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Abstract: Karenia mikimotoi is a toxic bloom-forming dinoflagellate that sometimes co-blooms with
Karenia brevis in the Gulf of Mexico, especially on the West Florida Shelf where strong vertical temper-
ature gradients and rapid changes in nitrogen (N) can be found. Here, the short-term interactions of
temperature, N form, and availability on photosynthesis–irradiance responses were examined using
rapid light curves and PAM fluorometry in order to understand their interactions, and how they
may affect photosynthetic yields. Cultures of K. mikimotoi were enriched with either nitrate (NO3

−),
ammonium (NH4

+), or urea with varying amounts (1, 5, 10, 20, 50 µM-N) and then incubated at
temperatures of 15, 20, 25, 30 ◦C for 1 h. At 15–25 ◦C, fluorescence parameters (Fv/Fm, rETR) when
averaged for all N treatments were comparable. Within a given light intensity, increasing all forms
of N concentrations generally led to higher photosynthetic yields. Cells appeared to dynamically
balance the “push” due to photon flux pressure and reductant generation, with consumption in
overall metabolism (“pull” due to demand). However, at 30 ◦C, all fluorescence parameters declined
precipitously, but differential responses were observed depending on N form. Cells enriched with
urea at 30 ◦C showed a smaller decline in fluorescence parameters than cells treated with NO3

− or
NH4

+, implying that urea might induce a photoprotective mechanism by increasing metabolic “pull”.

Keywords: Karenia mikimotoi; nitrogen; photosynthesis; temperature; nitrate; ammonium; urea;
dynamic balance; PAM fluorometry; rapid light curves

1. Introduction

Karenia mikimotoi, the close relative of the harmful dinoflagellate Karenia brevis that
forms massive annual blooms mostly in the Gulf of Mexico, is a hemolytic and cytotoxic
dinoflagellate found in coastal waters around the world, including Asia (e.g., Japan, China,
Korea, Hong Kong), Europe (e.g., Norway, United Kingdom, Denmark, Spain), Oceania
(e.g., Australia, New Zealand), and America (e.g., United States, Chile) [1,2]. Several Karenia
species co-exist and often co-bloom with K. brevis in the Gulf of Mexico, especially on the
West Florida Shelf [1,3]. Although highly variable from year-to-year, Karenia spp. blooms
on the West Florida Shelf commonly occur from early fall through winter and only rarely
persist as substantial blooms throughout the summer [4].

Temperature is an important variable in understanding the physiological success of
phytoplankton taxa, but due to its effect on key enzymes and the different temperature
optima of enzymes involved in photosynthesis and metabolism of different forms of
nitrogen (N), temperature may have different effects on physiological status depending on
growth N form. Seasonal temperature changes on the West Florida Shelf range from lows
of ~15 ◦C in winter when K. brevis blooms are more common, to highs of >30 ◦C in mid-
summer. Sharp vertical gradients in temperature may also exist. For example, Weisberg
et al. [5] reported, for the West Florida Shelf for the month of July 2010, that temperatures
changed from near 29 ◦C at the surface to near 17 ◦C near the bottom, where waters
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are influenced by upwelling. The near-bottom waters are also more enriched in nitrate
(NO3

−) relative to the surface waters in which regenerated forms of N (e.g., ammonium
(NH4

+) or urea), are proportionately more abundant. Even when strong upwelling is
not present, strong vertical gradients in temperature may be commonly found [6]. Any
vertically migrating cells would be subject to sharp changes in temperature and possibly
to co-occurring changes in N form and concentration. Here, the short-term interactions
of temperature, light, and N form, and amounts were examined in K. mikimotoi, with an
aim of understanding how these responses may relate to the fluctuating conditions, under
which K. mikimotoi is found on West Florida Shelf.

Temperature effects on photosynthesis and N nutrition are complex, but the inter-
actions between temperature, photosynthesis, and different N forms in phytoplankton
metabolism are not well understood. The biophysical light reactions of photosynthesis are
relatively temperature-insensitive, while the biochemical reactions (e.g., Calvin Cycle reac-
tions and non-photochemical reactions in the thylakoid) are temperature sensitive leading
to reduced rates of carbon (C) assimilation at low temperatures [7]. Temperature also affects
enzymes associated with NO3

− and NH4
+ [7]. The enzyme involved in NO3

− reduction,
nitrate reductase (NR), typically has an inverse relationship with temperature (generally
between 12 ◦C and 25 ◦C) [8–11], while the enzymes involved in NH4

+ assimilation, glu-
tamine synthetase–glutamate synthase (GS-GOGAT), are positively related to temperature
across the same range, e.g., [12]. The assimilation of NO3

− would thus be expected to be
higher at lower temperatures (10–15 ◦C), and indeed, over the temperature range 5–25 ◦C,
NO3

− uptake by both diatom-dominated and dinoflagellate-dominated natural communi-
ties typically show an inverse relationship with temperature, while NH4

+ uptake typically
shows a positive relationship [10,11]. Urease, the enzyme involved in urea metabolism,
also appears to have a positive relationship with temperature for many phytoplankton taxa,
and at least for one dinoflagellate, Prorocentrum minimum, rates of activity remain elevated
up to temperatures of 50 ◦C [13]. Taken together, the assimilation of NO3

−, NH4
+, and

urea are regulated differently by temperature, a factor that can influence phytoplankton
dynamics in an environment in which N forms may be variable. Light is a fundamental
source for photoautotrophs, however, if light energy absorbed by pigments in photosystem
II (PSII) exceeds its utilization in C assimilation, PSII can experience oxidative or other
damage [14–16]. The reaction center chlorophyll (Chl) in PSII, which is aggregated on the
thylakoid membrane, absorbs quanta of photosynthetically active radiation (PAR) and
generates electrons and protons from water molecules that, in turn, contribute to the gener-
ation of chemical energy (ATP, NADPH) that is used to drive diverse metabolic processes
such as C and N assimilation. However, the supply of chemical energy must be matched to
its use in metabolism to protect PSII from over-reduction e.g., [16]. One of the important
mechanisms to rapidly regulate excess light energy is non-photochemical quenching (NPQ)
(of fluorescence) [7,15]. This process mainly dissipates the absorbed energy that exceeds the
capacity of electron transport over demand of metabolism as non-radiative harmless heat.
There are multiple mechanisms contributing to photoprotection, and photoregulation, and
the actual relationship between NPQ and photoprotection is complex. Light, nutrients, and
temperature are among the main factors affecting the capacity of electron transport and
the demand for metabolism [16,17]. When photosynthetic organisms experience nutrient
deficiency, metabolism may be resource limited, but not necessarily energy limited. Thus,
reduced metabolic use of absorbed light energy may result in over-excitation, altering cellu-
lar energy balance [16,17]. In such a case, the reduced demand for metabolism decreases
the energy utilization capacity, and it might accelerate photoinhibition. One pathway by
which NPQ in algae is triggered is via the accumulation of Light Harvesting Complex
Stress Related Proteins (LHCSRs; e.g., [18]), and recent work [19] has characterized these
proteins for the green alga Chlamydomonas reinhardtii. Here, these interactions were studied
using pulse-amplitude modulation (PAM) fluorometry.

As with other Karenia species, K. mikimotoi is a relatively slow-grower but has a strong
adaptive capacity to fluctuating environments [1,2]. Although differences have been found
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between subspecies, K. mikimotoi is a eurythermal (4–31 ◦C) and euryhaline (salinity of
9–35) species [1]. While generally thought to be a low-light specialist, K. mikimotoi is also
capable of growing well in a wide range of light intensities [1,2] and is positively phototactic.
Nutritionally, Karenia spp. are flexible, utilizing various inorganic and organic nutrients
and showing phago-mixotrophy [1,20–25]. On the West Florida Shelf, diverse nutrient
sources (e.g., land-derived nutrient inputs, microbially regenerated nutrients, regenerated
nutrients from decaying fish during toxic blooms, nitrification) may be available to be taken
up by Karenia spp. [23]. While Karenia spp. are primarily photo-autotrophic, they may also
consume prey, and higher growth rates of K. brevis [23,24] and K. mikimotoi [21,22] have
been observed when they have ingested prey organisms compared to growth on inorganic
nutrient sources.

In this study, the objective was to analyze photosynthesis in K. mikimotoi, in response to
short-term exposures to varying combinations of temperature, N form, and concentration.
We focused on short-term (hour time scale) exposure to different temperatures, bracketing
the temperatures most commonly experienced on the West Florida Shelf, simulating how
cells may respond to environmental changes that may be experienced near coastal fronts,
in vertical gradients, or near nutrient sources. Photosynthesis-irradiance responses were
examined using rapid light curves. We hypothesized that photosynthetic efficiency in
K. mikimotoi will increase with temperature and with increasing N concentrations (all
forms), but that with increasing temperatures, photosynthetic efficiency—the relative
amount of absorbed light energy that can be used to drive photosynthesis—will increase to
a greater extent, with increasing concentrations of chemically reduced forms of N compared
to changes with increasing concentrations of NO3

−.

2. Materials and Methods
2.1. Algal Culture

A culture of non-axenic K. mikimotoi (ARC165, originally isolated from Venice, Florida
in 2006) was obtained from Mote Marine Laboratory, Sarasota, FL, USA. The K. mikimotoi
were grown in semi-batch cultures using L1-silicate media with N added as NO3

− [26].
All culture media were prepared with 0.2 µm filtered nearshore west Florida waters and
sterilized by autoclaving. Cultures were grown over 12 h light:12 h dark cycle under
40 µmol photons m−2 s−1 at salinity 32~34 and 20 ◦C.

2.2. Specific Growth Rate, Nutrient Analysis

While maintaining the stock culture, changes in cell number over time were monitored
by counting cells with light microscopy using a hemocytometer after fixing with 5% Lugol’s
solution. The specific growth rate (µ) of K. mikimotoi was calculated according to

µ = (ln X2 − ln X1)/(t2 − t1) (1)

where X1 and X2 are the cell numbers at time t1 and t2, respectively. At the start of
the experiment, samples for cell counts and ambient nutrients were collected. Aliquots
of culture were filtered through precombusted (450 ◦C for 2 h) Whatman GF/F filters
(Florham Park, NJ, USA) were stored in a −20 ◦C freezer for further analysis. The filtrates
were reserved for ambient nutrient analysis, which was later done via autoanalysis at the
Mote Marine Laboratory.

2.3. Experimental Setup

To initiate the experiment, the culture was first diluted to a final concentration of
6200 cells ml−1 with autoclaved filtered seawater in order to reduce the concentrations
of residual nutrients. Aliquots of the diluted culture were then transferred to 60, 50 mL
polypropylene tubes. The tubes were divided into 12 batches of five tubes (Figure 1). Within
each batch, tubes received an enrichment of either NO3

−, NH4
+ or urea at the following

concentrations: 1, 5, 10, 20, 50 µM-N, as 15N (99% enriched). One batch of each substrate
enrichment gradient (NO3

−, NH4
+ or urea) was then incubated for 1 h at each of four
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different temperatures. To do so, tubes were placed in temperature-controlled water baths
maintained at 15, 20, 25, 30 ◦C. Tubes were illuminated continuously by LED lights with
350–400 µmol photons m−2 s−1 as measured with QSL-100 quantum scalar irradiance
meter (Biospherical Instruments Inc., San Diego, CA, USA). At the end of the incubation
period, tubes were subsampled for photosynthesis measurements and 15N incorporation as
described below.
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Figure 1. Schematic of the experimental design to measure 15N incorporation and photosynthesis-
irradiance responses of K. mikimotoi exposed to different temperatures, N forms, and concentrations.
Green tubes represent those enriched with urea; blue tubes—those enriched with NH4

+; and red
tubes—those enriched with NO3

−.

2.4. Chl Fluorescence Measurements

After the 1 h incubation at the designated temperature, black multiwell plates (24 wells
each) were filled with K. mikimotoi cells from the various tubes (3 mL in each well) and
were dark acclimated for 20 min to fully open (i.e., oxidize) the PSII reaction center Chl
and to minimize non-photochemical energy dissipation. Fluorescence emissions from
PS II were monitored by a MAXI-Imaging PAM M-Series (Heinz Walz GmbH, Effeltrich,
Germany), equipped with 44 blue LED lamps. Light intensities were calibrated with a
ULM-500 Light Meter & Logger equipped with a micro quantum sensor (Heinz Walz
GmbH, Effeltrich, Germany). Rapid light curves were run to monitor PS II fluorescence
emissions as a function of rapid changes in irradiance (12 steps for 20 s at each step: 0, 4,
10, 28, 53, 86, 128, 178, 236, 377, 460, 671 µmol photons m−2 s−1). The data were exported
from the ImagingWin software (Heinz Walz GmbH, Effeltrich, Germany) and fluorescence
parameters were calculated (Supplementary Materials, Table S1). For the dark-adapted
cells, the maximum quantum yields of PSII photochemistry were calculated as the ratio of
variable fluorescence (Fv) to maximum fluorescence (Fm), Fv/Fm [15,27]. Subsequently,
the effective quantum yield of PSII photochemistry at each light step was calculated as

YII = (F’m − Ft)/F’m (2)

where F’m is light-acclimated maximum fluorescence and Ft is the steady-state value of
fluorescence immediately prior to a flash for a light-adapted sample, respectively [14,28].
The quantum yield of non-regulated non-photochemical energy dissipation (YNO) and the
quantum yield of regulated non-photochemical energy dissipation (YNPQ) were further
calculated to analyze the allocation of PSII excitation energy at each light step [28]. The
sum of these three yields equals 1.
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The relative electron transfer rate (rETR) of PS II in units of µmol electrons m−2 s−1

was calculated as
rETR = 0.5 × YII × PAR × 0.84 (3)

which is the product of the effective quantum yield (YII) and photosynthetically active
radiation (PAR), adjusting the product by a factor of 0.5, which takes into account that
half of the absorbed light energy is directed to PSII, and by the factor 0.84, which is the
presumed PAR absorptivity, e.g., [14]. Photosynthesis-irradiance curves were fitted using
the formula of Platt et al. [29] and rETR parameters were calculated using the R package
‘phytotools’ (https://cran.r-project.org/package=phytotools (accessed on 12 April 2021).

The photosynthetic quenching parameter, qP, was calculated according to

qP = (F’m − Ft)/(F’m − F’o) (4)

in which minimum fluorescence level of illuminated sample is F’o. In order to convert
this to a measure of excitation pressure, the value 1-qP was calculated. This value is also
interpreted as the number of photosynthetic reaction centers that are closed [30]. Thus,
whereas Fv/Fm is a measure of quantum efficiency of PSII and the efficiency of non-
photochemical quenching (when all reaction centers are considered open and the cells
are dark-adapted), any change in qP reflects the degree of reaction center closures under
varying light conditions.

2.5. 15N Isotope Analysis

After incubation, and immediately after the filling of the microwell plates for photo-
synthetic measurements, the remaining volumes in each of the experimental tubes were
filtered through precombusted (450 ◦C 2 h) Whatman GF/F filters. The filters were imme-
diately frozen, then subsequently dried and transferred to tin capsules. Isotope analysis
was then undertaken by the UC Davis Stable Isotope Facility. Values are reported as 15N
atom percent enrichment of samples at the end of the incubation periods [31].

2.6. Statistical Analysis

All statistical analyses were performed with R. The normality of data was checked
with Shapiro–Wilks test and the homogeneity of variance was assessed with Levene’s test
in R package ‘car’. Differences between different temperature (15, 20, 25, 30 ◦C) and N
forms (NO3

−, NH4
+, urea) of fluorescence data (e.g., Fv/Fm, rETR parameters) were tested

using one-way analysis of variance (ANOVA), followed by Tukey’s HSD test for pairwise
comparisons.

3. Results
3.1. Initial Cell and Nutrient Conditions

The specific growth rate of the initial undiluted culture at the time of the experiment
was 0.23 day−1. The cells were not nutrient-depleted and the measured concentrations
of nutrients after dilution with filtered seawater were 289 µM ± 2.8 and 1.1 ± 0.5 µM
for NO3

−and NH4
+, respectively, and 7.7 ± 0 µM for PO4

3−. Urea concentrations were
negligible.

3.2. PSII Quantum Efficiency and Quantum Yields

Over the range of 15–25 ◦C, the maximum quantum yields of PSII photochemical
efficiency, Fv/Fm, did not differ significantly between the N treatments when the different
N concentrations for each temperature were averaged (ANOVA, p > 0.05) (Tables 1 and 2).
The Fv/Fm averaged 0.44 ± 0.03 for the 15–25 ◦C treatments when all N forms and
concentrations are taken into account. However, within each N form, Fv/Fm tended to
increase with temperature (ANOVA, p < 0.05) (Table 2) and concentrations (Figure 2). In
contrast, at 30 ◦C, the Fv/Fm of all the N-enriched samples dropped precipitously. The
Fv/Fm of samples enriched with NO3

− and NH4
+ and incubated at 30 ◦C dropped to <0.1,

https://cran.r-project.org/package=phytotools
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while those with urea enrichment fell to a range of 0.1–0.2. The Fv/Fm values of the urea-
treated samples (0.17 ± 0.04) were 2-fold higher than those of the NH4

+-treated samples
(0.07 ± 0.03) (Tukey’s HSD, p < 0.01) and 9-fold higher than those of the NO3

−-treated
samples (0.02 ± 0.03) (Tukey’s HSD, p < 0.001) (Figure 2 and Table 2). At 30 ◦C, the Fv/Fm
values also showed a general decline when enriched at concentrations >5 µM-N (Figure 2).
This trend was most apparent for samples enriched with urea.

Table 1. Analysis of variance (ANOVA) results testing N form effects at each temperature.

ANOVA (N form Effects)

Fv/Fm rETRmax

F(df = 2) p-value F (df = 2) p-value

15 ◦C 1.329 0.301 4.901 0.028
20 ◦C 0.329 0.726 3.942 0.048
25 ◦C 1.361 0.293 3.238 0.075
30 ◦C 25.58 <0.001 12.85 0.001

Table 2. The averaged Fv/Fm and rETRmax (note that only the statistical results for the ANOVA at
15, 20, 25 oC are shown here). Significant results are shown in bold.

NO3− NH4
+ Urea

Fv/Fm rETRmax Fv/Fm rETRmax Fv/Fm rETRmax

15 ◦C 0.41 ± 0.01 11.2 ± 2.0 0.43 ± 0.03 15.6 ± 3.0 0.43 ± 0.02 14.1 ± 1.6

20 ◦C 0.43 ± 0.03 11.6 ± 1.4 0.44 ± 0.03 14.0 ± 1.7 0.42 ± 0.02 14.1 ± 1.7

25 ◦C 0.45 ± 0.02 10.1 ± 2.2 0.47 ± 0.02 13.0 ± 2.0 0.46 ± 0.01 12.7 ± 1.8

30 ◦C 0.02 ± 0.03 0.9 ± 0.8 0.07 ± 0.03 2.4 ± 0.7 0.17 ± 0.04 3.1 ± 0.6

ANOVA (temperature effects at 15–25 ◦C)

F (df = 2) 3.935 0.856 3.368 1.613 7.485 1.192

p-value 0.049 0.449 0.069 0.240 0.008 0.337
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Figure 2. Maximum photosystem II photochemical efficiency, Fv/Fm, of K. mikimotoi exposed to
different temperatures (15, 20, 25, 30 ◦C) when pulsed with different nitrogen forms (NO3

−, NH4
+,

urea) and amounts (1, 5, 10, 20, 50 µM-N). Within each depicted temperature, the darker the color of
the bars, the higher the enrichment with added N.

At 15–25 ◦C, the quantum yields of the effective photochemical efficiency of PSII, YII,
of K. mikimotoi declined with increasing transient light intensities (Figure 3a–i). The rates
of decline were similar for all N treatments (ANOVA, p > 0.05). At 30 ◦C, all values of YII
were much reduced, but values for samples enriched with urea were significantly higher
than values for those samples enriched with either NO3

− or NH4
+ (Tukey’s HSD, p < 0.001)

(Figure 3j–l). For a given light intensity, most values of YII increased with increasing N
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concentrations at 15–25 ◦C (Figure 3a–i), while no consistent N concentration effects were
found at 30 ◦C (Figure 3j–l).
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3.3. Relative Electron Transfer Rate

The rapid light response curves of rETR showed a typical saturating response with
little evidence of photoinhibition at 15–25 ◦C at all N forms and concentrations (Figure 4a–i).
Only a few treatments showed down-regulation of photochemical reactions, thus exhibited
reduction in rETR values at the highest light intensity (e.g., 20 and 50 µM-N of urea at
25 ◦C). As with values of Fv/Fm and YII, values of rETR were reduced significantly at
30 ◦C across the light range, but the extent of reduction differed depending on the form of
N (ANOVA, p < 0.01) (Figure 4j–l). Both light-limited and light-saturated parts of the rETR
versus irradiance curves responded to changes in N concentrations with stronger effects
on the light-saturated regions at 15–25 ◦C (Figure 4a–i). For example, the light-limited
rETR of the 1 µM-N NH4

+ treatment at 15 ◦C (0–178 µmol photons m−2 s−1) increased
43% compared to the 50-µM-N NH4

+ treatment at 15 ◦C, and the light-saturated rETR of the
1µM-N NH4

+ treatment at 15 ◦C (236–460 µmol photons m−2 s−1) increased 63% compared
to the 50 µM-N NH4

+ treatment at 15 ◦C (rETR parameters including saturation irradiance,
Ik, are presented in Supplementary Materials, Table S2).
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No significant temperature effects on rETRmax were found at 15–25 ◦C at each N source
(ANOVA > 0.05) (Table 2) while N source effects were found at two temperatures (Tukey’s
HSD, p < 0.05) (Table 1). The rETRmax values of the NH4

+-enriched cultures (15.6 ± 3.0)
were significantly higher than those of samples enriched with NO3

− (11.2 ± 2.0) at 15 ◦C
(Tukey’s HSD, p < 0.05) and rETRmax values of the NO3

−-enriched cultures (0.9 ± 0.8)
were markedly lower than those of the NH4

+-enriched samples (2.4 ± 0.7) (Tukey’s HSD,
p < 0.05), and the urea-treated samples (3.1 ± 0.6) at 30 ◦C (Tukey’s HSD, p < 0.01) (Figure 5,
Table 2).

3.4. Excitation Pressure

The excitation pressure, 1-qP, increased with increasing transient light intensities at
15–25 ◦C (Figure 6a–i). When cells were fully dark-adapted (I = 0 µmol photons m−2 s−1),
reaction centers were all open and 1-qP values were low, but by 10 µmol photons m−2 s−1,
an increasing fraction of reactions centers were closed. At each light intensity, excitation
pressure decreased with increasing concentrations of N forms (Figure 6a–i). However, cells
exposed to 30 ◦C exhibited closed reaction centers across all nearly all irradiance levels
for samples enriched with NO3

− and NH4
+, while for samples enriched with urea, full
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reaction center closure was observed only for samples exposed to >100 µmol photons
m−2 s−1 (Figure 6j–l).
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Measures of the quantum yields of regulated and non-regulated non-photochemical
energy dissipation (YNPQ and YNO) for all experimental treatments are provided in the in
Supplementary Materials (Figures S1 and S2).

3.5. 15N Isotope Incorporation

The incorporation of 15N (as 15N atom percent) varied with substrate, and temperature.
Over the concentration range, the 15N enrichment of NO3

− was linear for each temperature,
and only a slight, but not significant, increase in 15N incorporation was noted at 30 ◦C
compared to the other temperatures (Figure 7a). Isotopic enrichment levels were highest
for NH4

+, and all temperatures indicated a saturating response across the concentration
gradient. At saturation, the atom % enrichment levels at 25 ◦C and 30 ◦C were significantly
higher than those measured at 15 ◦C and 20 ◦C (Figure 7b). For urea, there was no saturation
in the response, but the 15N atom% values across all concentrations were significantly higher
at 30 ◦C than atom% enrichment values at the other temperatures, which did not differ
from each other (Figure 7c).
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4. Discussion

Light, nutrients, and temperatures drive different rates of metabolism within the
cell, and the challenge for the cell is to balance energy and reductant generation with
that of its consumption. Here, varying each of these factors in short-term exposures, the
dynamic balance between the “push” due to photon flux pressure and the metabolic “pull”
of diverse metabolic reactions of K. mikimotoi was investigated (Figure 8). These results are
complementary to the dynamic balance theory of photosynthetic regulation [16], which
articulated the notion that the concentration of photosynthetic pigments in algae could be
explained by the opposing forces of excitation pressure on PSII and degree of reduction of
the plastoquinone pool of PSII. Therefore, acclimated pigment concentrations balance the
light energy input and biochemical energy use in response to environmental conditions,
demonstrating the sensitivity of PSII to metabolic feedback. Once an excitation event occurs
in PSII, the downstream redox state determines the electron sink capacity. The redox state
around PSII responds rapidly to changes in light availability (and Calvin cycle activity),
N reduction and assimilation. Whereas pigment changes with multiple environmental
changes were emphasized by Kana et al. [16], in their description of the dynamic balance
theory, various fluorescent parameters, including the excitation pressure on PSII, were
measured directly herein with changes in light, temperature, and N availability.
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The initial hypothesis, that photosynthetic efficiency in K. mikimotoi will increase with
temperature and with increasing N concentrations, and that with increasing temperatures,
photosynthetic efficiency will increase to a greater extent with increasing concentrations
of chemically reduced forms of N, compared to changes with increasing concentrations
of NO3

−, was largely borne out, but the highest temperature tested yielded differential
stresses depending on N form. Here, the interactions of the different physiological pro-
cesses measured are described, as well as implications for growth of Karenia on the West
Florida Shelf.

4.1. Temperature, Energy (Light) and Material (N) Addition Effects on Photosynthesis

The biochemical reactions of photosynthetic metabolism are generally considered to be
more sensitive to temperature than the light reactions, and increase with temperature up to
an optimum temperature, above which they decline rapidly [7,32]. Shen et al. [33] reported
for K. mikimotoi that the effective quantum yield, YII (pulsed with 70 µmol photons m−2 s−1),
and rETRmax increased from 16–28 ◦C although only estimates from 16 ◦C were statistically
lower than those measured at 20, 24, and 28 ◦C. In this study, generally the maximum
quantum yield, Fv/Fm, increased with temperature at each N form (e.g., 0.41 ± 0.01,
0.43 ± 0.04, 0.45 ± 0.02 at 15, 20, 25 ◦C, respectively, when cells were NO3

−-enriched)
although differences were statistically not significant in the case of NH4

+-enriched cells
(Table 2). However, when cells were light saturated, no clear temperature effects were
found in rETRmax in the range of 15–25 ◦C (Table 2). The cultures from Shen et al. [33] were
acclimated to each temperature while our cultures were adapted to 20 ◦C and exposed to
new thermal environments for 1 h. The optimal temperature for maximum photosynthetic
rate can increase with increasing growth temperature [34]. At 30 ◦C, all photosynthetic
parameters dropped significantly, suggesting that even a 1 h exposure to this temperature
was stressful for K. mikimotoi. Note that herein additional cultures incubated at 30 ◦C
overnight (no extra N addition) did not survive (data not shown).

At all but the highest temperature tested, with increasing light intensity, i.e., increasing
“push” due to photon flux pressure (Figure 8), rETR increased progressively until the
PSII was saturated with light (Ik) (Figure 4). Although the efficiency of photochemical
light capture, YII, decreased with increasing irradiance (Figure 3), enhanced photon flux
pressure on PSII increased the quantity of energy channeling to photochemistry, thus,
increasing the rETR until Ik. At a given irradiance, rETR increased further with increasing
N concentrations. Even though cultures were N-sufficient, photosynthetic activity increased
with all forms of N addition when temperature was not at a stressful level (Figure 4). The
increased supply of material (N in this case) enhanced metabolic activity, thus raising the
demand for energy to run diverse metabolism (“pull” due to demand) (Figure 8). This
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enhancement was stronger when cells were light saturated. The rETRmax clearly responded
to increasing N addition with little variations at 15–25 ◦C (Figure 5). The dark-adapted
fluorescence parameter, Fv/Fm, was also generally increased with all forms of N addition
(Figure 2).

4.2. N Form Effects on Photosynthesis at 30 ◦C

When temperature was not at a stressful level, K. mikimotoi was able to operate its
photosynthetic apparatus efficiently with all forms of N tested in this study. However, at
30 ◦C, cells were dissipating most of their absorbed light energy non-photochemically, but
at different degrees depending on N form. At the highest temperature, reaction centers were
fully closed for the NO3

− and NH4
+ treatments across most irradiance levels (Figure 6j,k).

The NO3
−-enriched culture showed the strongest stress (Fv/Fm = 0.02, rETRmax = 0.9), and

then NH4
+-enriched cells (Fv/Fm = 0.07, rETRmax = 2.4; Table 2). Fluorescence parameters

were still significantly lower at this high temperature compared to those at 15–25 ◦C, but
when cells were treated with urea, K. mikimotoi experienced less stress than those cells
enriched with NO3

− and NH4
+ (Fv/Fm = 0.17, rETRmax = 3.1), implying that urea might

induce a photoprotective mechanism.
The 15N isotope enrichment trends confirmed the differential effects of temperature

with the different forms of N (Figure 7). Little effect of temperature was observed with
15NO3

− incorporation, but with 15NH4
+, incorporation increased as temperatures rose, and

for urea, the highest temperature uniquely yielded the highest isotopic incorporation. Such
trends would support the different responses seen in Fv/Fm and rETR with the different
N enrichments.

Although K. mikimotoi has been known to use diverse forms of N, the underlying
mechanisms for metabolizing each N form are complex with respect to temperature. The
inhibition of NR activity at higher temperatures might hinder the first step of NO3

−

metabolism, reduction to NO2
− [7], thereby decreasing subsequent intracellular N supply.

Dai et al. [35] reported that K. mikimotoi grown on NO3
− could not survive at 30 ◦C and

NR activity was significantly inhibited at this temperature compared to 15–25 ◦C. On the
other hand, the metabolic flux of reduced forms of N such as NH4

+ and urea is expected to
be higher at higher temperatures [7]. For example, at higher temperatures, the activity of
GS that adds NH4

+ to glutamate by using ATP to produce glutamine increases. Moreover,
the activity of GOGAT that combines glutamine to 2-oxoglutarate using electrons can
be higher at 30 ◦C compared to activity rates at lower temperatures [7,36]. All energy-
consuming metabolism will increase the energy demand, thereby enhancing the capacity of
photochemical use of absorbed light energy. This might partly explain why NH4

+-treated
sample showed four times higher Fv/Fm and three times higher rETRmax compared to
NO3

−-treated cells at 30 ◦C (Figures 2 and 5, Table 2). However, cells enriched with urea
showed even higher estimates, implying that energy demand for metabolism could be
relatively higher. Dinoflagellates have a urea cycle that helps reallocation of intracellular
C and N [36] and several enzymes involved in the urea cycle have been identified in
K. mikimotoi, suggesting that this species could also have a complete urea cycle [37]. The
increased intracellular recycling of C and N from protein catabolism and photorespiration
through the urea cycle could enhance overall metabolic flux, thus increasing the demand
for chemical energy. To balance this demand, a higher proportion of absorbed light energy
could be funneled into photochemistry, therefore increasing Fv/Fm and rETR. Moreover,
generally, urease, which catalyzes the hydrolysis of urea, has a positive relationship with
temperature [13,38].

4.3. Implications of Temperature Effects for Natural Assemblages

In the field, K. mikimotoi has been observed over a wide range of temperatures,
4–31 ◦C although some subspecies have narrower temperature ranges (e.g., Norway isolate:
10–25 ◦C) [1,2,39]. In culture experiments, it has been shown that K. mikimotoi cells can sur-
vive and grow well at 16, 20, 24, 28 ◦C [33,40], but not at 10 and 30 ◦C [35], suggesting that
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K. mikimotoi would have a relatively narrow optimum temperature for their growth [1,40].
In general, rising temperatures accelerate enzymatic reactions by increasing the proportions
of molecules that have sufficient kinetic energy to react, thus increasing overall metabolic
flux (the “pull” due to demand) (Figure 8) [41,42]. Indeed, the maximum specific growth
rates were observed at 24 ◦C and 25 ◦C in the previously cited studies [33,35].

Karenia blooms that primarily occurs in the fall months rarely persist throughout
hot summer months on the West Florida Shelf. The summers—during which water can
>30 ◦C—may represent a thermal barrier for large blooms to be maintained. However,
Karenia cells are occasionally found to sustain substantial blooms in extremely hot surface
waters (>30 ◦C). Generally, West Florida Shelf is characterized by low ambient dissolved
inorganic nutrients, but elevated nutrients, especially dissolved organic nutrients (e.g., urea)
can occur nearshore [23]. Urea has been widely used as a fertilizer within Florida and some
of this nutrient can be delivered to nearshore [43]. This raises the possibility that high
temperature stress might be alleviated when urea is available because more photons can be
processes photochemically, thus cells can operate photosynthesis more efficiently in very
warm conditions with reduced organic nitrogen. Therefore, increased availability of urea
might be able to support maintaining Karenia blooms under short-term heat stress.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/phycology2010002/s1 Figure S1: Quantum yield of regulated non-photochemical energy
dissipation, YNPQ, as a function of irradiance for K. mikimotoi exposed to different temperatures (15,
20, 25, 30 ◦C) when pulsed with different nitrogen forms (NO3

−, NH4
+, urea) and amounts (1, 5, 10,

20, 50 µM). Within each depicted irradiance level, the darker the color of the bars, the higher the
enrichment with added N. YNPQ represents energy loss of excitation energy thorough harmless heat
dissipation related to non-photochemical quenching, Figure S2: Quantum yield of non-regulated
non-photochemical energy dissipation, YNO as a function of irradiance for K. mikimotoi exposed to
different temperatures (15, 20, 25, 30 ◦C) when pulsed with different nitrogen forms (NO3

−, NH4,
urea) and amounts (1, 5, 10, 20, 50 µM). Within each depicted irradiance level, the darker the color of
the bars, the higher the enrichment with added N. YNO represents the sum of non-regulated heat
dissipation and fluorescence emission (“primarily constitutive losses”), Table S1: Original data of YII,
YNPQ, YNO, 1-qP, and rETR, Table S2: rETR parameters, including initial slope of the light curve,
alpha; saturation irradiance, Ik; rETRmax and, photoinhibition parameter, beta, as calculated using
the R package ‘phytotools’.
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