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Abstract: Natural mathematical objects for representing spatially distributed physical attributes are
3D field functions, which are prevalent in applied sciences and engineering, including areas such as
fluid dynamics and computational geometry. The representations of these objects are task-oriented,
which are achieved using various techniques that are suitable for specific areas. A recent breakthrough
involves using flexible parameterized representations, particularly through neural networks, to model
a range of field functions. This technique aims to uncover fields for computational vision tasks, such
as representing light-scattering fields. Its effectiveness has led to rapid advancements, enabling the
modeling of time dependence in various applications. This survey provides an informative taxonomy
of the recent literature in the field of learnable field representation, as well as a comprehensive
summary in the application field of visual computing. Open problems in field representation and
learning are also discussed, which help shed light on future research.
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1. Introduction

Fields are useful notions that are ubiquitous in all scientific areas. In generic terms, a
field can be treated as a mapping from spatial locations to a physical variable of interest.
Given a reference frame, a location is specified by a set of real-valued coordinates, and
the most common form of a field function is f : R3 7→ Y . Y represents the domain of the
quantities of interest.

The concept of fields serves as a fundamental cornerstone in various scientific dis-
ciplines, offering a versatile framework to understand and describe diverse phenomena.
Across scientific areas, field representations take on distinct forms tailored to the unique
demands of each discipline. In the related physics and mathematics subjects, fields are
often construed as formal mathematical entities, inviting analytical scrutiny to uncover
their intricate characteristics. In the domain of quantum field theory (QFT) [1–3], fields
cease to be mere abstractions and emerge as dynamic entities permeating space and time.
These fields—whether scalar, vector, or tensor—are not fixed values; instead, they are
dynamic and fluctuating entities that embody the fundamental nature of quantum inter-
actions. Transitioning from the microscopic to the macroscopic, the gravitational field
introduces a different facet of field representation. In the study of gravitation [4], fields
manifest as gravitational fields, bending the geometry of space–time itself. In contrast to
the analytical focus of QFT, gravitational fields lead toward a geometrical interpretation,
weaving a narrative where masses dictate the curvature, and objects move along paths
carved by this curvature. In applied mathematics, the study of partial differential equations
(PDEs) [5] further diversifies our perspective on field representations. PDEs are ubiquitous
in describing a myriad of physical phenomena, from heat diffusion to wave propagation.

While the theoretical underpinnings of fields find elegance in formal mathematics, the
practical application of field concepts in engineering demands a shift in perspective. When
grappling with real-world engineering problems, computational aspects take center stage.
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In the area of representing and performing computations on fields, a prevalent approach
involves discretization, or quantization, of space, offering a practical bridge between
theory and application [6,7]. Depending on the application fields, various quantization
schemes have been found effective. For example, Eulerian quantization [8] finds practical
application in finite element analysis, where structures are divided into smaller, discrete
elements, and computations are performed at each node or element. Contrasting Eulerian
quantization, Lagrangian quantization [9] follows the motion of individual particles or
elements through space and time. In simulating the behavior of fluids, Lagrangian methods
track the movement of fluid particles, allowing for a detailed examination of fluid flow,
turbulence, and interactions. Similarly, in simulating the dynamics of solids, Lagrangian
quantization enables the study of deformations, collisions, and structural responses under
varying conditions.

Recently, the development of data-driven approaches has revolutionized various
scientific and engineering domains. The emergence of data-driven techniques, powered
by advancements in machine learning and computational capabilities, offers a promising
ability to handle complex, high-dimensional data. Specifically, a useful technique involves
employing flexible parameterized representations to model the family of appropriate field
functions, particularly through neural networks. Originating from computational geometry
and vision, this technique aims to recover fields for subsequent computational vision tasks,
such as representing light-scattering fields. Despite the rapid development of data-driven
field modeling techniques, there is currently no comprehensive review summarizing the
advancements in this field. Therefore, this review aims to provide an overview of state-
of-the-art learnable computational models for 3D field functions. Specifically, we focus on
models that utilize neural networks as function approximators, showcasing the capabilities
and flexibility of neural networks in handling various fields.

The structure of this review is as follows: In Section 2, we present the technical
definition of field functions and neural networks. In Section 3, we review neural-network-
based and parametric-grid-based approximations for practical field functions. In Section 4,
we discuss the developments of the measurement process in the data-driven frameworks
by reviewing existing works contributing to the observation process. This section aims to
reveal the challenges in this domain and suggests emerging research problems. Finally, we
conclude the review.

2. Background

A field function describes a spatially (and temporally) distributed quantity

f : x 7→ u (1)

where x ∈ X represents the domain in which the interested physical process is defined,
usually an extent of 3D space with an optional time span. u represents the range of the
target physical properties of interest.

We consider a parameterized function space:

H : {h(x, o; θ)|θ ∈ Θ} (2)

from which a candidate function h∗ is selected to approximate the underlying field f in
Equation (1). In Equation (2), h represents a candidate approximator for f . x specifies
a space–time point. The symbol θ represents learnable parameters. There is an extra
input variable to the learning field model, o, which specifies extra conditions to make
observations of the underlying field (The observation condition in Equation (2) should be
considered without loss of generality. In practice, useful modeling of a physical system can
be formulated by specifying the observation process. For example, a quantum mechanical
system with a state vector |x⟩ can often be formulated with an observation operator H|x⟩).

The field model is determined in a data-driven manner. In the design stage, the
parametric model family is constructed, typically by selecting a specific neural network
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structure. Once the network structure is fixed, specific parameter values define the particu-
lar field function. In the data-driven modeling approach, these parameters are set during
an optimization process (learning). The optimization objective is formulated to ensure that
the field model aligns with a set of observed variables. The modeling process involves
specifying how the observable quantities used to constrain the model were generated.

Neural Networks as Function Approximator

One of the most successful families of function approximators is the neural network
models [10]. It is not surprising that multiple-layer perceptrons (MLPs) have become a
prevalent framework for generic function approximation to represent a target field function.
An MLP is composed of interconnected nodes, referred to as neurons, organized in layers.
Each neuron is linked to every neuron in the preceding and succeeding layers. The output
of a neuron is adjusted by weights and biases to approximate complex functions, allowing
the capture of intricate patterns and relationships in the data.

Generally, the computation of an MLP involves multiple primary units, where, for a
unit a ∈ A,

f a(x) = φ
( k

∑
i=1

wa
i xi + ba

)
(3)

where f denotes a specific layer with input vector x. The parameters {wa
i } and ba determine

the behavior of the particular unit. φ(·) is the activation function applied to the summation
of weighted inputs and bias. This design draws inspiration from biological neurons, where
synaptic weights modulate excitatory and inhibitory stimuli, akin to the weights {w} and
bias b in Equation (3). The status of a neuron is determined by its response to the stimuli,
akin to the activation function φ. The unit in Equation (3) is commonly referred to as a
neuron. MLP represents a specific class of computational models containing multiple units
a ∈ A. In an MLP, the units A are organized in an acyclic graph, and the computations are
hence sorted in multiple stages. Units belonging to the same computational step, which
can be evaluated simultaneously, are often referred to as forming a layer in the network. To
be specific, the inputs to a certain layer are given by:

xl
i = f l−1,i(. . . ) (4)

where the superscripts on the right-hand side specifies a neural in A: the ith neuron output
in the (l − 1)th layer serves as the ith input to the neurons in the lth layer. The inputs to
the lth layer expand recursively as in Equation (4), and the inputs to the first layer, x0, are
the raw inputs of the MLP model.

MLP can serve as a generic computational model as a function approximator. Given a
function g : Rn 7→ R that is Borel-measurable, Hornik et al. [10] established that for any
ϵ > 0 and for any compact subset K ⊂ Rn, there exists a two-layer neural network f such
that the supremum norm of the difference between g and f over K is less than ϵ. The neural
network can be represented as:

f (2)(x) =
N

∑
i=1

w(2)
i f (1)(x) + b(2)

Theoretical investigations of neural network expressivity have been conducted since then.

3. Computational Model of Learnable Field

This section concerns the use of the universal approximation capacity of neural net-
work models to represent physical fields. Learnable models have been gaining attention
in the areas of fluid simulation [11], electromagnetics [12], climate science [13], acoustics
field [14], medical imaging [15–19], etc.
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The brief overview in the preceding section demonstrated that the neural network
family contains sufficient expressivity and can be used to approximate most practical field
functions. However, most theoretical investigations have been either nonconstructive or
have considered the properties of the model asymptotically. In practical field modeling,
specific designs and techniques need to be developed to ensure effective modeling. The
inputs to a field function specify a location in the spatial domain where the field of interest
is evaluated. Although the field can also evolve over time and the function differentiates
one time from another [20–22], in this section, we focus on formulating the computations
and specifically consider a static field for simplicity. We explore recent methodologies and
advancements in analytics for neural-network-based field learning by sampling works
in a burgeoning research topic, such as the field of light scattering [23]. However, the
principles of computational design for field models extend beyond the exemplary cases
and are generally applicable to other tasks involving field function approximation using
neural networks as learning models.

3.1. Neural Network-Based Approximator

In [23], the authors present a field f that maps a location p ∈ R3 to interested values
such as density σ and color c (Equation (5)). Furthermore, the variable p continues to
represent the location or position in the remainder of this section.

f : (p, d) 7→ (σ, c) (5)

where d represents the observing direction, which is selected based on the specific interest
and is not limited to the particular observing direction.

The researchers employed a neural network to approximate two field functions using
shared parameters. Firstly, they sample locations along the ray from observing direction.
Then, each location’s coordinates are fed into the neural network, which output density
values and geometry feature vectors. In this stage, the neural network approximates
the scene’s geometry as the geometry function denoted as fσ, where fσ ∈ H. In the
second stage, the inputs of the neural network are the observing direction and geometry
feature vectors. The neural network approximates the appearance function denoted as
gc, where gc ∈ H, and outputs visual attributes such as color at that location. Then, the
overall field approximation can be written as a composition of a geometry field and an
appearance field:

f = gc( fσ(p), d) (6)

In the implementation, the two field functions are approximated by the same neural
network, see Figure 1a. This approximator type has also been utilized in other studies,
such as [24–26]. However, all the parameters of the approximator are shared, which means
each field cannot be updated and adjusted individually. Additionally, combining two fields
results in an increased number of layers in the network, leading to longer computation
times during training and evaluation.

Garbin et al. [27] implemented two field approximations by two separate neural
networks and achieved a faster and more flexible approximation as shown in Equation (5).
The geometry and appearance fields have their own parameters, which are not shared with
each other, as depicted in Figure 1b. When a change happens, the two approximations can
be updated more flexibly, such as storing one approximation and adjusting the other.
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Figure 1. Different computational architectures to implement the function family in Equation (2).
(a) Different field functions with different physical properties can be learned by a shared neural
network, such as the combination of fσ interested in density and gc interested in appearance in Equa-
tion (6). However, the approximators are not limited to geometry and appearance. One of the “extra
conditions” can be time, and the field function can approximate time-related changes [20]. It should
be mentioned that the order of different fields in this figure is just an example. In practice, the order
must be carefully considered per the requirements or demands. (b) Each field can be approximated
by individual neural networks, which can be updated and adjusted separately. However, not all field
functions can be simply fused. Both physical relations and computational skills need to be considered
in real implementations.

3.2. Eulerian Representation via Parameters on Spacial Grids

The above field approximated using neural networks is a global approximation where
all small regions within the field are interconnected. When a change is observed at a
specific location (see Section 4), the neural-network-based approximation needs to update
all parameters of the field function accordingly. However, in most cases, a change only
affects a small region surrounding it. An alternative computational model associates
function approximations with particular regions in the domain. The most straightforward
specification of a location is via Cartesian coordinates. In the case of a 3D field, the ‘regions’
can be arranged by a grid with Cartesian coordinates [16,28–32].

Liu et al. [28] developed a grid-based approximator to express local properties in
specific regions (Figure 2). The grid was utilized to spatially organize the field, where each
grid cell represents a small region within the field. They defined a grid as G = {V1, ..., VN}
containing N small cells V. G i

θ ∈ H represents the local field function within the ith cell.
We use the same example of geometry representation as mentioned above. The geometry
field approximator can be written as follows: cite number

G i
θ : p 7→ σ, p ∈ Vi (7)

It can be seen that G i
θ has the same function as the neural network mentioned above,

which maps a location to the corresponding values of interest. However, it has a differ-
ent structure from neural networks. Unlike neural networks, the parameters are shared
between layers, and the learnable parameters are associated with the location of the cell.
For example, if the cell is a small cube, the parameters can be assigned to the eight vertices,
and the local properties are bound within the volume of the cube. When p falls in a small
region Vi, its feature Vi(p), where V ∈ H, is calculated based on the features stored for that
region. This implies that only local parameters are utilized to represent and observe p.

The grid approximation can also be combined with other approximating functions,
such as gc:

G = {G0
θ ,G1

θ , . . . ,G i
θ , . . .}

f = gc(G, d)

The authors demonstrated the effectiveness of utilizing a grid-based strategy for
approximating a field.
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Figure 2. Grid-based approximator of a field. If the smallest cell in a grid is a cube. The learnable
parameters can be assigned to the eight vertices, and the local properties are represented within the
cube. The feature of any position p in the cube is computed using the selected interpolation strategy.
The grid arrangement provides spatial indexing, offering efficient spatial querying, rapidly retrieving
objects or points within a specific region of interest.

Yu et al. [33] also employed similar grid-based approximators G. However, they did
not utilize a neural network to compose the other fields. They leveraged local priors such
as spherical harmonic (SH), which assumes light scatters on a small area of the target [34].
They demonstrated that grid-based approximations can work without neural networks,
and each region can output different interests directly.

As grid-based approaches associate the parameters with spatial location, it is possible
to use a more efficient structure to arrange parameters with fluctuation in a region. One
common choice is using an octree.

Octree is a hierarchical data structure used to efficiently represent spatial information.
When applying an octree for a grid-based field, the empty or full property of a tree node
(Figure 3) is associated with the parameters of the approximator. Octree also represents
the property of the target function. When the target function changes very quickly in a
region, more samples are needed for approximation, which leads to a higher density of
parameter distribution in that region and vice versa [28,35]. Octree can be used to prune
or skip uninterested regions in the field and recursively partition the interested ones into
smaller cells. By distributing parameters according to the function’s fluctuation in each
region, the octree can effectively capture the complex region of the field, allowing for a
more precise approximation of the target function.

Figure 3. Octree representation of a field. Consider the grid-based field in Equation (7). The root
level represents the bounding box for the entire field, while the finest leaf nodes correspond to the
smallest units determined by settings, such as the vertices of a cube area. A white node indicates that
all its child nodes are empty, allowing it to be skipped during the computing process. Conversely,
blue nodes represent important spaces where all the vertices possess valuable features and should not
be skipped. Partial nodes indicate that only certain nodes are empty and cannot be skipped. The full
and partial nodes can be subdivided into smaller cells until a termination condition is met. Regions
with more significant details or rapid changes are subdivided with more nodes, while less important
regions are represented with fewer nodes. As all the nodes have corresponding learnable parameters,
this adaptive nature enables a higher density of parameter distribution in important regions.
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Different from previous researchers focusing on grid-based approaches, Chen et al. [36]
factorized the field function through compact tensors for scene modeling. Taking a geom-
etry field as an example, the original field function maps a location to a density interest
and is denoted as G. The tensor representation T aims to approximate G through low-rank
factorization. The rank r = [1, 2, · · · , R] is the number of tensors or matrices required to
recreate the original elements of G (Figure 4).

The three mode tensors can be indexed using (i, j, k), and vX
i is the ith value of the

vector vX. For CP decomposition, a tensor element Tijk is computed by summing the R
outer products of vectors (vX

r , vY
r , vZ

r ) as follows:

Tijk =
R

∑
r=1

vX
r,i ⊗ vY

r,j ⊗ vZ
r,k

where ⊗ is the outer product.

Figure 4. Tensor factorization: G represents a field function. A tensor field T is the approximation of
G. According to the X, Y, and Z axes of a field, three modes vectors (tensors) vX , vY , vZ or matrices
MX,Y , MY,Z, MX,Z are used for the decomposition. (a) The CP decomposition represents canonical
polyadic decomposition [37], which is vector-only decomposition, and (b) VM decomposition refers
to vector–matrix decomposition [36]. Tensor decomposition can be expressed as the sum of R
outer products of vectors or vector–matrix. A smaller value of R indicates a more compact field
representation, but accuracy is sacrificed.

For VM decomposition, an element is computed by vectors and matrix:

Tijk =
R

∑
r=1

vX
r,i ⊗ MY,Z

r,jk + vY
r,j ⊗ MX,Z

r,ik + vZ
r,k ⊗ MX,Y

r,ij , vX
r ∈ RI , vY

r ∈ RJ , vZ
r ∈ RK

Also, a tensor function can be combined with other interesting functions like the
appearance function discussed above [38–40].

In summary, neural-network-based and parametric-grid-based approximations were
discussed for representing fields. The brief overview demonstrated the capabilities and
flexibility of using neural networks to handle various fields. The learning parameters can
belong to a single field or be shared by multiple-field approximations, which approximate
global information well but may not efficiently handle local changes. On the other hand, a
grid-based approximator can effectively capture local changes but may have limitations
in capturing global information. To address these limitations, researchers have explored
the combination or fusion of neural networks and grid-based approximators [28,30]. This
approach allows for leveraging the strengths of each method and potentially achieving a
more comprehensive approximation.
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4. Computational Models of the Measurement Process

Learning models are constructed using data-driven methods. In addition to the spatial
and temporal distribution of the interested physical properties, it is also necessary to
incorporate the observable variables in the models, i.e., we need to describe the process
of how data are measured from the physical fields, such as images from a scattering field
of light. The computational observation model allows the information of the physical
fields to be extracted from the sensory data and hence learn the underlying model, for
example, learning a magnetic field from sensory data [41]. In this section, we discuss
several challenges and design choices in this aspect and illustrate the ideas using examples
of learning light-scattering fields from sensory observations. The relationship between 2D
observations and field functions is shown in Figure 5.

Figure 5. The correlation between fields and 2D observations. The diagram provides a visual
representation of how data-driven field models interact with and manifest in observable 2D data.

Formally, recall the field approximator function family discussed in previous sections.
An example instantiating Equation (2) was discussed in Section 3,

F : (R3, S2) → (R3 ×R)

where F specifies the light scattering at a location in 3D space R3; S2 represents the observa-
tion condition of the light field, i.e., the view perspective from the two-sphere (indicating all
possible viewing directions). The discussion so far focused on expressing F in an adequate
function family.

However, despite the conceptual clarity of the model, the field cannot be directly
learned from measurements. In other words, a function approximation model
Ha : {h(R3, S2; θ)}|θ ∈ Θ alone cannot be used to represent practical fields. This is
because learning (data-driven) models aim to find an optimal approximation to F from
observations. Typically, this is achieved by minimizing the difference between the observed
quantities and what the field function has specified. In the task above, actual measured
sensory data are not directly related to F; instead, the data are obtained from a process of
forming observations by reducing the 3D field to variables distributed on a 2D plane. The
result of the observation process is 2D images.

To learn from data, constructing a computational model that mimics the process of
deriving observations from the field is essential. The computational observation model
facilitates inferring field information from the data. To faithfully, efficiently, and effectively
formulate this process for learning, attention must be paid to several key aspects.

Specifically, we consider three aspects that underscore the significance of the obser-
vation process: the integral in 3D space, the discretization of the integral, and the diverse
computational processes involved in executing the integral.

In measuring the field, quantifiable values depend on the field’s extent rather than
a specific point, making direct empirical verification of field equations impractical. Thus,
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constructing a computational model to depict the observation process becomes necessary.
Given the observational nature across a region, a logical approach is to integrate the field
over that region, assuming the observation aligns with the expected value of the field
function across the field.

The assumption is only valid when the interested physical quantities are reasonably
homogeneous. In practical scenarios where this condition is not met, adjustments to the
computational model become imperative. For instance, in the observation process within
the neural radiance field, the mathematical expression involves the volumetric rendering
equation, as shown in Equation (8) [42].

C(r) :=
∫ t f ar

tnear
T(t)σ(r(t))c(r(t), d)dt (8)

Here, the integral encapsulates the integration over the entire depth range from tnear
to t f ar, where t refers to the distance between two points along a line. The variable d
corresponds to the observing direction. σ is the quantity value illustrating the propensity
of the volume to scatter photons—essentially, quantifying “how many” photons can be
scattered. For example, a volume on the surface can scatter more photons and contribute
more to the final observations. c denotes the color at the specific position concerning
observing direction. T(t) represents the probability that photons do not contribute to the
volume within the range tnear to t. This introduces a probabilistic element, accounting for
the likelihood that photons traverse the specified distance without interaction, formally
defined as:

T(t) := e−
∫ t

tnear σ(r(s))ds

The computational model can be altered based on changes in the observation process.
For instance, if the observation emphasizes the geometric structure of scene objects, neces-
sary modifications to the computational model are warranted [43–50]. This might entail a
transition to a model that first reconstructs the surface before undertaking the observation
process [51–59].

The second aspect involves the discretization process within the computational frame-
work. A conventional method used to estimate the integral in Equation (8) is a process
known as quadrature [24,25,27,29,30,33,36,60–64]. This entails discretizing the continuous
line into a set of discrete samples, obtained via a spatial sampler. These discrete samples
function as a representative approximation of continuous volumetric data.

Specifically, in the example of NeRF, a coarse-to-fine strategy is adopted [65]. In
the coarse stage, for each line integral, a stratified sampling approach is implemented to
uniformly partition the depth range [tnear, t f ar] into N bins. The mathematical definition of
the sampling process within each bin is as follows:

ti ∼ U [tnear +
(i − 1)

N
(tfar − tnear), tnear +

i
N
(tfar − tnear)]

where ti represents the sampled points within each bin, ensuring a stratified distribution
along the line integral. This strategic sampling approach aims to capture the varied charac-
teristics of the scene at different depths, providing a more comprehensive representation
for the subsequent integral computation.

The estimation of the integral in Equation (8) can then be expressed in a discrete form
as follows [66]:

Ĉ(r) =
N

∑
i=1

Ti(1 − e(−σiδi))ci (9)

In this formulation, Ĉ represents the estimated observing color, which is computed by
summing over all the sampled points within the stratified bins. Each term in the summation
accounts for the contribution of a specific sampled point i, considering its transmission
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probability Ti, the volumetric scattering term (1 − e(−σiδi)), and the color value ci at that
point. δi = ti+1 − ti refers to the distance between adjacent samples.

Specifically, the transmission probability Ti is calculated using the discrete transmission
function, which encapsulates the cumulative effect of volumetric absorption along the line,
influencing the contribution of each sampled point to the final observation:

Ti = e(−∑i−1
j=1 σjδj)

In the fine stage, points are sampled based on the volume that is predicted in the
coarse stage, which samples more points in the regions the model expects to contain visible
content. To achieve this, Equation (9) is rewritten based on the result from the coarse
stage as:

Ĉc(r) =
Nc

∑
i=1

wici

wi = Ti(1 − e(−σiδi))

The points are then sampled based on the normalized weights: ŵi = wi/ ∑Nc
j=1 wj.

The sampling strategy needs to be adjusted based on different observation processes.
For instance, when the integral range encompasses an unbounded scene rather than a
bounded one [67], a stratified sampling strategy may not be appropriate. In cases where
the observation prioritizes the geometric structure of scene objects, the sampling strategy
may have less significance in the model, given that the surface can be approximated.

4.1. Integration Adjustments

In Zhang et al. [68], the observation model tackles the challenge regarding the scene
range. In the previous discussion, Equation (8) integrates attributes from tnear to t f ar.
When the dynamics range of the depth in the scene is small, a finite number of samples
is enough for estimating the integral. However, when the scene is an outdoor scene or
a 360-degree unbounded scene, the distance range could be large (from nearby objects
to distant elements like clouds and buildings). Specifically, for expansive scenes, where
distances vary significantly, the integration range becomes extensive.

The challenge arises when the observation is determined by the field evaluation over a
large extent. For example, when forming images in a NeRF model, if the device is focusing
outward, the distance range is large. The observation model, rooted in Equation (8), faces
complexity, as highlighted in [68], due to the need for sufficient resolution in both fore-
ground and background areas within the integral. However, employing a sampling strategy
in a Euclidean space, as demonstrated [23], proves challenging to meet this requirement.

Alternatively, when all cameras are forward-facing toward the scene, NeRF utilizes
normalized device coordinates (NDCs) [69] for 3D space reparameterization. While effec-
tive for forward-facing scenes, this reparameterization strategy limits possible viewpoints
and is unsuitable for unbounded scenes.

To overcome this challenge, NeRF++ [68] employs the inverted sphere parameteriza-
tion. This approach maps coordinates in Euclidean space to a new space, as illustrated in
Figure 6, offering a solution to the limitations imposed by the traditional Euclidean and
NDC approaches.

The fundamental concept behind this parameterization strategy involves a division
of 3D space into two distinct regions: an inner unit sphere encapsulating the foreground
and an outer space accommodating the background. The re-parameterization process
is selectively applied solely in outer space. To model these two regions effectively, the
framework employs two MLPs separately, each dedicated to capturing the characteristics
of the inner sphere and outer space. In practical terms, to determine the color of a pixel,
Equation (4) is applied independently for the two MLPs, with the results then merged in a
final composition step.
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Specifically, as shown in Figure 6, the inverted sphere parameterization in outer
space reparameterizes a 3D point (x, y, z), where r =

√
x2 + y2 + z2 > 1, into a quadruple

(x′, y′, z′, 1/r). The resulting unit vector (x′, y′, z′) satisfies x′2 + y′2 + z′2 = 1, indicating
its orientation along the same direction as the original point (x, y, z) and representing a
direction on the sphere.

Figure 6. Inverted sphere parameterization, illustrating the scene parameterization, showcasing
a mapping of coordinates from Euclidean space to a new spatial representation. Specifically, the
coordinates in r < 1 are not changed, while the coordinates in r > 1 are mapped to (x′, y′, z′, 1/r).

In contrast to Euclidean space, where distances can extend infinitely, the parameter-
ized quadruple imposes bounds: x′, y′, z′ ∈ [−1, 1], and 1/r ∈ [0, 1]. This finite numerical
range encapsulates all values within manageable limits. Furthermore, the parameterization
acknowledges that objects at greater distances should exhibit lower resolution. By incor-
porating 1/r into the scheme, it naturally accommodates reduced resolution for farther
objects. This not only preserves the scene’s geometric characteristics but also establishes a
foundation for subsequent modeling and computational processes.

With the inverted sphere parameterization, the integral Equation (8) can be updated
as follows:

C(r) =
∫ t′

t0

σ(o + td) · c(o + td, d) · e−
∫ t

s=0 σ(o+sd)dsdt

+ e−
∫ t′

s=0 σ(o+sd)ds ·
∫ ∞

t′
σ(o + td) · c(o + td, d) · e−

∫ t
s=t′ σ(o+sd)dsdt

where o + td refers to the line to be integrated; o is an observation point; d is the viewing
direction.

Mip-NeRF [60] introduces a fundamental transformation to the integral process, the
starting point in the computational observation process. The main change provided with
Mip-NeRF is integration along 3D cones originating from each pixel instead of a line, as
shown in Figure 7. The integration along these cones captures a broader set of spatial
relationships, providing a distinctive characteristic. This adjustment in the observation
process results in images with reduced aliasing artifacts. By integrating along cones,
Mip-NeRF extends its reach to a richer set of spatial relationships within the scene. This
departure from line integration allows for a more comprehensive observation of the field
representation.

Traditionally, the field was integral along each line, as shown in Equation (8), capturing
information discretely along a one-dimensional path. Mip-NeRF, however, redefines this
approach by integrating along a 3D cone originating from every pixel. With the alteration
from line to cone, the subsequent point sampling process undergoes a corresponding shift.
Instead of uniformly sampling points along a line, Mip-NeRF adapts its sampling strategy
to efficiently capture information within these 3D cones. This adjustment is reflected in
the use of multivariate Gaussian distributions to approximate intervals within the conical
frustums. Additionally, instead of mapping a point in 3D space to a positional encoding
feature, Mip-NeRF maps each conical frustum to an integrated positional encoding (IPE).
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Figure 7. Integration process along a 3D cone. Compared to integrating along a line, which only
utilizes the information in the line, integrating along a cone, which utilizes the information within a
3D conical frustum, captures more information.

The discretization process of Mip-NeRF involves dividing the cast cone into a series of
conical frustums, essentially cones cut perpendicular to their axis. However, the utilization
of a 3D conical frustum as input is not a straightforward task. To address this challenge,
Mip-NeRF employs a multivariate Gaussian to adeptly approximate the characteristics of
the conical frustum. A Gaussian is employed to fully characterize the conical frustum with
three essential values: the mean distance along the line µt, the variance along the line σ2

t ,
and the variance perpendicular to the line σ2

r . A midpoint tµ = (t0 + t1)/2 and a half-width
tδ = (t1 − t0)/2 are utilized to parameterize the quantities. This process is as follows:

µt = tµ +
2tµt2

δ

3t2
µ + t2

δ

σ2
t =

t2
δ

3
−

4t4
δ(12t2

µ − t2
δ)

15(3t2
µ + t2

δ)
2

σ2
r = r2(

t2
µ

4
+

5t2
δ

12
−

4t4
δ

15(3t2
µ + t2

δ)
)

where t0 and t1 correspond to the start and end depth of a conical frustum, as shown in
Figure 7, and r refers to the width of the pixel in world coordinates scaled by 2/

√
12.

Crucially, as shown in Equations (10) and (11), the coordinate frame of the conical
frustum, now represented by the Gaussian, transforms world coordinates. After the
coordination transformation, IPE is applied to obtain the encoding of each conical frustum.
Since this is not our focus, we do not provide further details here.

µ = o + µtd (10)

Σ = σ2
t (ddT) + σ2

r (I −
ddT

∥d∥2
2
) (11)

In the earlier discussion, the field measuring process was designed around the distri-
bution of physical properties. Conversely, when the observation emphasizes the geometric
structure of scene objects, necessary adjustments should be implemented in the compu-
tational model. When observing a field with a specified surface, leveraging geometric
information can improve the accuracy of the observation.

An example in the radiance field is the NeuS model and its follow-ups [43,70–78]. NeuS
extracts the surface by approximating a signed distance function (SDF) in the radiance
field. With the extracted surface, the observation process is different from that of the
original NeRF.
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Before delving into the measuring process in NeuS, it is crucial to comprehend how a
surface is represented in the radiance field. The surface S of the objects in a scene is repre-
sented by a zero-level set of its SDF. As previously mentioned, σ in Equation (8) denotes
the quantity value illustrating the volume’s propensity to scatter photons. For surface
reconstruction, NeuS introduces a weight function w(t) that signifies the contribution of a
point’s color to the final color of a pixel by combining σ and T. The measuring process can
then be expressed as Equation (12). NeuS asserts that the weight function should satisfy
two conditions for surface approximation: unbiased and occlusion-aware.

C(r) :=
∫ +∞

0
w(t)c(r(t), d)dt (12)

The “unbiased” criterion necessitates a weight function that ensures the intersection
of the integrating line with the zero-level set of the SDF contributes the most to the pixel
color. The “occlusion-aware” property of the weight function requires that when a ray
passes multiple surfaces sequentially, the integration process correctly utilizes the color of
the surface nearest to the device to compute the output color. NeuS formulates the weight
function as Equation (13) to make the function unbiased in the first-order approximation of
the SDF.

w(t) =
ϕs( f (p(t)))∫ +∞

0 ϕs( f (p(u)))du
(13)

where p(t) refers to a point in an integral line.
To render the weight function occlusion-aware, NeuS introduces an opaque density

function ρ(t) to replace σ(t) in the standard observation process. The weight function can
then be expressed as follows:

w(t) = T(t)ρ(t) (14)

T(t) = e(−
∫ t

0 ρ(u)du) (15)

By combining Equations (13)–(15), ρ(t) can be obtained:

ρ(t) =
− dϕs

dt ( f (p(t)))
Φs( f (p(t)))

4.2. Discretization of the Integration

As mentioned previously, NeRF++ proposes a reparameterization strategy achieved by
extending the concepts in NDC to handle unbounded scenes. However, the efficacy of this
strategy relies on points sampled from a one-dimensional line. With Mip-NeRF, this line
evolves into a 3D cone, necessitating an extension from NeRF++’s original parameterization.
The challenge arises because the reparameterization strategy designed by NeRF++ is
not straightforward for the extended line-to-cone transition in Mip-NeRF. In response to
this challenge, Mip-NeRF360 [67] introduces a parameterization strategy and a sampling
scheme. Departing from the conventional approach of NeRF++, this strategy harmonizes
with the 3D cone structure, offering an adaptive and optimized strategy for sampling
distances, extending the integral range compared with that of Mip-NeRF.

Technically, Mip-NeRF360 contributes to the observation model in two main aspects.
Firstly, it introduces a parameterization method for the 3D scene, mapping 3D coordi-
nates to an alternate domain. Secondly, it provides an approach for sampling t in the
discretization process.

To achieve Gaussian reparameterization, Mip-NeRF360 leverages the classical ex-
tended Kalman filter. The coordinate transformation is outlined in Equation (16). Applying
this operator to a 3D space maps the coordinates of an unbounded scene to a ball with a
radius of two. Similar to NeRF++, points within a radius of one remain unaffected by this
transformation.
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contract(x) =

{
x ∥x∥ ≤ 1
(2 − 1

∥x∥ )(
x

∥x∥ ) ∥x∥ > 1
(16)

Additionally, the sampling scheme is designed by introducing a parameterization in
the 3D space. In a bounded scene, NeRF employs uniform point sampling from the near to
far planes during the coarse stage. When employingn NDC parameterization, the uniformly
spaced series of samples in the sampling process becomes uniformly spaced in inverse
depth, fitting well with forward-facing scenes. However, this approach proves unsuitable
for an unbounded scene in all directions. Therefore, Mip-NeRF360 suggests a sampling
strategy, linearly sampling distances t in disparity, as proposed by Mildenhall et al. [79].
Barron et al. achieved this by mapping the Euclidean distance t to another distance s,
establishing the relationship as follows:

s ≜
g(t)− g(tn)

g(t f )− g(tn)

t ≜ g−1(s · g(t f ) + (1 − s) · g(tn))

where g(·) represents an invertible scalar function. To attain samples that are linearly
distributed in disparity within the t space, Mip-NeRF360 chooses g(x) = 1/x. This choice
ensures that the samples become uniformly distributed in s space.

In practical implementations, Mip-NeRF360 modifies the coarse-to-fine sampling strat-
egy. Unlike NeRF, which calculates weights based on coarse-stage results and subsequently
utilizes them repeatedly in the fine-stage sampling procedure, Mip-NeRF360 adopts a
distinct approach. It recommends incorporating an additional MLP exclusively for predict-
ing weights, excluding color prediction. The predicted weights are then used to sample
s intervals.

Significantly, the supplementary MLP in Mip-NeRF360 is smaller than the NeRF MLP,
specifically designed to constrain the weights generated by the NeRF MLP. As a result, the
resampling process in Mip-NeRF360 involves reduced computational complexity compared
to NeRF, owing to the considerably smaller size of the additional MLP compared to the
entirety of the NeRF MLP.

4.3. Computational Process of Summing Over Sampled Points

Numerical integration is commonly used for computing integrals in practice, in-
cluding Riemann sums, quadratures, or Monte Carlo methods [80]. Based on these, au-
thors [61]introduced a framework called AutoInt, which utilizes neural networks to ap-
proximate integrals in the evaluation stage. As shown in Equation (8), the integral involves
two nested integrations: line integration and transmission, Equation (4), which is not trivial
to approximate. Therefore, AutoInt divides each line into piecewise sections. Following
this division, the observing integral can be refined as follows:

C(r) :=
N

∑
i=1

σ̄i c̄iT̄iδi

T(t) := e−∑i−1
j=1 σ̄jδj

where

σ̄i = δ−1
i

∫ ti

ti−1

σ(t)dt

c̄j = δ−1
i

∫ ti

ti−1

c(t)dt

where δi = ti − ti−1 is the length of each section. After dividing the line into sections,
AutoInt is applied to evaluate each integral.
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5. Conclusions

In conclusion, this review focused on data-driven field models, exploring diverse
implicit fields grounded in various computational structures. Different field approximators
were explored, including neural-network-based and parametric-grid-based approximations
for practical field functions, demonstrating the capabilities and flexibility of using neural
networks to handle various fields. Specifically, we summarized two approaches based on
how the field models are updated:

• Global model with shared parameters: The most common choice in this way is neural
networks, which update the entire field. It tends to smooth out local changes or
details in the data and may face challenges in capturing and representing small
variations. Also, its time consumption has been shown to be heavy in the studies
mentioned above.

• Local model with parametric grid: Regardless of the smallest unit of a grid, such as
an indexed cube or an element in tensor, in the grid-based method, the field space is
arranged, offering efficient spatial querying, allowing for the rapid retrieval of objects
or data points within a specific region of interest. When a change is observed, only its
surrounding area needs to be updated. Furthermore, this approach allows for skipping
or pruning unimportant areas and the adaptive concentration of parameters in areas
containing more significant and informative data. However, this approach may not
be suitable for certain physical phenomena, such as light phenomena, which often
require additional techniques like spherical harmonics for accurate representation [33].
Additionally, the resolution limitations of the grid can restrict its ability to capture
fine-grained details, and the memory requirements can grow rapidly as the complexity
of the problem increases.

Our examination also extended beyond the theoretical frameworks, delving into the
intricate details of measuring models designed for the field functions. Furthermore, the
critical challenges and design choices of observation processes were discussed, including
the integration adjustments, discretization of the integration, and computational strategies.
Following our classification framework, we identified key research problems, with each
aspect representing a distinct avenue for further exploration:

• In the area of integration adjustments, our synthesis of the literature revealed the
diverse reparameterization strategies employed to accommodate varying scene
scopes. This encompasses scenarios ranging from a limited depth of the scene to
an infinite depth and extends to the intricate challenges posed by a 360-degree
unbounded scene.

• When it comes to the discretization of integration, our exploration encompasses a
discussion on how existing methods strategically sample from space. This sampling is
intricately tied to the specific design choices made in integration adjustments, forming
a crucial aspect of the computational framework.

• In describing the computational processes, we delved into the widely adopted method
and the nuanced numerical integration approach embraced by AutoInt.

In essence, our review not only identifies existing research problems but also serves
as a guide for future investigations, offering a roadmap for researchers to navigate and
contribute to the evolving field of spatial attribute representation.
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