cytotoxic, genotoxic or neurotoxic alkaloids, polyketides and
amino acids (lyngbyatoxin-a, cylindrospermopsins, anatoxins, saxitoxins, aetokthonotoxin,
lipopolysaccharides (endotoxins), guanitoxin, beta-N-methylamino-L-alanine and aplysia-
toxins) [22].

The frequently encountered cyanotoxins are anatoxins, cylindrospermopsin (CYN),
nodularins (NODs), saxitoxin, and microcystins (MCs), but the most-studied members are
MCs (the -LR variant). Thus, in addition to anatoxin-a (ATX), they are the main cyanotoxins
that garnered early scientific interest in Eastern Africa (Figure 2). In the EAC, toxigenic
freshwater CYB and CYBHAB have been implicated in the reoccurrence of eutrophic and
hypoxic conditions in L. Victoria [14,23–27]. Table S1 shows a summary of reports on the
occurrence and abundance of CYB and other phytoplankton, their dominant species and
MCs in EAC lakes. These are discussed per country in the following.
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3.1. DRC

In the Congolese part of the oligotrophic Lake Tanganyika, the occurrence of CYB
(Dolichospermum flosaquae, Anabaenopsis species and Limnococcus limneticus), along with
Nitzschia asterionelloides (Bacillariophyta), has been reported [28,29]. These diazotrophic
CYB were implicated in the CYBHAB witnessed in 1955 and 2018, but cyanotoxin concen-
trations of water sampled from the lake have not been established.

Another unique lake in DRC is Lake Kivu, a deep oligotrophic and meromictic water
resource. Though it contains copious volumes of exploitable methane, CYB (Synechococcus
species and Planktolyngbya limnetica) dominate the phytoplankton biomass in this lake,
followed by pennate diatoms (Nitzschia bacata and Fragilaria danica) [30,31]. These reports
resonate well with that of Hecky and Kling [32], who showed that CYB and chlorophytes
(with biomass contents that are higher than in the neighboring Lake Tanganyika) dom-
inated in Lake Kivu. Their report, however, pointed to the presence of additional CYB
Lyngbya circumcreta West, Anabaenopsis, Cylindrospermopsis and Raphidiopsis species. Sar-
mento et al. [33] found a strikingly contradicting result, with pennate diatoms being more
abundant than CYB in Lake Kivu. Nevertheless, picocyanobacterial Synechococcus species
was found to still form a significant proportion of the annual autotrophic plankton of the
lake [34]. Further, Urosolenia and Microcystis genera are dominant holopelagic species under
certain stratification scenarios [33]. The dominance of diatoms in Lake Kivu thus seems to
occur solely during dryer periods, when deep mixing occurs [35].
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3.2. Kenya

With regard to cyanotoxins, one of the groundbreaking reports was by Ballot et al. [36]
who found intracellular ATX (0.3 to 9 and 5 to 223 µg g−1 dry weight (DW)) and MCs
(16 to 155, and 130 to 4593 µg MC-LR eq. g−1) in seston samples from Lake Bogoria
and Lake Nakuru. Interestingly, phycotoxins were not detected (UDT) in Lake Elmenteita
cyanobacterial samples. Later, MCs (2.2 µg MC-YR g−1 DW) and ATX (0.3 µg g−1 DW) were
traced in axenic Arthrospira fusiformis (A. fusiformis) from Lake Sonachi, though the same
species along with Anabaenopsis species from Lake Simbi had no detectable phycotoxins [37].
The authors similarly found cyanotoxins at concentrations of 1.6 to 12.0 µg MC-YR g−1 DW
(in Lake Sonachi) and 19.7 to 39.0 µg MC-YR g−1 DW (in Lake Simbi) for MCs, and 0.5 to 2.0
and UDT to 1.4 µg g−1 DW for ATX, respectively. Kotut et al. [38] similarly reported MCs
(2.2 and 15.02 µg g−1 DW) in A. fusiformis (synonym: Spirulina fusiformis) growing in Lakes:
Sonachi and Bogoria. ATX occurred at levels of 0.3 to 10.38 µg g−1 DW in A. fusiformis
sampled from lakes Sonachi, Bogoria and Nakuru, despite them being UDT in cultures
from L. Simbi and L. Elmenteita. All these reports corroborate previous observations that
strongly suggested the dominance of A. fusiformis in the volcanic crater and meromictic soda
lakes of Kenya [39–41]. In later investigations, Kenyan lakes Bogoria, Nakuru, Oloidien
and Elmenteita had more than 97% scum of A. fusiformis. As expected, MCs occurred at
16 to 155 µg MC-LR eq L−1 in Lake Bogoria and 130 to 4593 µg MC-LR eq L−1 in Lake
Nakuru [36,42–44]. These reports were divergent from earlier findings of Vareschi [45],
where CYB in Lake Nakuru were reported to be dominated by Spirulina platensis.

Other reports on CYB in Kenya are from its L. Victoria part (bays, gulfs and satellite lakes),
where CYB (>35%) and diatoms (>30%) of Microcystis, Merismopedia and Dolichospermum
species are the primary phytoplankton (Table S1). As far as cyanotoxins are concerned, Sitoki
and others [46] detailed the incidence of MCs in L. Victoria water. They concluded that the
levels varied greatly between seasons. This comes in concordance with later inferences of
other researchers [47,48] who investigated MCs contamination of water and fish consumed
by fisher communities of Winam Gulf, Homa Bay, Kisumu, Siaya and Busia counties of L.
Victoria (Kenya). Regrettably, up to 30% of water from these points exceeded the regulatory
set value (1.0 µg L−1) of the WHO [48]. The study suggested that CYBHAB pose potential
year-round health risks to riparian communities [48].

Recently, a team of researchers collated the insights and awareness of L. Victoria shore
community on MCs toxicity [47]. The authors appreciated that more than 70% of the
fisherfolk are conversant with the toxic effects of MCs, and showed the urgency required to
mitigate them. An earlier investigation [49] echoed that higher average values of MCs (5 to
109 µg kg−1) occurred in fish from Nyanza Gulf (Kisumu Bay) compared with those from
Rusinga channel water (14 µg kg−1). These reports reaffirmed that CYBHAB are recurrent
in L. Victoria.

3.3. Tanzania

Previous studies conducted about lakes Big Momela, Embagai and Manyara indicated
that CYB (>50%), mostly Anabaenopsis elenkenii, A. fusiformis (Lake Big Momela), A. fusiformis,
Oscillatoria, Hantzschia (Lake Embagai), Oscillatoria jenensis and Pseudoanabaena terebriformis
(Lake Manyara), were dominant in the phytoplankton [50,51]. Similarly, CYB (specifically
A. fusiformis) have been prevalent in Momela Lakes and Lake Natron with MCs detected in
water at concentrations of 0.1–4.5 µg mL−1 of scum in the latter [52].

For L. Victoria, the occurrence of CYB (upto 82%) was quantified in several parts of the
southern part. Miles et al. [53] found putative MCs analogues in extracts of a cyanobacterial
bloom from Mwanza Gulf but did not quantify them. On 27 islands of Ukerewe district,
MCs (0.0028 to 0.0102 µg L−1) were reported [54]. Other studies in L. Victoria (several
bays, open water and Gulfs) have found MCs (up to 13 µg MC-LR eq L−1; Table S1). An
incidence of multiple cyanotoxins: CYN (0.004 to 0.01 µg L−1), NODs (0.010 µg L−1) and
MCs (0.0028 to 0.0118 µg L−1) in water from L. Victoria has been communicated [54]. The
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report emphasized that multiple and repeated exposure to phycotoxins could amplify their
toxicity and/or adverse effects.

3.4. Uganda

From the available literature, Uganda has the highest number of reports about CYB in
several lakes. Of these, Western Uganda crater lakes (Kyaninga, Saaka, Nyabikere, Nyinam-
buga, Munyayange, Kikorongo, Maseche, Murumuli, Bunyampaka, Katwe, Bagusa, Nya-
munuka, Mwamba, Katanda, Karolero, Kerere, Kacuba, Mwengenyi, Kyerbwato, Katanda,
Kanyamukali, Nkugute, Kyanga, Mirambi, Nyanswiga, Kitere, Chibwera, Lugembe, Nyan-
swiga, Kamweru (Figure 3), Nyahirya, Nyabikere, Kyasanduka, Kifuruka, Wandakara,
Nyamusingire, Nyungu and Katinda) were found to contain CYB (35% to 100%), primarily
of the genera Planktolyngbya, Microcystis, Anabaena and Cylindrospermopsis. No determina-
tion of cyanotoxins was performed [55,56].
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Western Uganda. The lake and its twin (Lake Kyema) are the only co-joined lakes in Africa, which
are filled by water from a heritage cave (photo credit: Ivan Kahwa, December 2022).

Other interesting studies are available on the Albertine lakes (Edward and George) [57].
Species from Raphidiopsis and Anabaenopsis genera are the primary community in Lake Ed-
ward, though Aphanocapsa, Merismopedia, Microcystis, Aphanothece and Anathece genera are
also present. According to several authors, shallow Ugandan lakes near Mount Rwenzori
(Lake George, Lake Edward and Lake Mburo) are eutrophic, with Microcystis species being
the most abundant CYB [57–61]. Lake Mburo was earlier reported to have more than 90%
of its phytoplanktonic community as CYB [62,63]. Later, Okello et al. [59] found that MCs
(majorly MC-LR) occurred from UDT to 3.5 µg L−1 in the foregoing shallow lakes, which
were lower than 0.5 to 10.2 µg L−1 analogously investigated for Lake Shaka. Another report
by Poste [64] highlighted that several fish species from Ugandan lakes contained MCs at
0.0005 to 0.198 µg kg−1 in filleted muscle tissues, 0.0034 to 1.189 µg kg−1 in gutted and
beheaded fish, and 0.0028 to 0.8987 µg kg−1 in whole fish samples (Table 1).
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Table 1. Occurrence and levels of microcystins in fish from some East African lakes.

Lake Fish Species MCs Content
(Average/Range, µg kg−1) 1 References

L. Victoria
(Murchison Bay)

Clarias gariepinus 23.9

[64]

Haplochromis spc (filleted and whole) 35.6 and 19.9
Lates niloticus 13.5

Oreochromis leucostictus 30.3
Oreochromis niloticus 13.7

Protopterus aethiopicus 4.1
Rastrineobola argentea (whole/dry from market) 36.2–41.2

Synodontis afrofischeri 28.8
Synodontis victoriae 16.7

Tilapia zilli 15.5
Oreochromis niloticus (gut, liver and muscle) 1479.24, 48.07 and 9.65

[65]Lates niloticus (gut, liver and muscle) 27.78, 3.74 and 1.86

L. Victoria
(Napoleon Gulf)

Astatoreochromis alluaudi 6.2

[64]

Bagrus docmac 15.1
Brycinus sadleri 24.6

Haplochromis spc (filleted and whole) 13.0–17.1 and 15.3
Lates niloticus (filleted and gutted/beheaded) 7.3 and 12.9

Mormyrus kannume 21.1
Oreochromis leucostictus 3.2–4.3

Oreochromis niloticus (filleted and gutted/beheaded) 9.8 and 6.1
Oreochromis variabilis 30.1
Protopterus aethiopicus 2.8

Rastrineobola argentea (whole/dry from market) 83.7
Synodontis afrofischeri 31.0
Synodontis victoriae 16.7

Tilapia zilli (filleted and gutted) 8.4 and 3.4

L. Victoria (open
lake at Rusinga

channel and
Nyanza Gulf)

Rastrineobola argentea 14 and 25–109 [49]

Lake Mburo

Bagrus docmac 13.4

[64]

Clarias gariepinus 20.6
Haplochromis spc (filleted) 2.5–5.6

Haplochromis spc (gutted/beheaded) 5.4–11.8
Haplochromis spc (whole) 12.1

Oreochromis esculentus 17.9
Oreochromis leucostictus 8.4

Oreochromis leucostictus (gutted/head removed) 7.4
Protopterus aethiopicus 2.5

Oreochromis niloticus (gut, liver and muscle) 1312.08, 73.10 and 208.65 [65]

Lake Nkuruba
Poecelia reticulata 4.5 to 73.3

[64]

Tilapia zilli (filleted and whole) 11.7 and 42.5
Oreochromis leucostictus (filleted and gutted/beheaded) 8.3 and 17.2

Lake George

Bagrus docmac 9.1
Clarias gariepinus 6.1

Oreochromis leucostictus 21.2
Oreochromis niloticus 10.2

Protopterus aethiopicus 2.4
Oreochromis esculentus 6.3

Haplochromis squamipinnis (filleted and gutted) 6.7 and 11.8
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Table 1. Cont.

Lake Fish Species MCs Content
(Average/Range, µg kg−1) 1 References

Lake Saka

Astatoreochromis alluaudi (filleted and gutted/beheaded) 71.3 and 10.5

[64]

Astatoreochromis alluaudi (whole) 32.5
Barbus neumayerii (gutted/beheaded) 9.5

Haplochromis spc (filleted) 52.1
Haplochromis spc (gutted/beheaded and whole) 23.2–1189.3 and 21.3–215.2

Lates niloticus 16.4
Oreochromis niloticus 17.0

Tilapia zilli (filleted and whole) 4.9 and 898.7

Lake Edward

Bagrus docmac 6.2
Barbus bynni 5.3

Clarias gariepinus 8.6
Haplochromis spc 10.0

Haplochromis squamipinnis 8.6
Oreochromis leucostictus 21.9

Oreochromis niloticus 8.0
Protopterus aethiopicus 5.3

Lake Albert
Lates niloticus 3.9–11.6

Tilapia zilli 2.7–6.2
1 All mean values exceed the permissible MCs limit of 0.04 µg kg−1 in fish [65]; spc = species.

In the Ugandan part of L. Victoria, Microcystis, Dolichospermum and Cylindrospermopsis
species are the prevalent CYB (>80%) (Table S1). Cyanotoxin analyses have reported con-
centrations of UDT to 93 µg L−1 of MCs in water from Murchison Bay, Napoleon gulf and
open lake water. Worth citing are pioneering studies in Murchison Bay where MCs were
quantified in Oreochromis niloticus (Nile tilapia fish), unveiling that the concentrations in
biota and aqueous phase were correlated. The study highlighted that there has been an
increase in MCs-producing CYB in the lake which are plausibly ingested by fish, agreeing
with previous research findings [61,65,66]. The maximum concentration of total MCs re-
ported for guts, liver and muscles of phytoplanktivorous Oreochromis niloticus (Nile tilapia)
and Lates niloticus (Nile perch) from Murchison Bay of L. Victoria (1.86 to 1479.24 µg kg−1)
is slightly higher than those from other Ugandan lakes such as Lake Mburo (73.10 to
1312 µg kg−1) [65]. A study published in 2022 unveiled for the first time the occurrence
of homoanatoxin-a (HTX; <0.04 HTX L−1 in water from an inshore station of Murchison
Bay [67], along with MCs (0.15–11.7 µg MC-LR eq L−1). At recreation sites, MCs (0.180 to
14.800 µg MC-LR eq L−1) equally occurred. The study demonstrated that whereas CYB
were eliminated by water treatment, MCs remained detectable in water during and post-
treatment (0.14 µg L−1) [67]. This shows that remediation of cyanotoxins in water from L.
Victoria will require more efficient technologies to avoid exposing the local population to
potential effects of MCs.

At this point, it can be suggested that shallow lakes in Uganda exhibit less seasonal-
ity in their CYB composition when compared with satellite lakes and others in the main
L. Victoria basin. Unlike in oligotrophic lakes in the region, the CYB dynamics (spatial
and temporal variations in prevalent cyanobacterial genera) in L. Victoria are, however,
inconsistent in its different parts. This may be related to external anthropogenic influ-
ences, especially nutrient loading, because the lake receives a cocktail of pollutants from
different countries.

3.5. Rwanda

The only report on CYB in a Rwandese Lake (Lake Muhazi) showed that it contains
mainly Microcystis aeruginosa, followed by the dinoflagellate Cerutium hirundinellu [68].
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These are ingested by Nile tilapia present in the lake [69], suggesting the need to establish
the concentrations of cyanotoxins in water and fish from this lake.

Overall, volcanic and tectonic lakes in the East African Great Rift Valley possess distin-
guished extents of hydrological connections. Volcanicity in the region resulted in endorheic
basins whose bedrock, groundwater connection and climate have favored schizohaline
water formation [70]. These, in turn, have contributed to the dominance of CYB, and
occurrence of CYBHAB and cyanotoxins. The literature reveals that toxigenic microalgae
recorded from EAC lakes are Dolichospermum, Microcystis, Arthrospira, Planktolyngbya and
Anabaenopsis species. The prevalence of CYBHAB and cyanotoxins in EAC lakes is of
concern due to potential bioaccumulation and trophic transfer in zooplanktivorous and car-
nivorous fish species [61,66]. Moreover, the observed levels of MCs in whole fish, gut, liver
and muscles (2.4 to 1479.24 µg kg−1) could pose human health risks to a daily consumer, as
the WHO daily intake limit of MCs in fish is 0.04 µg kg−1 [65].

In L. Victoria, cyanobacterial biomasses and MCs levels in water from gulfs and
bays comparatively surpasses their levels in the open lake water, with Microcystis and
Dolichospermum species being the most prevalent CYB genera. Further, CYBHAB in the lake
has increased costs associated with water treatment, e.g., National Water and Sewerage
Cooperation Uganda reported increased chlorine demand for water treatment, unpleasant
odors and tastes in untreated water supplies, and clogging of pumps and filters. Fishermen
have reported that CYB has hampered fishing operations on the lake [71]. Anecdotal reports
point that portions of the lake covered by CYB were observed to have small dead fish,
whereas larger fish from such brackish waters are often weak and stressed. Earlier (in 1984),
indiscriminate fish die-offs were witnessed in L. Victoria (Kenya), and this was plausibly
connected with CYBHAB [72]. Similar mass mortalities were observed in 1991 for fish in
Lake Magadi, Kenya [73], and this event was anticipated to have been caused by reduction
in the algae Spirulina platensis. These effects, according to a recent report [67], may increase
in severity in the coming decades. For example, MCs detected from Murchison Bay of L.
Victoria now range from 0.20 to 15.00 µg MC-LR eq L−1, which is higher than those reported
previously (0.20 to 0.70 and UDT to 1.6 µg MC-LR eq L−1 between 2004 and 2005, and then
2007 to 2008) [66,74], possibly due to the doubling of the mean Microcystis biovolume [67].
The EAC recreational waters are not often screened for pelagic cyanobacterial species,
implying that the sanitary activities in contaminated lakes may expose both humans and
animals to the potential negative effects of CYBHAB and cyanotoxins.

4. Toxicity, Human and Ecological Health Implications of Cyanotoxins in EAC Lakes
4.1. MCs

MCs are hepatotoxins, majorly produced as secondary metabolites of planktonic
cyanobacterial species from genera such as Microcystis, Cylindrospermopsis, Anabaena,
Oscillatoria (Planktothrix), Anabaenopsis, Nostoc, Arthrospira, Hapalosiphon, Limnothrix,
Lyngbya, Phormidium, Rivularia, Synechocystis and Synechococcus [75]. Acute effects such as
nausea, diarrhea, dermal, eye and throat irritations have been associated with their inges-
tion. Chronic exposure to MCs culminates in hepatic necrosis, retarded growth, reduced
reproduction potential and, ultimately, death in fish and humans. The neurotoxicity of MCs
is also known, but this applies specifically to invertebrates without livers [76]. In addition,
exposure to MCs is associated with colorectal and primary liver cancer, with MC-LR receiv-
ing classification as a possible human carcinogen (group 2B) [77]. For humans, exposure
to MCs occurs principally through the ingestion of contaminated aquatic organisms (e.g.,
fish) or water, as well as through the recreational use of water. Upon ingestion and absorp-
tion into the liver by organic anion transport proteins, MCs inhibit protein phosphatases,
thereby selectively distorting cytoskeleton formation, degrading hepatic ultrastructure in
eukaryotic cells, resulting in hepatic failure, intrahepatic hemorrhage and shock [78,79].

In EAC, MCs and ATX were implicated in the death of Phoeniconaias minor Ge-
offroy Saint-Hilaire 1798 (lesser flamingos) [80]. The pink birds (Figure 4a) feed on
A. fusiformis [81], which confers upon them the pink plumage following the accumula-
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tion of ingested cyanobacterial pigments [82]. While this phenomenon is not new (e.g.,
in the Greater flamingos and Western Tanager [83,84]), it should be anticipated that other
nutrition-based compounds may become bioaccumulated in lesser flamingos, e.g., poten-
tially toxic metals. Event-driven reports of lesser flamingo die-offs are available for soda
lakes such as Bogoria and Nakuru of Kenya [85,86], Momela, Natron, Rishateni, Manyara
and Empakai Crater of Tanzania [13,51,87,88] (Table 2). Some of these reports substantiated
the anecdotal claims by quantifying MCs and ATX levels in carcasses of the birds. Krienitz
et al. extended the hypothesis further and examined the concentration of MCs and ATX in
Lake Bogoria, in the surrounding hot springs and in flamingo birds [89]. They concluded
that the cyanotoxins from the hot-spring mats could be responsible for the mass mortalities
of the birds because: (i), there were evident cyanobacterial cells, fragments in hot spring
mats, and elevated levels of ATX and MCs (0.00434 and 0.000196 µg kg−1); and (ii) there
were clinically indisputable signs of flamingo intoxications. Such intoxication with the
biotoxins could plausibly have been caused by direct or indirect intake of CYB or their
cells [89]. Wings, breasts and head feathers of the flamingos reportedly had ATX and MCs
concentrations ranging from UDT to 0.03 MC-LR eq µg kg−1 [90]. Moreover, amino acid
neurotoxins β-N-methylamino-L-alanine (0.0035 µg kg−1 DW) and 2,4-diaminobutyric
acid (0.0085 µg kg−1 DW) were recently quantified in lesser flamingo feathers from Lake
Nakuru [91].
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Figure 4. Lesser flamingos at the Kenyan Lake Bogoria (a) a flock wading ashore (photo by Steve
Garvie. Source: Riley [92]), and (b) massive die-off in July 2008 [93].

Table 2. Microcystin and anatoxin-a-related massive mortalities of lesser pink flamingos in alkaline-
saline (soda-rich and schizohaline) lakes of East African Community in comparison with cyanotoxin-
related bird mortality reports from other countries.

Waterbody (Country) Report (s) Year Reference(s)

East Africa

Lake Nakuru (Kenya)
0.00003 to 0.0004 µg MC-LR eq kg−1 and 0.00004–0.0058 µg kg−1

in liver, stomach/intestine
2001–2003 [94]

35,000 birds died 2006 [44]

Lake Bogoria and Lake
Nakuru (Kenya)

40,000 birds died 1991 [93]
More than 30,000 birds died; 0.00021 and 0.00093 µg MC-LR eq
kg−1 fresh weight, ATX ranged between 0.00106 and 0.00582 µg

kg−1 fresh weight
1993 [85,86,95,96] 1

50,000 birds died 1995/1996 [94]
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Table 2. Cont.

Waterbody (Country) Report (s) Year Reference(s)

Lake Bogoria

30,000 birds died 1999/2000 [89,93]
0.00003–0.0009 µg MC-LR eq kg−1 and 0.00004–0.0002 µg kg−1 in

liver, stomach/intestine
2001–2003 [94]

30,000 birds died 2008 [44,93]
2000 birds died 2009 [93]

Lake Natron and
Empakai crater

(Tanzania)

43,800 birds died. Total MCs (MC-RR, -YR, -LR and -RY) were
0.1–4.5 µg mL−1 July–August 2004 [51,85,88] 2

Lake Big Momela
(Tanzania)

15 and 50 individuals per day for 2004 case; elevated levels (up to
150 million filaments L−1 of A. fusiformis were quantified in

sampled scum; no MCs detected

Lake Manyara
(Tanzania)

521 deaths per month; bird livers contained
0.0003–0.0541µg kg−1 wet weight of MCs. Corynebacteria species,
Pasteurella multocida and Proteus species were found in visceral

organs of all carcasses tested

2004,
August–October

2008
[87,88,97] 3*

Other regions

The Salton Sea (USA)
Over 20,000 deaths of Eared grebe (Podiceps nigricollis). Water

contained up to 0.001 µg kg−1 DW and UDT to 0.00011µg kg−1

DW in grebe liver tissues
1990–2006 [98,99]

Doñana National Park
(Spain)

579 Greater flamingos (Phoenicopterus roseus) died; MCs at
concentrations of 0.44 µg kg−1 of liver wet weight and 0.625 µg

kg−1 in crop contents
2001 [100]

Pond in Nishinomiya
(Japan)

20 spot-billed ducks died; MCs were detected in water (0.512 µg
kg−1 cyanobacterial cell powder) 1995 [101]

Lake Knudsø
(Denmark)

3 ducks, 16 ducklings, 1 coot, coot chicks 23rd and 26th
June 1981

[102] **2 ducks and crows (unknown number) 12th and 17th
June 1988

2 grebes; 14–19 birds (black-necked and crested grebes, seagulls
and a duck) and 2 grebes, respectively. ATX was recorded at

2.30 µg kg−1

10th June, 1st
and 4th July 1993

Birds (unreported number), and 1 coot, 1 duck. ATX was recorded
at 3.30 µg kg−1 while MCs occurred at 0.0001 to 0.0009 µg kg−1

28th June and 6th
July 1994

1 duck 9th July 1995
1,2,3 In part, Pseudomonas aeruginosa, Mycobacterium avium, Escherichia coli and heavy metals were claimed to be
contributors to these flamingo die-offs [96,103,104]. * In 2004, over 43,800 flamingo die-off was experienced in
this lake [105]. ** Several other animals (6 dogs, cows, crows and some fish) succumbed to cyanotoxins after
swimming in this lake or drinking its water, which was rich in Anabaena species.

While it is still debated that MCs may be a potential initiator of avian botulism,
other probable causes of the unnatural mass death of wild birds include avian tuber-
culosis [96], cholera, botulism, heavy metals [95,106], pesticide residues, or combina-
tions of these [85,98,103,107,108]. Indeed, mycobacteriosis was reported in lesser flamin-
gos from Lake Nakuru, Kenya [109]. Nevertheless, anatoxins and MCs (at concentra-
tions higher than reported in EAC flamingos) have been associated with avian mortali-
ties [98,101,102,110,111]. From an ecological perspective, lesser flamingos are “Near Threat-
ened” supported by the limited and ungazetted nesting areas, as well as the reduced bird
populations [112–114]. At present, they reportedly breed in only five sites: one in EAC
(Lake Natron, with at least 75% of the breeding birds), Etosha and Makgadikgadi Pans
in Namibia and Botswana, and Purabcheria Salt and Zinzuwadia Pans of India [115]. An
attempt has been made to hand-rear lesser flamingos so as to restore and conserve this rare
species of birds [116], but there is no available literature with any registered success.
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4.2. Anatoxin-a

ATX is toxicologically known as Very Fast Death Factor for its fast lethal effect in
animals, which could be related to its high rate of absorption into the gastrointestinal
tract [117]. ATX is a secondary bicyclic amine alkaloid with peracute neurotoxic effects. Its
discovery and identification in the 1960s and 1972 from CYB (Anabaena flos-aquae) followed
the mortality of cattle herds that ingested contaminated water from Saskatchewan Lake
in Ontario [117]. It is known to be biosynthesized by CYB from Arthrospira, Anabaena,
Microcystis, Planktothrix, Oscillatoria, Aphanizomenon and Cylindrospermum genus [117].

Exposure to ATX (through ingestion of contaminated water or dried algal crusts,
accidental swallowing/inhalation) has been associated with burning, tingling, respiratory
paralysis and dysrhythmias, which are fatal. ATX antagonizes the activity of neuronal
α4β2 and α4 nicotinic acetylcholine receptors (nAchRs) of the central nervous system
and (α1)2βγδ muscle-type nAchRs of the neuromuscular junction [118]. With an affinity
>20 times that of acetylcholine, ATX has the same effect as the former when it binds with
nAchRs, i.e., it induces a conformational effect on the receptor, opening the channel pore
to permit the passage of ions (Ca2+ and Na+) into the neuron. This culminates into cell
depolarization, the generation of action potentials and thus muscle contraction. During
ATX-mediated toxicity, the acetylcholine neurotransmitter does not dissociate from the
nAchRs, resulting into irreversible inhibition and blockage of neuromuscular transmis-
sion [119]. This inhibitory effect generally accumulates the neurotransmitter within the
synaptic cleft, eventually causing paralysis, asphyxiation and death, specifically if respira-
tory muscles are affected. In the epornitic mortalities of algivorous EAC lesser flamingos
(such as in Lake Bogoria; Figure 4b), clinical symptoms have included opisthotonus, sup-
porting that such die-offs are (at least in part) due to ATX intoxication. Other than the
foregoing, ATX possess modulatory effects on nAChRs, which can result in the release of
dopamine and noradrenaline [120].

4.3. Homoanatoxin-a

HATX being structurally a higher homologue of ATX has the same toxic effects as
ATX. In addition to its nicotinic agonistic effects, HATX also upregulates acetylcholine
release from cholinergic nerves [121]. This may explain why the potency of HATX is greater
than that of ATX. Mortalities from CYBHAB with HATX are rare, but a report of dog
neurotoxicosis from New Zealand (where the animals ingested CYB from Hutt River, lower
North Island with 4400 µg kg−1 wet weight of HATX) has been published [122].

4.4. Cylindrospermopsin

CYN is a hydrophilic potentially hepatotoxic and immunotoxic cyclic guanidinium
alkaloid, with characteristic tricyclic hydroxymethyl uracil [76]. It has some analogues
such as deoxy-CYN (lacking an oxygen atom), demethoxy-CYN and 7-epiCYN (differ-
ence in the orientation of hydroxyl group) isolated in CYB Cylindrospermopsis raciborskii.
The discovery of CYN toxicity happened when more than 100 children from Palm Is-
land in Queensland, Australia suffered from unprecedented gastroenteritis and hep-
atomegaly. The ordeal was finally found to be due to the ingestion of CYN in contam-
inated water with CYBHAB of C. raciborskii [123]. However, CYN is also produced by
other CYB, including Aphanizomenon flos-aquae, Anabaena species (bergii, and lapponica),
Aphanizomenon ovalisporum, Lyngbya wollei, Raphidiopsis curvata Oscillatoria (Planktothrix)
species and Umezakia natans [75]. With guideline values of 0.5 to 3 µg L−1 in drinking
water across continents, CYN is the second-most-studied cyanotoxin known to target the
liver, kidneys, heart, spleen, ovary, eye, lung, T lymphocytes, neutrophils and vascular
endothelium [124]. CYN elicit toxicity through inhibition of protein synthesis, which can
also occur at subtoxic concentrations [125]. Other toxicologists stated that CYN (with its
inherent reactive guanidine) could be largely toxic through the induction of DNA wreckage
and disruption of the kinetochore spindle. This could possibly result in chromosome loss,
aneugenic and clastogenic effects [126]. Chichova et al. [124] found that CYN elicited
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moderate toxicity in human intestinal epithelial cells with suppression of cellular regener-
ation of the epithelial layer. CYN shows hepatotoxic, nephrotoxic, and cytotoxic effects,
suggesting potential carcinogenicity. The neurotoxic potential of CYN has also been cited,
though this could be a direct consequence of its cytotoxicity. To this end, the full underlying
mechanisms of CYN toxicity needs to be elucidated [76].

In the EAC, there are no toxicity reports on CYN, which may be due to the absence
of robust data on this cyanotoxin. There are, however, episodes of human and animal
CYN-related poisoning from other countries. The most notable human poisoning is the
1979 Solomon dam gastroenteritis and hepatomegaly incidence in children from Palm
Island [123]. The mortality of a cow and three calves after drinking water from McKinley
Shire dam, Northern Queensland (Australia) was also reported. The animals had severe ab-
dominal and thoracic haemorrhagic effusion, hyperaemic mesentery, pale and swollen liver,
extremely distended gall bladder with dark yellow bile and epicardial haemorrhages [127].
In the subsequent 21 days, another eight animals (two cows and six calves) died, and
analyses implicated CYN in C. raciborskii as the cause [127]. In Lake Aleksandrovac (Serbia),
indiscriminate fish deaths due to the ingestion of CYN (range: 1.91 and 24.28 µg L−1) were
reported [128]. This report may point to the need to establish CYN levels in EAC lakes
where indiscriminate fish deaths have been reported, as CYN may be a contributing factor
in addition to MCs.

4.5. Nodularins

Nodularins, a class of hepatotoxic non-ribosomal cyclic pentapeptides, possess toxicity
mechanisms similar to those of MCs [129]. They are structurally analogous to MCs, but
differentiable from MCs in their amino acid components (Figure 2). To date, ten naturally
occurring variants (isoforms) of NODs have been discovered, but nodularin-R (with Z
amino acid = arginine) is the most common, most commercially available and most studied
variant. The toxicity of NODs mainly targets the liver, but they also accumulate in the
intestines, blood and kidneys [130]. Upon ingestion, NODs diffuse from the proximal and
distal ileum into the liver [131], where they inhibit active sites of serine/threonine protein
phosphatases (PP) namely: 1 (PP-1), 2A (PP-2A) and 3 (PP-3). A non-covalent interaction
occurs at first with the side chain (ADDA part) and a free D-glutamyl carboxyl group in the
cyclic structure of the PP, followed by the inhibition of the phosphatase activities. NODs–
phosphatase complexes (NODs-PP-1 and NODs-PP-2A) are formed with exceptionally
stable bonds. Thus, the key difference between NODs and MCs in their toxicity via protein
phosphatases inhibition is that the former binds non-covalently to phosphatases, while the
latter forms a covalent bond [130].

Furthermore, NODs also elicit toxicity through formation of superoxide and hydroxyl
radicals (reactive oxygen species) according to a yet incompletely elucidated pathway [130].
Their tumor-promoting activity is, on the other hand, mediated through the induced gene
expression of TNF-alpha and proto-oncogenes, the exact mechanism of which is yet to be
unraveled. In addition, the deactivation of the resultant tumor suppressor gene products
(retinoblastoma and p53) progresses via phosphorylation, and this inevitably promotes
tumorigenesis [132]. Overall, the cascade of reactions following NOD ingestion causes
cellular disorganizations and damages, apoptosis, necrosis, loss of cell integrity, DNA
fragmentation and strand breaks, intrahepatic bleeding and rapid blistering of hepatocytes
which results in blood pooling and doubling of the liver weight [133]. Thus, mortalities
associated with NOD poisoning is mediated through hemorrhagic shocks, which occurs in
a few hours when ingested at high concentrations [134].

There are no toxicity events involving NODs in the EAC. Nevertheless, animal
(cattle, dog, sheep, horse, pig and guinea pig) NOD-poisoning-related mortalities have
been reported in other parts of the world. For example, hepatotoxicosis of a South
African dog following the ingestion of NODs (0.00000347 µg kg−1 DW) was reported [135].
Main et al. [136] recorded 52 sheep deaths in South Western Australia from drinking water
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contaminated with NODs from Nodularia spurnigena. These reports emphasize that more
studies on this cyanotoxin are warranted in EAC lakes.

5. Conclusions and Recommendations

CYB, CYBHAB and cyanotoxins have increased in EAC lacustrine ecosystems. Dolichos-
permum, Microcystis, Arthrospira, Planktolyngbya and Anabaenopsis species are the major
groups of toxigenic CYB prevalent in EAC lakes producing ATX, HATX, MCs, CYN and
NODs. Shallow EAC lakes exhibit less seasonality in their CYB composition, with Micro-
cystis being the CYB producing MCs under shallow and eutrophic lacustrine conditions.
The only direct ecological effects of cyanotoxins in EAC lakes is indiscriminate fish deaths
and mass die-offs of lesser flamingos. With the unequivocal increase in climate change
and variability, it is inferred that CYBHAB and cyanotoxins will increase in frequency and
severity. This calls for urgent action to mitigate nutrient-rich pollutants loading into water
resources and the expansion of CYBHAB from eutrophic lakes to the surrounding marine
environments. The (eco)toxicological relevance of co-production of phycotoxins should
be assessed in the EAC because such exposure may amplify the toxicological outcomes
in aquatic biota and humans. As some CYB encountered in EAC lakes produce other
cyanotoxins (such as β-N-methylamino-L-alanine and saxitoxins), studies targeting these
cyanobacterial metabolites should be initiated. While there are no reports of cyanotoxin
poisoning of humans in the EAC, future studies should examine the risk of hepatocellular
cancer, the ingestion of CYB and mycotoxin-contaminated water and foods, and hepatitis
virus, which were earlier linked to increased primary liver cancer cases in Asia. Another
potential relationship with microplastics should be assessed because they are known to
accumulate toxins and amplify their toxicity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/phycology3010010/s1, Table S1. Phytoplankton composition and
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