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Abstract: Lamb finishing during summer in southern Australia faces the challenges of dry paddock
feed of low nutrient value and energy concentration, combined with periods of high temperature
that reduce appetite. One potential forage to overcome these challenges is camelina, a brassica with a
high lipid concentration. Liveweight gain (LWG) and feed efficiency (FE) of a pelleted diet containing
15% camelina hay (CAM) were compared with an equivalent diet based on oaten hay (STD), a feed
commonly used during dry seasons. The experiment was conducted under summer to autumn
conditions using 56 maternal Composite (Composite) wether lambs (4 months, 28–38 kg liveweight)
and 56 Merino wether yearlings (15 months, 37–43 kg liveweight). Animals were maintained in group
pens (8/pen) and weekly average feed intakes per pen and liveweights per pen were determined in a
shaded well-ventilated animal house. The LWG and FE for both animal types were significantly lower
during weeks 5–8 compared with weeks 1–4. These changes coincided with a higher proportion of
daytime maxima exceeding 28 ◦C (50% vs. 21%) and night-time hours exceeding 22 ◦C (15% vs. 9%).
The experiment indicated that the LWG and FE of sheep fed the CAM diet were less affected by the
elevated temperatures than sheep fed the STD diet during weeks 5–8. However, further research
under controlled environmental conditions is required to further validate these results.

Keywords: camelina forage; feed intake; high temperature; heat stress; animal productivity; temperature
humidity index

1. Introduction

Lambing in southern Australia typically takes place mid to late winter and is based on
grazing available green pasture. Weaning occurs at 12–14 weeks of age, shortly before the
pasture senesces resulting in decreasing accumulation rates and lower nutritive value [1].
While a proportion of the lambs will reach a weight suitable for slaughter by weaning,
based on the carcass weight requirements for some markets, the remainder require high-
quality summer finishing feed such as brassica forage crops, lucerne or feed-lotting to
achieve a suitable slaughter weight. Climate change is expected to lead to an earlier
cessation of pasture growth in spring [2]. This will lead to longer periods where lambs
graze senesced pasture with lower nutrient density than required for liveweight gain and
finishing. Furthermore, the trend toward more frequent and intense heatwaves is expected
to continue as global warming increases [3]. Therefore, there is a need to assess the resilience

Ruminants 2022, 2, 390–406. https://doi.org/10.3390/ruminants2040027 https://www.mdpi.com/journal/ruminants

https://doi.org/10.3390/ruminants2040027
https://doi.org/10.3390/ruminants2040027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ruminants
https://www.mdpi.com
https://orcid.org/0000-0001-8031-6993
https://orcid.org/0000-0003-2104-4320
https://orcid.org/0000-0001-5163-8272
https://doi.org/10.3390/ruminants2040027
https://www.mdpi.com/journal/ruminants
https://www.mdpi.com/article/10.3390/ruminants2040027?type=check_update&version=1


Ruminants 2022, 2 391

of the lamb finishing system under such conditions and identify new or suitable diets to fill
the gaps for year-round sheep meat production.

Based on the livestock type, geographic location and temperature zones where animal
feeding studies are conducted in sheep and cattle, the thermoneutral zone ranges varies.
For example, in dairy cattle, 5 to 15 ◦C [4] and 5 to 25 ◦C [5]. Most studies comparing
heat stress in sheep and cattle were undertaken in controlled heat chamber environments
(thermoneutral versus elevated temperature conditions) for short durations. Heat stress
has been reported to influence muscle membrane phospholipases and phosphatidylinositol
phosphate kinases activities within a short period as ambient temperatures increase from
25–35 ◦C [6] and changes in the muscle membrane phospholipid layer can alter second
messenger signal transduction activities and energy metabolism of animals [7]. A recent
study showed that one week of heat stress imposed on sheep in heat chambers increased
arachidonic acid (AA) and total omega-6 fatty acid concentrations in muscle tissues [8].
These fatty acids are stored in phospholipid fractions of membrane tissues and are believed
to be pro-inflammatory, which may lead to oxidative stress when deposited at greater levels.
Oxidative stress conditions imposed by heat exposure can alter the basal metabolism and
use of nutrient resources into body weight gain, associated with feed intake of animals,
to counteract the increase in body temperature and/or other physiological changes such
as restlessness. Previous studies in heat chambers showed that significant changes in the
physiological responses and dry matter intake occur when temperature exceeds 25 ◦C [9].
There are no data available for young sheep reared under hot and dry conditions over the
summer to autumn finishing period in a temperate zone to understand the impact of high
ambient temperatures on feed efficiency (FE) and liveweight gain (LWG).

Previous studies show that the addition of fat in the diets of chicks [10] and pigs [11]
grown under hot environmental conditions reduced dietary heat increments and improved
productivity in stressed animals. Studies of this nature in ruminants (e.g., sheep) reared
under hot environmental conditions, fed for longer periods (≥six weeks), are necessary
to understand the effect of forage diet containing lipid (fat or oil) on productivity of
animals under stress. We suggest that supplementation of lipids such as oils and fats in
ruminant diets may be used as a strategy to increase the nutrient availability of diets for
intestinal absorption during hot-dry conditions, when the availability of green pasture is
low. Ruminants are accustomed to harvest forages/roughage materials with 1–2% lipid
concentration. Provision of diets with additional fat supplementation to ruminants can be
effective because they contribute ~2.5 times more energy than carbohydrates; and produce
less heat than carbohydrates and proteins in the gut during digestion and absorption. Fats
have a lower heat increment in the rumen when compared with starch and fibre, thus,
supplementation of fat in the diet is associated with reduced metabolic heat production
per unit of energy consumed from the diet [12]. Therefore, a small percentage increase in
the lipid concentration of ruminant diets by adding forages with a higher concentration of
lipids than senesced grass or cereal hay may possibly increase nutrient intake and growth
performance of animals during hot and dry periods. Such a feed is hay from the brassica
species camelina (Camelina sativa L. Crantz) which has a high lipid concentration in its seed
(40%) and vegetative parts (5.2%), which is similar to canola crop [13]. Camelina sativa has
been widely used in the USA as an oilseed crop feedstock for biodiesel production [14].
However, there is a renewed focus on this crop as a feed for livestock as new dietary sources
of essential fatty acids for animals are being saught [13].

This experiment was originally designed to study the use of camelina forage or
meal as a component of dry finishing diets on feed intake, weight gain and carcass
traits/composition of Composite lamb and Merino hoggets produced during the hot
and dry season in the temperate zone of southern Australia [15,16]. Data from this exper-
iment was used to determine the impact of heat stress with natural diurnal temperature
variation during summer to autumn on FE and LWG in young sheep fed a standard pel-
let diet or standard pellet diet supplemented with camelina hay. The hypotheses were
that (i) high temperatures for 2–3 days in successive weeks in a temperate zone (e.g., day
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temperature ≥ 28 ◦C and night temperature ≥ 22 ◦C): will reduce LWG and/or FE in sheep
finished during summer to autumn season and that (ii) camelina hay supplementation,
through its preservative effects of lipids, will be beneficial in maintaining the LWG and
FE of animals during exposure to frequent high temperature periods. The outcome of this
experiment can be used as a model for larger ruminants (dairy cattle, beef cattle) and goats
grown in the temperate zone.

2. Materials and Methods
2.1. Animal Ethics and Experimental Design

All animal procedures were conducted in accordance with Australian code for the care
and use of animals for scientific purposes [17]. Approval to proceed was obtained from the
Department of Jobs, Precincts and Regions (DJPR) Agricultural Research and Extension
Animal Ethics Committee (AEC Code No: 2016-17).

Fifty-six maternal Composite (Composite) wether lambs (28–38 kg liveweight (LW)
and approximately 4 months of age) and 56 Merino wether yearlings (37–43 kg LW and
15 months of age) were selected from the commercial flock at the Agriculture Victoria
Research Hamilton SmartFarm, Victoria. The composite sheep are a mixed sheep breed that
are predominantly Coopworth, East Friesian, Border Leicester, Corriedale, Booroola, Finn
and Texel genetics bred for meat production with maternal and fecundity characteristics [18].
Composite lambs and pure Merino yearlings were chosen to examine the dietary effects on
dry matter intake (DMI), LWG and FE over the summer to autumn period as both breeds
contribute to significant income to Australian regional farming communities through lamb
(meat) and mutton (meat) and fibre (wool) export. The summer and autumn seasons in
Australia are defined as December to February and March to May, respectively.

The experiment was conducted in an animal house facility at the Hamilton Smart
Farm, Victoria (latitude: 37.7456◦ S, longitude: 142.0179◦ E) between 24 January and
20 March 2017. Animals were allocated to a 2 × 2 factorial fully randomised design based
on LW within each breed to test the effect of diet and breed on DMI, LWG and FE, with pens
of sheep used as the experimental unit. For each breed, there were 3 pens (8 animals per pen)
of a diet containing 15% camelina hay (CAM) and 4 pens (8 animal per pen) of a standard
forage mixture diet (STD). Animals were housed in fourteen pens of 3.6 m × 3.12 m. Each
pen contained two feed troughs of 21 cm width × 84 cm length × 51 cm height that could
hold up to 10 kg of feed per trough adequate to feed four sheep. The two experimental diets
were formulated using feed ingredients available in the major sheep producing regions
of southern Australia (Table 1). Sheep were offered the experimental diets in a pelleted
form. The CAM diet contained 38% more crude fat, with diets similar in metabolisable
energy (ME, ~10–11 MJ/kg DM), crude protein (CP, ~14–15% DM) and neutral detergent
fibre (NDF, ~34% DM). Diets were designed to achieve at least 150 g/day LWG for both
Merino sheep and Composite lambs, a reasonable growth rate for the summer-autumn
period. Sheep had free access to water throughout the day.

Table 1. Dietary ingredients used to make two rations (pellets) used for the 8 weeks feeding of
maternal Composite lambs and Merino sheep.

Items Dietary Ingredients Used (% w/w)

CAM Forage (CAM) Standard Forage (STD)

Lupins 30 30
Barley grain 10 20
Oat grain 15 5
Oaten hay 0 45
Camelina-Oat-Barley hay, 33:33:33 w/w/w 45 0
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2.2. Environmental Conditions

Temperature and humidity were logged at 15-min intervals within the animal house
using Tinytag data loggers (Hastings Data Loggers, Port Macquarie, NSW, Australia). The
animal house facility had a galvanised iron roof and was well ventilated. The thermal
conditions observed in the animal house facility are consistent with sheep grazing outdoors
with free access to shade from trees or shade structures to avoid direct solar radiation from
the sun. Temperature, humidity, wind speed and solar radiation were also measured at
hourly intervals using a standard weather station, located at the same premises (Australian
Bureau of Meteorology Station 90103) 200 metres away from the animal house experimental
facility. As a standard measure, temperature recorded from 6 am to 6 pm (06:01 h to
18:00 h) were considered as ‘day’ and 6 pm to 6 am (18:01 h to 06:00 h) were considered as
‘night’, respectively.

Calculation of Temperature Humidity Index

The temperature-humidity index (THI) [19] was calculated at hourly intervals as:

THI = (0.8 Tair) + (RH/100) (Tair − 14.4) + 46.4 (1)

where Tair is the air temperature (◦C) and RH the relative humidity (%).

2.3. Animal Feeding and Measurements

Two weeks prior to induction of animals into the animal house pen facilities, all animals
were adapted to a standard commercial pelleted diet (ME, 9.6 MJ/kg DM and CP, 9.8% DM)
in the paddock using self-feeders. During the first week of adaptation to the animal house
facility, animals were offered the same commercial pellets at 1.5–2.0 kg/day/head. In
the second week, animals were given the commercial pellets in decreasing rates with
experimental pellets increasing gradually from 200 g/day to ad libitum feeding, occurred
over seven days. Full ad libitum feeding of experimental diets commenced on 24 January
2017 and continued until completion of the experiment.

Feed offered per pen was recorded daily, while refusals from each pen were recorded
weekly. A single weekly feed sample was collected for the determination of dry matter (DM)
and nutritive characteristics. Following mixing of collected feed samples, one portion was
dried at 100 ◦C for 24 h for the determination of DM content. A further portion was dried
at 60 ◦C for 72 h, ground and analysed for nutrient composition determined by Near Infra-
Red spectroscopy (NIR, ACE Laboratories Pty. Ltd., Bendigo, Victoria, Australia) with the
results presented in Table 2. In brief, feed samples were ground using a UDY Cyclone Mill
(model # 3010-019) equipped with 1 mm sample screen and scanned using a Foss 5000 NIR
with spinning cup sample module. NIR prediction equations developed by Cumberland
Valley Analytical Services (www.foragelab.com, accessed on 30 September 2018) using in
house chemistry and NIR spectra using WinISI (Foss) chemometric software were used to
determine the chemical constituents as reported in detail [20]. Feed troughs were used to
offer pellets daily and individual animal feed consumption was estimated from group pen
weekly intakes as an average, which was used to calculate the treatment average.

Table 2. Nutritive characteristics of two rations (pellets) used for the 8 weeks feeding of maternal
Composite lambs and Merino sheep.

Nutritive Characteristics of Diet 1

CAM STD

Dry matter, g/100 g DM 88.85 89.35
Crude protein, % DM 15.20 14.80
Metabolisable energy, MJ/kg DM 10.83 10.80

www.foragelab.com
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Table 2. Cont.

Nutritive Characteristics of Diet 1

CAM STD

Crude fat, % DM 2.91 2.11
Acid detergent fibre, % DM 19.93 19.03
Neutral detergent fibre, % DM 34.03 34.23
Lignin, % DM 4.20 4.30
Phosphorus, % DM 0.42 0.47
Potassium, % DM 1.42 1.47
Sulphur, % DM 0.21 0.25

1 Feed samples (pellets) were collected for each diet weekly. These weekly samples (pellets) were mixed together
and a homogeneous sample for each diet (~100 g) was ground and then used for the nutrient analysis.

Animal liveweight was recorded at the commencement of the experiment (week 0) and
weekly during the 8-week feeding. Liveweight was measured individually without fasting
using a weigh crate (Pratley 3-Way manual drafter S03300L, Pratley Industries Ltd., Temuka,
New Zealand) and scales (Tru-Test MP600, Tru-Test Livestock management, Shepparton,
Victoria, Australia). To understand the impact of the higher overall temperature and THI
on LWG (kg/sheep/week) and FE (kg LWG/kg DMI) during weeks 5–8 of the experiment,
the feed intake and live weight of sheep were calculated separately for weeks 1–4 and
weeks 5–8.

To determine whether the weather conditions experienced by animals grown in other
sheep producing regions of Victoria were common to animals in the current experiment,
THI was calculated over the 5-year period from 2013–2017 for weather stations at Walpeup,
Nhill and Hamilton, which describe a north–south transect in western Victoria (35.12◦ S,
36.33◦ S, and 37.82◦ S), respectively. Data for daily maximum temperature and relative
humidity at the time of maximum temperature were sourced from the SILO database
(https://silo.longpaddock.qld.gov.au/point-data, accessed on 11 August 2017) and used
to calculate THI for Walpeup, Nhill and Hamilton regions.

2.4. Selection of Temperature and THI Thresholds as Reference Values

To quantify the duration of temperature stress experienced by the animals, the propor-
tion of hours exceeding specific temperature and THI thresholds were calculated. These
thresholds were based on the Grazfeed model [21], where feed intake by sheep and cattle is
reduced when the average daytime temperature exceeds 25 ◦C (equivalent to a daytime
maximum of 28 ◦C in our experiment) and when the night-time temperature exceeds
22 ◦C. In our experiment daytime was defined as 06:01 to 18:00 and was classified with
temperature thresholds of 26 ◦C, 28 ◦C and 30 ◦C, and night-time was defined as 18:01 to
06:00 with thresholds of 12 ◦C, 15 ◦C and 22 ◦C. Equivalent daytime THI values were 72,
74 and 76, and equivalent night-time THI values 55, 60 and 67.

2.5. Statistical Analysis

Statistical analyses were carried out using the ANOVA directive and AREPMEASURES
procedure in GenStat 18 [22]. Data were analysed as 2 (diet) × 2 (breed) factorial analysis of
variance, with pens of sheep as experimental units. The weekly DMI and LW obtained for
each pen for the 8-week feeding were used to determine the treatment means for weekly
DMI and LW. Similarly, LWG and FE calculated for weeks 1–4 and weeks 5–8 periods for
each pen were used to determine the treatment means for LWG and FE of both Composite
lambs and Merino yearlings for both periods. Results were presented as dietary treatment
main effects (STD versus CAM), animal breed main effects (Composite versus Merino) and
diet × animal breed interactions with standard errors of difference. A distinct difference in
the effects of breed and diet was observed between weeks 1–4 and weeks 5–8, and this was
examined using logistic regression, where binomial response was hourly temperature and
THI index during these periods reaching certain thresholds coded as 1 and not reaching

https://silo.longpaddock.qld.gov.au/point-data
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that reference value coded as zero. The logit function was used as the link function and
the standard errors of difference (SED) between two predicted proportions for two periods
was calculated at 5% level of significance. Statistical differences are declared at p < 0.05 and
p < 0.01 as significant and highly significant level, respectively.

3. Results
3.1. Environmental Conditions and Ranges of Temperature and THI Observed during
the Experiment

During the experimental period, maximum daily temperatures in the animal house
were on average within 0.5 ◦C (range 0–1.6 ◦C) of those measured at the external Hamilton
weather station (Figure S1a). Data for THI calculated for the animal house and the external
weather station were similar (Figure S1b), with an average difference of only 1 THI unit
(range 0.1–3.3). A summary of lowest and highest ranges for maximum temperature,
minimum temperature, relative humidity at maximum temperature, relative humidity at
minimum temperature, maximum THI and minimum THI during weeks 1–4 and weeks
5–8 periods are shown in supplementary Table S1.

The average daily maximum THI at the weather station during the 8-week exper-
imental period was 72.1. This observation was consistent with the average for January
THI at Hamilton over the previous five years (71.7), but below that of Nhill (75.8) and
Walpeup (77.4) (Figure 1a). Likewise, the highest daily maximum THI (84.0) over the
8-week experimental period was similar to the five-year average monthly maximum for
January (83.7) at Hamilton, but below that of Nhill (84.4) and Walpeup (85.6) (Figure 1b).

Hourly temperature and THI data for two contrasting days of the experiment shows
that on the hottest day (36 ◦C, in week 3, 8 February 2017), both air temperature and THI
increased rapidly until just after midday (13:00 h), then continued to increase gradually
until 18:00 h with the night temperature staying above 25 ◦C until 06:00 h next morning
(Figure 2a,b). By contrast, on a day of maximum temperature 27 ◦C (in week 7, 7 March
2017), both air temperature and THI increased rapidly just after midday (13:00 h), then
continued to increase gradually until 18:00 h, thereafter the temperature and THI declined
rapidly (Figure 2c,d).

Ruminants 2022, 2, FOR PEER REVIEW 6 
 

 

LW obtained for each pen for the 8-week feeding were used to determine the treatment 
means for weekly DMI and LW. Similarly, LWG and FE calculated for weeks 1–4 and 
weeks 5–8 periods for each pen were used to determine the treatment means for LWG and 
FE of both Composite lambs and Merino yearlings for both periods. Results were pre-
sented as dietary treatment main effects (STD versus CAM), animal breed main effects 
(Composite versus Merino) and diet × animal breed interactions with standard errors of 
difference. A distinct difference in the effects of breed and diet was observed between 
weeks 1–4 and weeks 5–8, and this was examined using logistic regression, where bino-
mial response was hourly temperature and THI index during these periods reaching cer-
tain thresholds coded as 1 and not reaching that reference value coded as zero. The logit 
function was used as the link function and the standard errors of difference (SED) between 
two predicted proportions for two periods was calculated at 5% level of significance. Sta-
tistical differences are declared at p < 0.05 and p < 0.01 as significant and highly significant 
level, respectively. 

3. Results 
3.1. Environmental Conditions and Ranges of Temperature and THI Observed during the 
Experiment 

During the experimental period, maximum daily temperatures in the animal house 
were on average within 0.5 °C (range 0–1.6 °C) of those measured at the external Hamilton 
weather station (Figure S1a). Data for THI calculated for the animal house and the external 
weather station were similar (Figure S1b), with an average difference of only 1 THI unit 
(range 0.1–3.3). A summary of lowest and highest ranges for maximum temperature, min-
imum temperature, relative humidity at maximum temperature, relative humidity at min-
imum temperature, maximum THI and minimum THI during weeks 1–4 and weeks 5–8 
periods are shown in supplementary Table S1. 

The average daily maximum THI at the weather station during the 8-week experi-
mental period was 72.1. This observation was consistent with the average for January THI 
at Hamilton over the previous five years (71.7), but below that of Nhill (75.8) and Walpeup 
(77.4) (Figure 1a). Likewise, the highest daily maximum THI (84.0) over the 8-week exper-
imental period was similar to the five-year average monthly maximum for January (83.7) 
at Hamilton, but below that of Nhill (84.4) and Walpeup (85.6) (Figure 1b). 

 
(a) 

40

50

60

70

80

90

Te
m

pe
ra

tu
re

 h
um

id
ity

 in
de

x

Walpeup

Nhill

Hamilton

Figure 1. Cont.



Ruminants 2022, 2 396
Ruminants 2022, 2, FOR PEER REVIEW 7 
 

 

 
(b) 

Figure 1. Average of the daily maximum temperature-humidity index (THI) by month (a) and 
monthly maximum THI (b) at 3 locations of sheep producing regions in western Victoria for the 5-
year period 2013–2017 (Walpeup—loosely dashed double dotted line, Nhill—dashed line and Ham-
ilton—solid line). 

Hourly temperature and THI data for two contrasting days of the experiment shows 
that on the hottest day (36 °C, in week 3, 8 February 2017), both air temperature and THI 
increased rapidly until just after midday (13:00 h), then continued to increase gradually 
until 18:00 h with the night temperature staying above 25 °C until 06:00 h next morning 
(Figure 2a,b). By contrast, on a day of maximum temperature 27 °C (in week 7, 7 March 
2017), both air temperature and THI increased rapidly just after midday (13:00 h), then 
continued to increase gradually until 18:00 h, thereafter the temperature and THI declined 
rapidly (Figure 2c,d). 

 
(a) 

 
(b) 

40

50

60

70

80

90

Te
m

pe
ra

tu
re

 h
um

id
ity

 in
de

x

Figure 1. Average of the daily maximum temperature-humidity index (THI) by month (a) and
monthly maximum THI (b) at 3 locations of sheep producing regions in western Victoria for the
5-year period 2013–2017 (Walpeup—loosely dashed double dotted line, Nhill—dashed line and
Hamilton—solid line).

Ruminants 2022, 2, FOR PEER REVIEW 7 
 

 

 
(b) 

Figure 1. Average of the daily maximum temperature-humidity index (THI) by month (a) and 
monthly maximum THI (b) at 3 locations of sheep producing regions in western Victoria for the 5-
year period 2013–2017 (Walpeup—loosely dashed double dotted line, Nhill—dashed line and Ham-
ilton—solid line). 

Hourly temperature and THI data for two contrasting days of the experiment shows 
that on the hottest day (36 °C, in week 3, 8 February 2017), both air temperature and THI 
increased rapidly until just after midday (13:00 h), then continued to increase gradually 
until 18:00 h with the night temperature staying above 25 °C until 06:00 h next morning 
(Figure 2a,b). By contrast, on a day of maximum temperature 27 °C (in week 7, 7 March 
2017), both air temperature and THI increased rapidly just after midday (13:00 h), then 
continued to increase gradually until 18:00 h, thereafter the temperature and THI declined 
rapidly (Figure 2c,d). 

 
(a) 

 
(b) 

40

50

60

70

80

90

Te
m

pe
ra

tu
re

 h
um

id
ity

 in
de

x

Ruminants 2022, 2, FOR PEER REVIEW 8 
 

 

 
(c) 

 
(d) 

Figure 2. Comparison of air temperature and temperature-humidity index (THI) between the ani-
mal house (black line) and Hamilton, Victoria weather station (grey line) on the hottest day of the 
experiment (36 °C, 8 February 2017, (a,b)) and on a day with a maximum of 27 °C, 7 March 2017, 
(c,d)). 

3.2. Dry Matter Intake and Liveweight of Composite Lambs and Merino Yearlings during Weeks 
1–8 Period 

There were significant main effects of breed and diet on DMI and LW but no breed × 
diet interaction observed throughout the experiment (Figure 3). In weeks 5–8, DMI was 
higher (p < 0.05) in Composites than Merinos, while in weeks 6 and 7 DMI was higher (p 
< 0.05) in the CAM diet than the STD diet. At the commencement of the experiment, the 
average LW for Merino yearlings were heavier (p < 0.001) than Composite lambs as the 
Merinos were older (15 vs. 4 months). However, by week 8 there was no significant dif-
ference in LW due to the higher growth rate of the Composites. This result was anticipated 
and expected because the Composite lambs were at different stages on their growth curve 
when compared to the Merino yearlings due to differences in age and genetics. 

 
(a) 

 
(d) 

 
(b) 

 
(e) 

0.05 0.05 0.05 
0.1 

0.05 0.05 

0.1 0.1 

0.01 0.01 

Figure 2. Comparison of air temperature and temperature-humidity index (THI) between the animal
house (black line) and Hamilton, Victoria weather station (grey line) on the hottest day of the
experiment (36 ◦C, 8 February 2017, (a,b)) and on a day with a maximum of 27 ◦C, 7 March 2017,
(c,d)).



Ruminants 2022, 2 397

3.2. Dry Matter Intake and Liveweight of Composite Lambs and Merino Yearlings during Weeks
1–8 Period

There were significant main effects of breed and diet on DMI and LW but no breed × diet
interaction observed throughout the experiment (Figure 3). In weeks 5–8, DMI was higher
(p < 0.05) in Composites than Merinos, while in weeks 6 and 7 DMI was higher (p < 0.05) in
the CAM diet than the STD diet. At the commencement of the experiment, the average LW
for Merino yearlings were heavier (p < 0.001) than Composite lambs as the Merinos were
older (15 vs. 4 months). However, by week 8 there was no significant difference in LW due to
the higher growth rate of the Composites. This result was anticipated and expected because
the Composite lambs were at different stages on their growth curve when compared to the
Merino yearlings due to differences in age and genetics.
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3.3. Effect of Changing Environmental Temperature and THI on Liveweight Gain
and Feed Efficiency

The average total LWG for weeks 1–4 were higher (p < 0.001) for both animal types
than for weeks 5–8 period (Figure 4a). The LWG during weeks 1–4 for Composite lambs
fed STD vs. CAM was 11.3 vs. 10.5 kg, while for Merino yearlings fed equivalent values
were and 8.2 vs. 7.7 kg (p = 0.20). The corresponding values for weeks 5–8 were 4.9 vs.
6.6 kg and 1.6 vs. 3.8 kg (p < 0.001), respectively. These data suggest there was a distinct
break point in the rate of LWG in both breeds between weeks 1–4 and weeks 5–8 in this
experiment. Further analysis of LWG and FE for these periods showed lower LWG and
FE in weeks 5–8 than weeks 1–4 (p < 0.001) (Figure 4b). There was a breed effect with
Merino yearlings had lower (p < 0.001) LWG than Composite lambs for both weeks 1–4
and weeks 5–8 periods. The breed effect was expected as the genetic background and
age of the Composite lambs and Merino yearlings were different. There was no effect of
diet (p > 0.43) observed during week 1–4 but during 5–8 weeks animals fed the STD diet
had lower (p < 0.02) LWG than those fed the CAM diet (Figure 4b). The LWG of animals
for the weeks 5–8 of the feeding period were lesser (p < 0.001) than week 1–4 for both
animal types. There was no breed × diet effect (p > 0.05) observed for LWG during 1–4 and
5–8 week periods. There was no breed × diet effect observed for FE during both 1–4 and
5–8 week periods (Figure 4b). Merino yearlings had lower (p < 0.001) FE than Composite
lambs for both 1–4 and 5–8 week periods. There were no diet effect during week 1–4 but
animals fed the CAM diet had greater (p < 0.01) FE than those fed the STD diet during
weeks 5–8. Relative to weeks 1–4, FE in weeks 5–8 on the STD diet was 48% lower (p < 0.001)
in the Composites and 75% lower (p < 0.001) in the Merinos, while on the CAM diet FE was
26% lower (p < 0.01) in Composites and 37% lower (p < 0.01) in Merinos (Figure 4c).

There was a breed effect with Merino yearlings had lower (p < 0.001) LWG than
Composite lambs for both weeks 1–4 and weeks 5–8 periods (Figure 4b). However, there
was no effect of diet (p > 0.43) observed during week 1–4 but during 5–8 weeks animals fed
the STD diet had lower (p < 0.02) LWG than those fed the CAM diet (Figure 4b). Merino
yearlings had lower (p < 0.001) FE than Composite lambs for both 1–4 and 5–8 week periods
(Figure 4c). There were no diet effect during week 1–4 but animals fed the CAM diet had
greater (p < 0.01) FE than those fed the STD diet during weeks 5–8. Relative to weeks 1–4,
FE in weeks 5–8 on the STD diet was 48% lower (p < 0.001) in the Composites and 75%
lower (p < 0.001) in the Merinos, while on the CAM diet FE was 26% lower (p < 0.01) in
Composites and 37% lower (p < 0.01) in Merinos (Figure 4c).

3.4. Proportions of Temperature and THI Thresholds Observed as Reference Values during Weeks
1–4 and Weeks 5–8 Periods

There were differences between weeks 1–4 and weeks 5–8, which was examined
further in analysis of the temperature (Figure 5a) and THI (Figure 5b) thresholds observed
as reference values. To distinguish differences between weeks 1–4 and 5–8, the proportion
of hours below or above thresholds were calculated. Night-time thresholds were <12 ◦C,
<15 ◦C and >22 ◦C, and THI <55, <60 and ≥67, while daytime thresholds were ≥26 ◦C,
≥28 ◦C, ≥30 ◦C and THI ≥ 72, ≥74 and ≥76. This analysis showed a greater (p < 0.01)
proportion of night-time hours below the thresholds in weeks 1–4 than weeks 5–8 and more
daytime hours exceeding the thresholds in weeks 5–8 than weeks 1–4 (Figure 5a,b). There
was therefore the potential for a longer duration of heat stress in weeks 5–8 than weeks 1–4
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Every observation shown in histogram in Figure 5 is an average of 4 weeks by 7 days
by 12 h measurements for both temperature and THI measurements obtained, respectively.
The p-value for the test of significant difference between two periods is provided at the top
of the bars. The standard error of differences for 12, 15, 22, 26, 28 and 30 ◦C temperature
reference values mean comparisons are 0.02, 0.04, 0.02, 0.03, 0.03 and 0.02, respectively.
Similarly, the standard error of differences for 55, 60, 65, 72, 74 and 76 THI reference values
mean comparisons are 0.03, 0.03, 0.02, 0.03, 0.03 and 0.02, respectively.

4. Discussion

In the second half (weeks 5–8) of this experiment there were clearly different environ-
mental limitations to LWG than in the first half (weeks 1–4). During the second half there
was a greater proportion of daytime hours exceeding 28 ◦C (50% vs. 21%) and night-time
hours exceeding 22 ◦C (15% vs. 9%). Equivalent hours exceeding THI values were 74 for
daytime (26% vs. 13%) and 67 for night-time (18% vs. 13%). Other thresholds worked
equally well at distinguishing between temperature conditions of the two periods. This
finding was despite the highest temperature and THI of the experiment occurring in the first
half of the experiment, indicating that the proportion of time exceeding thresholds is more
important than point measures of temperature (i.e., daytime and nighttime temperature
exceeding 28 ◦C and 22 ◦C, respectively) or THI (i.e., daytime and nighttime THI exceeding
72 and 67, respectively) per se. The lower LWG and FE in the second half was despite the
animals being in a shaded well-ventilated animal house, and temperature conditions that
were typical of the previous 5 years at Hamilton. Lamb finishing in unshaded conditions, at
hotter locations such as Walpeup, and under changed future climates, is likely to encounter
more challenging economic conditions as an increased proportion of elevated temperature
or temperature stress reduces FE. In our experiment FE in the second half of the experiment
on the STD diet declined by 48% relative to the first half in Composites and 75% in Merinos,
and larger reductions could be expected with more severe heat stress conditions. The
reduction in FE was partially offset by the CAM diet, which contained 38% more lipid
than the STD diet. Here, the relative reductions in FE were 26% in Composites and 37%
in Merinos. This finding offers an opportunity to mitigate the effects of heat stress on FE.
Diets containing increased concentrations of lipids could be on hand for feedlot finishing
of lambs under intensive management, or as supplements for paddock-based finishing in
case of prolonged heat stress. The reduction in FE is consistent with the initial hypothesis
that a diet higher in lipid concentration leads to a lower digestive heat load in the lambs,
and less impact of high temperature stress on intake.

Events such as elevated summer-autumn temperatures (prolong high heat waves and
humid conditions) can change animal’s thermoregulation mechanisms and their dietary
energy- and nutrient-utilisation from basal metabolism, which can be related to reduced
feed intake, LWG and/or FE [23,24]. There has been extensive research into the impact
of short-term acute heat stress on sheep and dairy cattle [25,26]. Research into long-
term exposure to frequent changes in temperature and THI within a summer to autumn
finishing season under temperate climate and its cumulative effects under long-term
feeding mimicking to farm conditions is limited with the exception of feedlot studies in beef
cattle reported by [27]. In this experiment, the faster growing Composite lambs experienced
summer conditions for the first time in their life while the slower growing Merino yearlings
faced these conditions for the second time in their life. Albeit the Composite lambs and
Merino yearlings were at different stages of growth due to their differences in breed (i.e.,
genetics) and age, both cohort of animals continued to grow in this experiment. This
finding shows that Merino yearlings still have the potential to grow and finish if provided
suitable nutrition. The animal’s genetics also contributes how fast and for how long an
animal continues to grow. There is also evidence from this experiment that the LWG and
FE of sheep growing in the temperate regions of Victoria are affected by frequent days of
high temperature during summer and autumn periods.
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Previous studies also report that livestock are affected by solar radiation or shade
availability on farm [26–28]. In this experiment, there were only small differences in tem-
perature and THI between the animal house and the Hamilton weather station (Figure S1).
Therefore, the conditions animals experienced in this experiment were consistent with
animals at pasture with free access to shade from trees or shade structures and the ability to
avoid direct solar radiation from the sun. The current experiment reveals several important
aspects: 1. The effect of diurnally varying temperature and THI conditions on LWG and FE
were greater in the second half than the first half of the experiment; 2. The reduction in
LWG (kg/sheep/week) and FE (kg LWG/kg DMI) during the second half of the experiment
was observed in both animal types; 3. The likely impact of diurnally varying temperature
and THI on LWG and FE were more pronounced in animals fed the standard forage diet
than those fed the camelina forage diet, indicative of a diet effect; 4. The likely effect of
diurnally varying temperature and THI on LWG and FE were more pronounced in Merino
yearlings than Composite lambs, indicative of a breed effect.

Most studies comparing heat stress effects in sheep and cattle were conducted under
controlled heat chamber environments comparing thermoneutral versus elevated tempera-
ture conditions, with short durations of one-week or two-weeks and results vary. Some
heat chamber studies show that heat stress reduced feed intake in lambs resulting in lower
growth rates and FE than the control group [25,29,30]. Other studies indicated heat stress
conditions decreased LWG and FE without changing DMI compared with those had ther-
moneutral conditions [31]. More research has been conducted in dairy cattle than beef
cattle, sheep or goats in this space. Previous research conducted in dairy cattle indicated
that feed intake in lactating cows begins to decline at ambient temperatures of 25–26 ◦C and
declines more rapidly above 30 ◦C. The severity of heat stress depends on both day and
night temperatures and their fluctuation. For example, studies conducted in Holstein [32]
and Friesian dairy cows [33] have shown that if the night temperature does not drop below
21 ◦C for 3–6 h, milk production would be reduced. It is reported that, in general, milk
yield of Bos taurus dairy breeds begins to decline at THI 72, but for high-producing cows
milking 35 kg/day, milk yield begins to decline at THI 68 [34,35]. The decline in milk yield
by the Holstein breed has been reported to be more rapid than the Jersey breed across a
range of THI from 72 to 84 [36]. The latter indicated a breed effect that was similar to our
observation that the reduction on LWG due to variation in THI was greater in Merinos than
the Composites used in this experiment. However, it is difficult to be conclusive with this
observation due to the difference in age between the two different cohorts of animals used
in this experiment and their likely different stages of growth.

Factors such as temperature, relative humidity, solar radiation, wind speed or their
interactions can affect the performance and productivity of farm animals. The weather
data collected over this 8-week experiment showed that there were variations in day
and night temperatures (Table S1 and Figure S1) between weeks 1–4 and weeks 5–8 that
led to variations in day and night THI (Table S1 and Figure S1) during those periods.
The summary of the weather data reveals that there were wide ranges of minimum and
maximum temperatures as well as minimum and maximum THI due to extreme hot days
and cool nights. Sheep in this experiment were exposed to temperature ranges of 5–38 ◦C
and a THI range of 42–84 (Table S1). We consider that these extreme changes in temperature
and THI were likely to be the reason for the observed reduced feed intakes (Figure 3a–c)
and liveweights (Figure 3d–f). The temperature and THI used from previous studies for
thermoneutral conditions were 20.7 ◦C and 65.2 for Holstein calves [37] and 22.2 ◦C and
67.9 for Afshari lambs [38]. Liu, Cao [39] reported that grazing sheep under natural solar
radiation conditions in China did not exhibit any signs of heat stress at day temperatures
below 22.2 ◦C, at day temperatures between 22.2–23.3 ◦C had a moderate level of heat
stress, at day temperatures between 23.3–25.6 ◦C had a severe level of heat stress and at
day temperatures above 25.6 ◦C were classified as extreme heat stress.
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For this experiment the changes in day and night temperature and THI over the 24 h
time during days that had maximum temperatures of 27 ◦C and 36 ◦C, respectively were
observed to be very different (Figure 2). It was clear that when the day temperature was
above 27 ◦C, the night-time temperature and THI remained higher for longer than for
cooler days. On a day of 27 ◦C, the night temperature was 26.3 ◦C at 18:00 h and 21.2 ◦C
at 20:00 h, respectively. The corresponding THI values were 72.3 at 18:00 h and 67.6 at
20:00 h, respectively. In late summer and early autumn, it is very common for the daily
maximum temperatures to exceed 27 ◦C. When the maximum daily temperature exceeds
27 ◦C for a series of consecutive days, the daily minimum temperature is likely to remain
above 22 ◦C. The intensity and duration of frequent heat events are likely to impact on the
animal’s ability to adapt to these heat events. In this experiment, recent exposure to heat
events did not improve the performance of Merino yearlings when compared to Composite
lambs. However, it is difficult to determine whether this reduced performance was due
to age, genetics, heat events or a combination of all three. In weeks 1–4 of the experiment,
there were 6 days (21%) with maxima above 28 ◦C while in weeks 5–8, there were 14 days
(50%) above 28 ◦C. During weeks 5–8 more of the daytime maxima above 28 ◦C occurred
consecutively, i.e., weeks 1–4, three of the six days (50%) over 28 ◦C were preceded by a day
over 28 ◦C whereas in weeks 5–8, 12 of the 14 days (86%) over 28 ◦C were preceded by a day
over 28 ◦C. Differences in LWG and FE between the first and second half of the experiment
were also associated with differences in the proportion of time above the thresholds of night
temperature and THI (Figure 5). In the first half of the experiment only 9% of night-time
hours exceeded 22 ◦C compared with 15% in the second half, while equivalent values for
night-time hours exceeding a THI of 67 are 13% and 18%. These findings suggest that
more frequent days of elevated temperature above 28 ◦C during summer to autumn lead
to more hours of night-time temperature above 22 ◦C and THI above 67, which affect
LWG and FE of sheep. However, the author’s note some caution should be taken when
considering these findings from this experiment. These findings also offer some insights for
scientists who design feeding experiments under grazing conditions during hot summer
and the potential of cumulative effect of frequently varying temperature and THI impacting
on feed intake, weight gain and FE over the duration of the experiment. A randomised
control experiment having animals under controlled environmental conditions is required
to confirm these findings.

Silanikove [40] reported that animals of different species and breeds have different
mechanisms to acclimatise to changing temperatures and THI. Animal skin colour and
density of wool/hair can also impact on animal’s ability to dissipate heat [41]. Merino
yearlings in the current experiment had longer and denser wool than the Composite
lambs (Figure 6). Ponnampalam, Warner, and Dunshea [42] has previously shown that
pure Merino sheep have different basal and hormone stimulated energy metabolism in
coping with stress events and utilising body reserves (e.g., glucose from glycogen and
non-esterified fatty acids from triglycerides) compared with faster growing Crossbred
sheep. The breed differences in feed intake, energy metabolism and nutrient partitioning in
the body combined with changing temperature and THI conditions during this experiment
might be the reason for lower LWG and FE in Merino yearlings compared with crossbred
Composite lambs used in this experiment. The is likely due to the age difference between
the Composite and Merino animals.
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There were 7 pens of Composite lambs (8 animals/pen) and 7 pens of Merino yearlings (8 ani-
mals/pen) used for the feed intake and liveweight gain measures.

Supplementation of lipids (as oils or fats) in ruminant diets may be beneficial to
increase the nutrient density of diets for intestinal absorption during times of hot and
dry conditions since it is associated with reduced metabolic heat production per unit of
energy consumed from the diet. We postulate that the increased performance with the
CAM diet during weeks 5–8 feeding, when conditions were hotter, is due to the higher
lipid concentrations (~ 38% higher) in camelina forage, increasing nutrient availability for
post-ruminal absorption in conjunction with reduced metabolic heat production. Lipids
in the diets are known to contribute approximately 2.5% times more energy than carbohy-
drates (fibre, starch, etc.) and produce less heat than carbohydrates and proteins during
digestion and absorption [12]. This allows the animals to continue to utilise energy and
nutrients from the diet because of a relatively lower requirement to dissipate heat from the
biohydrogenation and digestive process during hot weather conditions. Camelina is an
oilseed forage crop that belongs to the brassica family and recently products from camelina
such as oils and oilseed have been approved by FDA for ruminant animal feeding. For
the first time our study shows that camelina hay forage supplementation at 15% of the
diet significantly increased LWG and FE relative to a control diet containing cereal hay
during hot and dry summer-autumn conditions. The effect on LWG and FE were also
seen across both animal breed types. The latter observation with feeding camelina forage
is likely to be through dietary lipids causing reduced heat formation of fermentation in
the rumen relative to the control diet per unit of energy intake, thus reducing the effect
of high temperature stress on feed intake. Similar findings have recently been reported
from a study of Holstein-Friesian lactating cows exposed to a four-day heat challenge in a
controlled-environment chamber, where cows fed a supplement of canola oil (0.7 kg/d)
showed higher milk production under these conditions than those only fed the basal diet
of lucerne hay, pasture silage and grain [43]. Further research is warranted to understand
the mechanism behind lipid supplementation, alleviation of heat stress during hot season
and improved livestock productivity.

5. Conclusions

This experiment showed that despite diurnal variation in temperature and THI, day-
time maxima above 28 ◦C for consecutive days during the summer and autumn periods
is likely to affect feed intake in Composite lambs and Merino yearling sheep leading to
reduced LWG and FE. The reduction in LWG and FE as a result of temperature and THI
effects were lower in animals fed the CAM diet than STD diet indicates that feeding sheep
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camelina hay may be beneficial in alleviating the impact of heat stress on animal growth
and productivity in sheep.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ruminants2040027/s1, Table S1: Lowest and highest ranges
for maximum temperature (MaxT (◦C)) in the animal house, minimum temperature (MinT (◦C)),
relative humidity at maximum temperature (RH@MaxT), relative humidity at minimum temperature
(RH@MinT), maximum temperature humidity index (MaxTHI) and Maximum THI (MinTHI) during
the 8-week feeding period; Figure S1: The Maximum (Max) and minimum (Min) daily temperature
(S1a) and temperature humidity index (THI) (S1b), in the animal house (black solid line) and at the
external weather station 200 m away from the animal house (orange dashed line) obtained during the
experimental period in Hamilton, Victoria.
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