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Abstract: The amine/phenol-metabolome of rumen fluid was analyzed to identify amino acid
metabolism-related biomarkers associated with phenotypic selection for low or high residual feed
intake (RFI) in beef cattle. Fourteen beef steers (most feed-efficient (HFE; RFI = −1.89 kg/d, n = 7)
and least feed-efficient (LFE; RFI = +2.05 kg/d, n = 7)) were selected from a total of 56 crossbred
growing beef steers (average BW = 261 ± 18.5 kg) after a 49-d feeding period in a dry lot equipped
with two GrowSafe intake nodes. Rumen fluid samples were collected 4 h after feeding on d 56, 63,
and 70 from the HFE and LFE beef steers. Metabolome analysis of the rumen fluid was performed
using chemical isotope labeling/liquid chromatography-mass spectrometry to identify all metabolites
containing amine/phenol chemical groups, which are mostly amino acid metabolites. A total of
493 metabolites were detected and identified in the rumen fluid. The partial least squares discrimi-
nant scores plot showed a slight separation between the two groups of steers, and a total of eight
metabolites were found to be differentially abundant (FDR ≤ 0.05). Out of the eight differentially
abundant metabolites, four metabolites (isomer 1 of cadaverine, baeocystin, 6-methyladenine, and
N(6)-methyllysine) qualified as candidate biomarkers of divergent RFI phenotype based on area
under the curve ≥ 0.70. The results of this study revealed that divergent RFI phenotype is associated
with alteration in rumen amine/phenol-metabolome of beef steers.
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1. Introduction

Residual feed intake (RFI), a measure of feed efficiency, is defined as the difference
between the expected and actual feed intake of food animals [1]. Residual feed intake is
phenotypically favorable because it is independent of animal production measures such
as average daily gain, body weight, and carcass traits [2]. Animals with negative (or
low) RFI values are considered to be feed-efficient because they consume less feed than
their expected intake, whereas animals with positive (or high) RFI values consume more
than their expected feed intake to achieve the same growth performance [1]. Not only is
selection for low RFI animals gaining popularity amongst beef producers because they
eat less per unit of weight gained, but also because low RFI has been positively attributed
to less production of methane [3]. With this knowledge, RFI has been deemed as both
environmentally and economically important, and several researchers have desired to
deduce and establish metabolic biomarkers associated with RFI. [4,5].

Metabolomics has been used in several studies to evaluate the metabolic or nutritional
status of animals with divergent RFI phenotypes [5]. Several of these studies have identified
amino acid metabolism as an important pathway associated with RFI in ruminants [6,7].
In ruminants, host amino acid metabolism is significantly influenced by ruminal nitrogen
metabolism because proteins and AA in feeds are first subject to microbial degradation
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in the rumen. To this date, no studies have attempted to determine how the selection
for divergent RFI phenotype is associated with the rumen metabolome, with a focus on
the metabolites associated with amino acid metabolism. Therefore, the objective of this
study was to analyze the rumen amine/phenol-metabolome of crossbred beef steers with
divergent RFI phenotype. We hypothesized that beef steers with divergent RFI phenotype
would have a different relative abundance of certain metabolites associated with the
metabolism of amino acids.

2. Materials and Methods
2.1. Animals, Experimental Design, and Rumen Fluid Sample Collection

Fifty-six (56) crossbred beef steers (average BW = 261 ± 18.5 kg) were fed a total
mixed ration diet (Table 1) in a dry lot equipped with GrowSafe intake nodes for 49 d
to determine their RFI phenotype. Details of the RFI determination have been reported
in our previous study [4]. At the end of the 49-d period, 14 beef steers (most efficient
(HFE; RFI = −1.89 kg/d, n = 7) and least efficient (LFE); RFI = +2.05 kg/d, n = 7) were
identified and were continued on the same diet for an additional 21 d (representing d
50–70). Rumen fluid samples were collected using an orally administered stomach tube
connected to a vacuum pump (Ruminator; profs-products.com (accessed on 14 June 2021),
Wittibreut, Bayern, Germany) once weekly for three weeks (d 56, 63, and 70; a total of
42 samples) from the HFE and LFE steers at about 4 hr after morning feeding into 50-mL
polypropylene conical bottom tube. Approximately 200 mL of rumen fluid was taken, after
discarding the first 150 mL to prevent saliva contamination. The rumen fluid samples
were immediately placed on ice after collection, and they were thereafter stored at −80 ◦C.
Amine/phenol-metabolome analysis of all rumen fluid samples (21 samples each from
HFE and LFE beef steers) were analyzed using a chemical isotope labeling (CIL)/liquid
chromatography-mass spectrometry (LC-MS) technique [8].

Table 1. Ingredient and chemical composition of the basal diet.

Ingredient (%DM) % of Dietary DM

Corn silage 49.5
Mixed grass hay 1 47.5
Concentrate supplement 2 3.0
Nutrient analysis
Dry matter, % 44.5
Crude protein, % 13.2
Neutral detergent fiber (amylase treated), % 45.9
Acid detergent fiber, % 31.5
Ether extract, % 3.14
Calcium, % 0.66
Phosphorus, % 0.37
Net energy of maintenance, Mcal/kg 1.53
Net energy of gain, Mcal/kg 0.93

1 Contains a mixture of orchard grass and fescue grass. 2 Contained grain by-product, plant protein products,
urea, salt, ground limestone, magnesium sulfate, potassium sulfate, sodium selenite, calcium carbonate, vegetable
oil, manganous oxide, vitamin D3 supplement, vitamin A supplement, vitamin E supplement, zinc oxide, basic
copper chloride, magnesium chloride, propylene glycol, lecithin, phosphoric acid, ferrous sulfate, calcium iodate,
and cobalt carbonate.

2.2. Metabolome Analysis and Data Processing

Amine/phenol-metabolome analysis targets amine- and phenol-containing metabo-
lites, which are mostly amino acid metabolic products [8]. Relative quantification (based
on peak ratio values) of all the metabolites was conducted using an Agilent 1100 LC sys-
tem (Palo Alto, CA) connected to a Bruker Impact HD quadrupole time-of-flight (QTOF)
MS. Details of CIL/LC-MS operating conditions and set-up have been described previ-
ously [9,10]. A total number of 48 LC-MS data files were generated (six quality control (QC)
samples, 21 HFE samples, and 21 LFE samples). The QC sample, prepared from an equal
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pooled amount of all samples, was analyzed every eight-sample run to monitor instrument
performance. A total of 42 raw LC-MS data files were processed using IsoMS Pro 1.2.14 to
remove redundant pairs of adduct ions, dimers, and singlet peaks [11]. The detected peak
pairs were identified as metabolites using the CIL and linked identity libraries [12].

2.3. Statistical Analysis

The metabolome data for all 42 samples were analyzed using MetaboAnalyst 5.0
software (https://www.metaboanalyst.ca/ accessed on 12 September 2022). The data
were first log-transformed and auto-scaled. Partial least squares discriminant analysis
(PLS-DA) scores plot was used to visualize difference between the two groups of beef
steers. Differentially abundant metabolites (p-values adjusted for false discovery rate
(FDR) ≤ 0.05 [13]) were determined using a volcano plot analysis. The differentially
abundant metabolites were further screened using a biomarker analysis based on receiver
operating characteristic (ROC) curves [14]. Differentially abundant metabolites having
AUC ≥ 0.70 were selected as the metabolites associated with divergent RFI phenotype in
this experiment [3].

3. Results

A total of 493 metabolites were detected and identified in the rumen (see
Supplementary Table S1). Using the first two principal components with 27.6% and 9.2%
of explained variances, the PLS-DA scores plot showed a slight separation between the
two groups, thus indicating that divergent RFI phenotype is associated with altered ru-
men fluid amine/phenol-metabolome of the beef steers (Figure 1). Relative ruminal fluid
concentration of four metabolites (adenine, 2-aminomuconic acid, 6-methyladenine, and
deoxyadenosine) were greater (FDR ≤ 0.05) in HFE, compared to LFE steers, whereas four
metabolites (homoarginine, baeocystin, N(6)-methyllysine, and an isomer of cadaverine
(FDR ≤ 0.05) were greater in LFE, compared to HFE steers (Table 2; Figure 2). Out of
the eight differentially abundant metabolites, only four metabolites (isomer of cadaver-
ine, baeocystin, 6-methyladenine, and N(6)-methyllysine) with AUC values ≥ 0.70 were
identified to be associated with divergent RFI phenotype in this study (Figure 3). The
distributions of the four metabolites in LFE and HFE beef steers are shown in Figure 4.

Table 2. Differentially abundant amine/phenol-metabolites in rumen fluid of beef steers with
divergent residual feed intake phenotype.

Metabolite FC FDR

Adenine 1.60 0.01
2-Aminomuconic acid 1.50 0.01
6-Methyladenine 1.31 0.01
Deoxyadenosine 1.26 0.04
Homoarginine 0.92 0.05
Beaocystin 0.91 0.01
N(6)-methyllysine 0.77 0.02
Isomer 1 of Cadaverine 0.56 0.01

HFE = beef steers with negative residual feed intake; LFE = beef steers with positive residual feed intake. FC: fold
change (HFE/LFE). Only metabolites with false discovery rate (FDR) ≤ 0.05 are shown.

https://www.metaboanalyst.ca/
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4. Discussion

Amino acid metabolism plays a significant role in essential metabolic processes in
animal cells and contributes to growth and productivity of animals [15]. In ruminants, host
amino acid metabolism is significantly influenced by ruminal nitrogen metabolism because
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proteins and AA in feeds are first subject to microbial metabolism in the rumen [16,17].
Altered rumen amine/phenol-metabolome of the beef steers with divergent RFI supports
the essential role of ruminal amino acid metabolism to overall animal productivity. Our
results agree with results from previous studies that identified amino acid metabolism, or
its associated metabolites, as the most significant pathway associated with residual feed
intake [4,18]. For instance, Li and Guan (2017) reported an interconnection between ruminal
amino acid biochemical pathway and RFI in beef cattle. Similarly, Taiwo et al. (2022) identi-
fied four plasma metabolites (methionine, 5-aminopentanoic acid, 2-aminohecanedioic acid,
and 4-chlorolysine) associated with amino acid metabolism as the candidate biomarkers
associated with phenotypic selection for low or high RFI.

The relative rumen fluid concentration of an isomer of cadaverine and N(6)-methyllysine
were greater in LFE steers compared to HFE. Cadaverine is a product of bacterial decarboxy-
lation of lysine that occurs during protein hydrolysis [19]. Cadaverine is an alkane diamine
and is one of the four basic polyamines in mammals and humans [20,21]. Polyamines
are essential components of mammalian cells and play critical functions in protein syn-
thesis and function [22]. Despite polyamines being involved in physiological processes,
polyamines found in high abundance can cause significant toxicity with damages to DNA,
protein, tissues, and other cellular components [23]. N(6)-methyllysine is a derivative
of lysine methylation [24]. The methylation of lysine functions as a regulator of various
effector molecules and is involved in transcriptional regulation, DNA repair, and DNA
replication [25,26]. While the biological significance of rumen fluid abundance of isomer 1
of cadaverine and N(6)-methyllysine are unknown, several studies in beef cattle have re-
ported an association between RFI status and plasma lysine concentration [4,6,27]. Lysine is
a limiting amino acid in growing beef cattle, and its deficiency can lead to poor growth per-
formance [28,29]. Although the physiological effects of cadaverine and N(6)-methyllysine
were not measured in this study, it is reasonable to speculate that lower relative abundance
in rumen fluid of LFE steers, compared to HFE steers, could suggest higher ruminal lysine
degradation, which can cause lower availability for tissue protein synthesis in LFE steers.

Baeocystin was identified as a candidate metabolite associated with divergent RFI
phenotype in this study, and its relative rumen fluid concentration was greater in LFE
compared with HFE steers. Baeocystin is a methyl analogue of psilocybin, also referred
to as a tryptamine toxin [30,31]. Baeocystin can bind to specific subtypes of 5-HT receptor
to produce hallucinogenic effects and is a plausible candidate to induce effects similar
to psilocybin [32]. High-level ingestion of tryptamine toxins may be harmful to animals
and humans, and while there are minimal studies on the biological significance of baeo-
cystin in animals in reference to feed efficiency, psilocybin, and its analogues, have been
reported to cause neurologic effects and tryptamine toxicity in humans’ and animals’ syn-
drome [33,34], which might explain reduced efficiency of feed nutrient utilization in LFE
steers. 6-Methyladenine is a metabolite involved in regulation of several metabolic pro-
cesses, such as gene expression, DNA replication, and cell defense against viruses [35,36].
The fact that the relative concentration of 6-methyladenine was greater in HFE compared
to LFE steers suggests that there may be increased availability for improved metabolic
functions, which are vital for the growth and development of animals.

5. Conclusions

The results of this study revealed that divergent RFI phenotype is associated with
altered rumen amine/phenol metabolome. The relative concentrations of four metabolites
(6-methyladenine, baeocystin, N(6)-methyllysine, and an isomer of cadaverine) were found
to be associated with RFI phenotype. Future studies are needed to validate the roles of these
metabolites and how they affect the feed efficiency, amino acid and energy metabolism,
and balance of the beef steers.
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