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Article

Relating the One-Parameter Logistic Diagnostic Classification
Model to the Rasch Model and One-Parameter Logistic Mixed,
Partial, and Probabilistic Membership Diagnostic
Classification Models
Alexander Robitzsch 1,2

1 IPN–Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany;
robitzsch@leibniz-ipn.de

2 Centre for International Student Assessment (ZIB), Olshausenstraße 62, 24118 Kiel, Germany

Abstract: Diagnostic classification models (DCMs) are statistical models with discrete latent variables
(so-called skills) to analyze multiple binary variables (i.e., items). The one-parameter logistic diag-
nostic classification model (1PLDCM) is a DCM with one skill and shares desirable measurement
properties with the Rasch model. This article shows that the 1PLDCM is indeed a latent class Rasch
model. Furthermore, the relationship of the 1PLDCM to extensions of the DCM to mixed, partial,
and probabilistic memberships is treated. It is argued that the partial and probabilistic membership
models are also equivalent to the Rasch model. The fit of the different models was empirically
investigated using six datasets. It turned out for these datasets that the 1PLDCM always had a worse
fit than the Rasch model and mixed and partial membership extensions of the DCM.

Keywords: diagnostic classification model; cognitive diagnostic model; Rasch model; mixed
membership model; partial membership model

1. Introduction

In the social sciences, humans (i.e., subjects or students) respond in a test to multiple
tasks (i.e., items). For example, students are asked to solve items in a mathematics test, or
patients are asked to report whether particular symptoms occurred. These tests result in
multivariate datasets in which each item possesses dichotomous values of zero or one.

These kinds of multivariate data are frequently analyzed by statistical models that
summarize the set of items in a single (latent) factor variable. Diagnostic classification
models (DCM; [1–6]) are statistical models that provide classifications of subjects for their
proficiency in an administered test. In these models, the latent variables are discrete,
whereas they are continuous in item response theory (IRT; [7–9]) models. DCMs are
now frequently used in educational measurement [10,11] and clinical psychology [12].
The software packages GDINA [13,14] and CDM [15,16] implemented the most important
DCMs and made the DCM class widely accessible.

In a recent article, researchers Madison, Wind, Maas, Yamaguchi, and Haab [17] pro-
posed the one-parameter logistic diagnostic classification model (1PLDCM) as a particularly
constrained DCM. The 1PLDCM possesses only one parameter per item, whereas earlier
proposed DCMs use two parameters per item. Madison et al. recommend the 1PLDCM
because it shares some desirable statistical properties with the Rasch model (RM; [18]),
which is one of the most popular IRT models. In this article, it is shown that the 1PLDCM
is indeed a particular latent class variant of the RM. This finding provides a more in-depth
conceptual insight into the statistical development of [17]. Furthermore, it clearly demon-
strates that the RM model can be seen as a unifying model that allows the summary of the
multivariate vector of items in continuous latent as well as discrete latent variables. Most
DCMs use binary latent variables. Because this article shows that the 1PLDCM is a latent
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class RM with two classes, the one-parameter DCM can be statistically compared to RMs
with a larger number of latent classes (i.e., more than two latent classes). Hence, it could be
investigated whether the binary classification of subjects could potentially be improved by
using a larger number of classes.

Furthermore, the relationships between ordinary DCMs and DCM extensions with
mixed, partial, and probabilistic membership are investigated. These extensions recently
appeared in the literature [19]. However, the relationship of these extensions to unidi-
mensional and multidimensional IRT models has not yet been thoroughly studied. In this
article, the different membership type extensions of the one-parameter DCM are discussed.
In fact, it is shown that partial and probabilistic membership DCMs are equivalent to
unidimensional DCMs or for DCMs with multiple latent variables and a simple structure
of items. Furthermore, the one-parameter partial membership DCM for unidimensional
skills is equivalent to the RM with a particular bounded distribution of the latent variable.

The rest of this article is organized as follows. Section 2 reviews unidimensional IRT
models in general and focuses on the RM and the generalized logistic IRT model. Section 3
discusses unidimensional DCMs. The recently proposed 1PLDCM is related to the latent
class RM. In Section 4, mixed, partial, and probabilistic membership extensions of the
DCM are described. Section 5 compares the different models utilizing six datasets. Finally,
the article closes with a discussion in Section 6.

2. Unidimensional Item Response Models

In this section, IRT models and their implementation (Section 2.1) are reviewed. After-
wards, we discuss the RM (Section 2.2) and the generalized logistic IRT model (Section 2.3)
as an extension of the RM.

Let X = (X1, . . . , XI) be a vector of I binary random variables Xi (i = 1, . . . , I).
The random variables Xi are also referred to as items or item responses. A unidimen-
sional IRT model [9,20,21] parametrizes the multivariate distribution P(X = x) for
x = (x1, . . . , xI) ∈ {0, 1}I as

P(X = x) =
∫ ∞

−∞

I

∏
i=1

[
Pi(θ; γi)

xi (1− Pi(θ; γi))
1−xi

]
dFδ(θ) , (1)

where Fδ is the distribution function of the latent trait θ (also referred to as the ability
variable) depending on a parameter δ. The latent trait θ can take any values between
minus infinity and plus infinity. This random variable can have a continuous or a discrete
distribution or a mixture of both. Moreover, the unidimensional latent variable θ could also
be replaced by a multidimensional latent variable θ in (1), resulting in a multidimensional
IRT model. The function Pi(θ; γi) = P(Xi = 1|θ) is referred to as the item response function
(IRF) for item i, which depends on a parameter γi. The specification of the probability
distribution (1) implies that items i = 1, . . . , I are conditionally independent given the latent
trait θ. Some identification constraints on item parameters γi or distribution parameters α
must be imposed to ensure model identification [22].

After the IRT model (1) has been estimated, individual ability estimates θ̂ can be
estimated by maximizing the log-likelihood function l that provides the most likely ability
estimate for θ given a vector of item responses x for a subject. The log-likelihood function
is given by (see [23])

l(θ; x) =
I

∑
i=1

[xi log[Pi(θ; γi)] + (1− xi) log[1− Pi(θ; γi)]] (2)
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By taking the derivative of l with respect to θ in (2), the ability estimate θ̂ fulfills the
nonlinear equation(

∂l
∂θ

)∣∣∣∣∣
θ=θ̂

=
I

∑
i=1

[
xi

P′i (θ̂; γi)

Pi(θ̂; γi)
− (1− xi)

P′i (θ̂; γi)

1− Pi(θ̂; γi)

]
= 0 , (3)

where P′i (θ) = (∂Pi)/(∂θ). Note that the individual ability estimates θ̂ can also take values
minus infinity or plus infinity, in particular, if ∑I

i=1 xi equals either 0 or I.

2.1. Implementation

The IRT model (1) can be estimated using marginal maximum likelihood (MML) using
an expectation–maximization (EM) algorithm [24,25]. Alternatively, the estimation could
be carried out using Newton–Raphson algorithms. In the R [26] software, the packages
mirt [27] or sirt [28] can be utilized to estimate the IRT model (1) with user-defined IRFs
Pi(θ; γi) (i = 1, . . . , I) and distribution functions Fδ. In the mirt [27] package, the func-
tion mirt::mirt() can be used to estimate user-defined IRT models. When relying on this
function, user-defined IRFs Pi can be specified with mirt::createItem(), whereas user-
defined distributions Fδ can be specified with mirt::createGroup(). In the sirt [28] package,
the function sirt::xxirt() can be used in combination with sirt::xxirt_createDiscItem()
(for defining IRFs) and sirt::xxirt_createThetaDistribution() (for defining the distribu-
tion Fδ).

2.2. Rasch Model

The RM [18] belongs to the class of IRT models that use the logistic link function in
the IRF Pi. The IRF is given by

Pi(θ) =
exp(θ− bi)

1 + exp(θ− bi)
= Ψ(θ− bi) , (4)

where bi denotes the item difficulty. Furthermore, Ψ(x) = [1 + exp(−x)]−1 denotes the
logistic link function. This is why the RM is also referred to as the one-parameter logistic
(1PL) IRT model.

In addition, an identification constraint must be imposed when estimating the RM (4)
(see [29]). This can be directly seen from (4) because the parameters θ and bi can be
arbitrarily shifted by adding a constant c without changing the probabilities Pi(θ) (i.e.,
by defining θ∗ = θ+ c and b∗i = bi + c for i = 1, . . . , I). If a normal distribution is assumed
for θ, the mean is frequently fixed to zero (i.e., E(θ) = 0). Alternatively, the item difficulty
of some item i0 could be set to zero (i.e., bi0 = 0). However, the variance σ2 of θ can be
estimated. Alternatively, one could fix the variance of θ in the RM to 1 and specify the
IRF as

Pi(θ) =
exp(σ(θ− bi))

1 + exp(σ(θ− bi))
. (5)

In this case, a common item discrimination σ is estimated across items.
The RM fulfills the property of invariant item ordering [17]. That is, the order of the

persons must be the same for all items. If Pi(θ1) < Pj(θ1) for persons with ability θ1 and
items i 6= j, then it must hold Pi(θ2) < Pj(θ2) for all θ2 6= θ1. This property implies that
IRFs must be parallel; that is, they must not intersect.

The general IRT model (1) simplifies in the case of the RM to

P(X = x) =
∫ ∞

−∞

I

∏
i=1

exp (xi(θ− bi))

1 + exp(θ− bi)
dFδ(θ) . (6)

Note that (6) can be further simplified to
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P(X = x) =
∫ ∞

−∞
exp[l(θ; x)]dFδ(θ) , where l(θ; x) =

(
I

∑
i=1

xi

)
θ−

I

∑
i=1

bi −
I

∑
i=1

log[1 + exp(θ− bi)] , (7)

and l is the individual log-likelihood function defined in (2). Due to (7), one recognizes
that the (unweighted) sum score ∑I

i=1 Xi is a sufficient statistic for θ (see [17,29]). This
property receives high attraction among practitioners and some measurement enthusiasts
(see, e.g., [30–35]).

Different distributions of θ can be specified in Fδ in the estimation of the RM. As men-
tioned above, the normal distribution is most frequently utilized. This assumption implies
that a continuous distribution is used to characterize the θ distribution. Alternatively,
skewed distributions for θ can be implemented based on log-linear smoothing of proba-
bilities P(θ = θt) on a grid with T fixed trait values θ1, . . . , θT (see [36,37]). Furthermore,
a discrete distribution of θ with C ≥ 2 latent classes can be assumed. In this case, class
locations θc and probabilities πc = P(θ = θc) must be estimated (c = 1, . . . , C). This
model is called the latent class Rasch model (LCRM; [38–41]). Note that the general RM (7)
simplifies in the case of the LCRM to

P(X = x) =
C

∑
c=1

exp[l(θc; x)]πc . (8)

The individual likelihood l in (8) still depends on the item difficulties bi. However, the pop-
ulation of persons is partitioned into C classes. Note that some identification constraint
on the location of the θ distribution is required. For example, one could fix the first θ
location point to zero (i.e., θ1 = 0). In a test consisting of I items, at most I/2 located
class models can be specified in the LCRM because model parameters in larger models
cannot be identified [38]. Notably, MMLLC imposes only weak assumptions about the
data-generating distribution Fδ, but it relies on a possible doubtful discrete representation
of the θ distribution. Classifying persons into different discrete ability levels might be
conceptually appealing in empirical applications [42].

It should be emphasized that the sum score ∑I
i=1 Xi remains a sufficient statistic for θ,

irrespective of the assumed distribution for θ. There exist dozens of estimation methods
for the RM, each relying on slightly different assumptions [43].

2.3. Generalized Logistic Item Response Model

The RM is one of the simplest IRT models. Each item is described by a single item
parameter bi. A more general one-parameter IRT model can be defined by the IRFs

Pi(θ) = g(σ(θ− bi)) , (9)

where g : R → (0, 1) is a monotone link function. In the RM, the logistic function Ψ
corresponds to g in (9). In (9), the mean (i.e., location) and the standard deviation (i.e., scale)
of the θ distribution are fixed. Hence, a common item discrimination σ appears in (9).

Notably, (9) defines a general class of IRT models that share the invariant item-ordering
property [44,45]. Alternative link functions to the logistic one, such as the loglog or cloglog
link functions [46], can be chosen in (9) (see [47,48]). However, it must be emphasized that
the sum score is no longer a sufficient statistic for θ in the general one-parameter IRT model
defined in (9).

The class of generalized logistic link functions covers many important link functions
as particular cases [49]. The generalized logistic link function Ψα1,α2 depend on two
parameters α1 and α2 that model deviations from the logistic link functions. For asymmetry
parameters α1 and α2 (which should be estimated within the interval (−1, 1) to provide
reasonable estimates; see [50]), the link function Ψα1,α2 is defined by

Ψα1,α2(x) = Ψ(Sα1,α2(x)) , (10)
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where Sα1,α2 is defined by

Sα1,α2(x) =



α−1
1 (exp(α1x)− 1) if x ≥ 0 and α1 > 0

x if x ≥ 0 and α1 = 0

−α−1
1 log(1− α1x) if x ≥ 0 and α1 < 0

−α−1
2 (exp(−α2x)− 1) if x < 0 and α2 > 0

x if x < 0 and α2 = 0

α−1
2 log(1 + α2x) if x < 0 and α2 < 0

(11)

The logistic link function is obtained with α1 = α2 = 0. The probit link function is
approximately obtained with α1 = α2 = 0.12. More generally, symmetric link functions are
obtained for α1 = α2, whereas asymmetry is introduced by imposing α1 6= α2.

A one-parameter IRT model based on the generalized logistic link function can be
defined by the IRFs

Pi(θ) = Ψα1,α2(σ(θ− bi)) , (12)

where bi is the item difficulty parameter that depends on the scale of the link function Ψα1,α2 .
The generalized logistic link function has been applied in IRT models in [50–53]. Impor-
tantly, researchers can estimate the joint shape parameters α1 and α2 in the one-parameter
model (12) to allow deviations from the RM, whereas retaining the invariant item ordering
property but losing the property that the sum score is a sufficient statistic.

3. Unidimensional Diagnostic Classification Models

In this section, unidimensional DCMs are discussed. In this case, the latent variable θ

from the general IRT model (1) is replaced with the binary latent variable α (also referred
to as an attribute or skill; [4]) that can take values 0 or 1. The value of 1 indicates mastery,
whereas α = 0 indicates non-mastery of the skill. The IRT model (1) can then be written as

P(X = x) =
1

∑
α=0

I

∏
i=1

[
Pi(α; γi)

xi (1− Pi(α; γi))
1−xi

]
πα , (13)

where π0 + π1 = 1. The parameter π1 quantifies the proportion of students that master the
skill α. The DCM with one skill is also called the mastery model [54,55].

3.1. Two-Parameter Diagnostic Classification Model

The IRF Pi in unidimensional DCM with a binary skill requires the specification of the
two values Pi(1) = P(Xi = 1|α = 1) and Pi(0) = P(Xi = 1|α = 0). Clearly, these values
should range between 0 and 1 because these are conditional item response probabilities.
One can formulate the trivial equation for the IRF

Pi(α) = Pi(0)(1− α) + Pi(1)α = Pi(0) + [Pi(1)− Pi(0)]α . (14)

With an arbitrary monotonically increasing and continuous link function g, the IRF in (14)
can be rewritten as

Pi(α) = g(λi0 + λi1α) , (15)

where λi0 = g−1(Pi(0)) and λi1 = g−1(Pi(1))− g−1(Pi(0)). Note that the item parame-
ters λih (for h = 0, 1) depend on the scale of the chosen link function g. Different link
functions were discussed in the generalized deterministic inputs, noisy “and” gate (GDINA)
model [56].

If the item parameters λih are separately estimated for all items, the choice of the link
function g does not matter because all models are statistically equivalent; that is, item
parameters can be transformed without affecting the fit of the model. A particular class of



Foundations 2023, 3 626

DCMs emerges if the logistic link function Ψ is chosen (i.e., logistic diagnostic classification
model, LDCM; [57]). Its IRFs are given by

Pi(α) =
exp(λi0 + λi1α)

1 + exp(λi0 + λi1α)
. (16)

One recognizes that the weighted sum score ∑I
i=1 λi1Xi is a sufficient statistic for α because

it is a variant of the two-parameter logistic (2PL) model [58] in which the values of the trait θ
are restricted to 0 and 1. Also, note that the LCDM is a special case of von Davier’s general
diagnostic model [36,59] and the Formann model [60–62], a very general constrained latent
class model.

3.2. One-Parameter Logistic Diagnostic Classification Model

As a restriction to the two-parameter logistic DCM, Madison et al. [17] propose to
constrain λi1 in (16) to be equal across items. The resulting 1PLDCM has the IRF

Pi(α) =
exp(λi0 + λ1α)

1 + exp(λi0 + λ1α)
. (17)

However, it can be seen that the 1PLDCM is an LCRM with two latent classes. That is,
the 1PLDCM is, in fact, a Rasch model. Define the item difficulty bi = −λi0 and the trait
locations for the θ variable in the LCRM as θ1 = 0 and θ2 = λ1. Then, we obtain from (17)

Pi(θc) =
exp(θc − bi)

1 + exp(θc − bi)
. (18)

Clearly, π1 corresponds to the probability P(θ = θ2), whereas π0 = P(θ− θ1). As argued
in [17], the sum score ∑I

i=1 Xi is a sufficient statistic for α. However, due to the equivalence
of models (17) and (18), it directly follows from the fact that the 1PLDCM is an RM with a
particular discrete distribution for the latent trait θ.

This property implies that researchers could test alternative assumptions regarding
the trait distribution of θ in the RM. The case of two latent classes in the LCRM corresponds
to the binary classification used in the 1PLDCM. However, LCRMs with more than two
classes could be compared to the 1PLDCM. On the other hand, it is interesting whether a
discrete located latent class representation of θ better fits the data than a (quasi-)continuous
normal or skewed distribution.

We do not intend to state that the choice of using a binary classification model (i.e.,
the 1PLDCM) should be empirically defended against alternatives. However, we think that
it is useful to specify different models in the RM that cover flexible distributions for θ.

3.3. One-Parameter Generalized Logistic Diagnostic Classification Model

As argued in Section 3.2, the choice of the link function g is irrelevant in two-parameter
DCMs. However, like in the case of one-parameter IRT models, the choice of g matters if
the discrimination parameter λi1 is constrained across items. Then, the IRF is defined as

Pi(α) = g(λi0 + λ1α) . (19)

Different choices of g can be tested against each other in terms of model fit. It should be
emphasized that the item invariant ordering property is still fulfilled by the DCM in (19)
(see Section 2.3). However, the sum score no longer remains a sufficient statistic for α.
A flexible estimation of the joint link function can again be employed by utilizing the
generalized logistic link function Ψα1,α2 that results in the IRF

Pi(α) = Ψα1,α2(λi0 + λ1α) . (20)

The DCM in (20) could be tested against the 1PLDCM that relies on the logistic link function.
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4. Extensions of Diagnostic Classification Models to Mixed and Partial Membership

Researchers have frequently questioned that the dichotomous classification into mas-
ters and non-masters in DCMs is empirically not always tenable [63–65]. The crucial
assumption is that there is crisp membership in DCMs; that is, students can only belong
to the class α = 0 or to the class α = 1. Mixed membership or grade of membership
models weaken this assumption [66,67]. In these models, students are allowed to switch
classes (i.e., the mastery and the non-mastery state) across items [68,69]. In this section,
the relationships of the DCM and the RM with the DCM extensions to mixed, partial,
and probabilistic membership are discussed.

Note that the binary skill α ∈ {0, 1} is replaced by a latent variable α∗ ∈ [0, 1] that
indicates the degree to which a student belongs to the mastery or to the non-mastery
class. This single variable suffices because mixed membership of only two classes must
be represented. In this case, α∗ quantifies the degree to which a student belongs to the
mastery class α = 1, whereas 1− α∗ characterizes the degree to belong to class α = 0.
Note that the bounded latent membership variable α∗ could be equivalently represented
as an unbounded latent variable θ∗ assuming some injective differentiable transformation
function h such that (see, e.g., [19])

α∗ = h(θ∗) . (21)

In this article, the logistic normal distribution [70] is utilized for α∗. In this distribution,
the random variable θ∗ is normally distribution with mean µ∗ and standard deviation σ∗

and the bounded membership variable is defined by the transformation

α∗ = Ψ(θ∗) . (22)

Note that choosing a very large standard deviation for θ∗ (e.g., σ∗ = 1000) corresponds to a
membership variable α∗ whose values are concentrated at nearly 0 or 1. That is, the crisp
membership utilized in DCMs is obtained as a special case.

In the next section, three different types of membership that can be employed for
extending DCMs are discussed. We confine ourselves to only considering logistic link
functions. Furthermore, the consequences of applying mixed membership extensions of
DCMs are only explored for one-parameter models.

4.1. Mixed Membership Diagnostic Classification Model

IRFs for mixed membership models are defined using a weighted sum of item re-
sponse probabilities from crisp membership weighted by the membership values associated
with a respective latent class [19,71]. The general IRF in mixed membership case as a
generalization to the case of a binary skill is given as

Pi(α
∗) = P(Xi = 1|α∗) = P(Xi = 1|α = 0)(1− α∗) + P(Xi = 1|α = 1)α∗ . (23)

Inserting the probabilities of the 1PLDCM that relies on the logistic link function into (23),
we obtain

Pi(α
∗) =

exp(λi0)

1 + exp(λi0)
(1− α∗) +

exp(λi0 + λ1)

1 + exp(λi0 + λ1)
α∗ . (24)

Note that (24) can be simplified to

Pi(α
∗) =

exp(λi0)

1 + exp(λi0)
+

(
exp(λi0 + λ1)

1 + exp(λi0 + λ1)
− exp(λi0)

1 + exp(λi0)

)
α∗ . (25)

It seems that the sum score ∑I
i=1 Xi is no longer a sufficient statistic for α∗. Also, note

that (25) reduces to the 1PLDCM given in (17) if α∗ would only take values 0 or 1.
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4.2. Partial Membership Diagnostic Classification Model

Partial membership also weakens the assumption of a crisp membership but defines
the IRF differently. In this case, the IRF is given as a weighted harmonic mean instead of
the weighted sum in the mixed membership case (see (23)). In more detail, the IRF is given
by (see [71,72])

P(Xi = x|α∗) = 1
Ci(α∗)

P(Xi = x|α = 0)(1−α
∗)P(Xi = x|α = 1)α

∗
for x = 0, 1 , (26)

where the normalization constant Ci(α
∗) ensures that P(Xi = 0|α∗) + P(Xi = 1|α∗) = 1.

By inserting the logistic link function into (26), one obtains the IRF

P(Xi = x|α∗) = 1
Ci(α∗)

exp(xλi0)
(1−α∗)

[1 + exp(λi0)]
(1−α∗)

exp(x(λi0 + λ1))
α∗

[1 + exp(λi0 + λ1)]
α∗ . (27)

Now, define another C̃i(α
∗) in (27) in order to simplify the term to

P(Xi = x|α∗) = 1
C̃i(α∗)

exp(xλi0)
(1−α∗)exp(x(λi0 + λ1))

α∗ . (28)

By using the relationship

exp(λi0)
(1−α∗) exp(λi0 + λ1)

α∗ = exp(λi0 + λ1α
∗) , (29)

one finally gets from (28)

P(Xi = x|α∗) = 1
C̃i(α∗)

exp(x(λi0 + λ1α
∗)) =

exp(x(λi0 + λ1α
∗))

1 + exp(λi0 + λ1α∗)
. (30)

Hence, the partial membership extension of the 1PLDCM is effectively an RM with a
bounded distribution on [0, 1] (set θ = α∗). Therefore, one may view (30) as another variety
to test against the normal distribution assumption of θ in the RM. Notably, the sum score is
a sufficient statistic for α∗.

4.3. Probabilistic Membership Diagnostic Classification Model

Finally, researchers weakened the dichotomous nature of α by introducing a bounded
variable α∗ as a function of an underlying continuous variable θ∗ (see [73–76]). That is,
they directly defined α∗ = Ψ(θ∗) or some linear transformation of θ∗ (but this does not
affect the following reasoning). It was reasoned that this definition was justified by fuzzy
logic [73] or probabilistic logic [76]. Hence, the corresponding model is also referred to as a
probabilistic membership model. An extension of the 1PLDCM results by replacing the
binary variable α with the bounded continuous variable α∗ in the IRF. One obtains

P(Xi = x|α∗) = exp(x(λi0 + λ1α
∗))

1 + exp(λi0 + λ1α∗)
. (31)

Obviously, the same expression for the IRF as for the partial membership model (see (30))
is obtained, and the partial and the probabilistic membership models are, therefore, equiv-
alent. The probabilistic membership model is an RM, and the sum score is a sufficient
statistic for α∗.

5. Numerical Illustration

In this section, we specified the one-parameter models discussed in this article for
six publicly available datasets. All rectangular datasets have N subjects (i.e., rows) and
I items (i.e., columns) and contain dichotomous values 0 and 1. The datasets data.read
(N = 328, I = 12), data.pisaMath (N = 565, I = 11), data.pisaRead (N = 623, I = 12), and
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data.trees (N = 387, I = 15; [77]) are included in the R [26] package sirt [28]. The datasets
data.numeracy (N = 876, I = 15) and data.ecpe (N = 2922, I = 28; [11,78]) can be found
in the R packages TAM [79] and CDM [15], respectively. All datasets did not contain
missing values.

Eleven different analysis models were specified. The Rasch model was fitted using a
normal distribution (“NO”) and a skewed distribution (“SK”; [37]). Furthermore, we speci-
fied a one-parameter IRT model using the generalized logistic link function with a normal
distribution for θ (“GL”). Also, we specified LCRMs with 2, 3, 4, and 5 classes (resulting
in models “LCRM2”, “LCRM3”, “LCRM4”, and “LCRM5”). Note that LCRM2 coincides
with the 1PLDCM. The LCRM2 was also estimated with a generalized logistic link function
(“GLLC2”). Furthermore, the mixed, partial, and probabilistic extensions of the 1PLDM
(=LCRM2) were specified (denoted by “MMLC2”, “PMLC2”, and “PRLC2”). The logistic
normal distribution was chosen for the bounded variable α∗ in the last three models.

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
were used for evaluating relative model fit differences. The RM with a normal distribution
(model NO) was taken as a reference for reporting AIC differences. All item response
models were estimated using the sirt::xxirt() function in the sirt [28] package. The model
estimation always used 100 EM iterations initially and switched afterward to Newton–
Raphson optimization. Replication material can be found at https://osf.io/kfcdb/?view_
only=2073df46d35f44a5bcb5dd9cc77013e5 (accessed on 15 September 2023).

In Table 1, the AIC and BIC differences of the eleven analysis models for the six
datasets are shown. Overall, model comparisons turned out to be similar based on the AIC
and BIC values. The RM with the skewed distribution (SK) outperformed the RM with the
normal distribution (NO) in three of the six datasets (i.e., for ecpe, numeracy, and pisaRead).
This means that the normal distribution assumption for the latent trait θ is violated. For all
datasets, the LCRM2 (i.e., the 1PLDCM) was inferior to the RM with a normal distribution
(NO). This finding implies that a normal distribution assumption for θ was more reasonable
than a two-point distribution. For all datasets except for pisaRead, the latent class model
with two classes based on the generalized logistic link function (GLLC2) outperformed
the latent class model using the logistic link function (LCRM2). Interestingly, for four
datasets, the LCRM with four or five classes fit the data better than model NO in terms of
AIC differences. However, in these cases, a Rasch model with a skewed distribution (SK)
had a comparable fit with the best-fitting LCRMs.

All one-parameter DCM extensions of LCRM2 improved the fit. However, mixed
membership (MMLC2) always performed worse than partial membership (PMLC2) DCMs.
As expected from the derivation in Section 4.2, probabilistic (PRLC2) and partial (PMLC2)
membership models resulted in a nearly identical fit.

To conclude, the empirical findings demonstrate that the DCM extensions to multiple
or partial membership can be seen as alternative IRT models with a continuous latent
trait that had a competitive fit. They only assume a bounded distribution for the ability
variable θ. Depending on the data, such a more flexible distribution could be desired to
model deviations from a normal distribution of the trait.

Table 1. AIC differences (∆AIC) and BIC differences (∆BIC) for eleven analysis models for six
different datasets.

Datasets

readreadread ecpeecpeecpe numeracynumeracynumeracy pisaMathpisaMathpisaMath pisaReadpisaReadpisaRead treestreestrees

∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC

NO † 0 0 0 0 0 0 0 0 0 0 0 0
SK −2 −6 55 49 31 26 −1 −6 14 10 −2 −6
LCRM2 −18 −21 −777 −782 −247 −251 −63 −67 −89 −93 −38 −42
GLLC2 −8 −20 −739 −757 −221 −235 −32 −45 −92 −105 −21 −33

https://osf.io/kfcdb/?view_only=2073df46d35f44a5bcb5dd9cc77013e5
https://osf.io/kfcdb/?view_only=2073df46d35f44a5bcb5dd9cc77013e5
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Table 1. Cont.

Datasets

readreadread ecpeecpeecpe numeracynumeracynumeracy pisaMathpisaMathpisaMath pisaReadpisaReadpisaRead treestreestrees

∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC ∆AIC∆AIC∆AIC ∆BIC∆BIC∆BIC

LCRM3 −2 −13 −82 −100 −43 −58 7 −6 −9 −22 −4 −16
LCRM4 −3 −22 47 17 36 12 3 −18 6 −16 −5 −25
LCRM5 −7 −34 48 6 35 1 3 −27 6 −25 −9 −37
PRLLC2 2 −6 42 30 35 25 6 −3 13 4 −2 −10
PMLLC2 2 −6 42 30 34 25 7 −1 13 4 −2 −10
MMLLC2 −14 −22 −226 −238 −6 −16 −8 −17 −62 −71 0 −8
GL 8 0 2 −10 9 0 16 7 0 −8 8 0

Note. NO = Rasch model with normal distribution; SK = Rasch model with skewed distribution; LCRMc = latent
class Rasch model with c = 2, 3, 4, 5 located latent classes; GLLC2 = 1PL in two latent classes with generalized
logistic link function; PRLC2 = probabilistic membership in two latent classes; PMLC2 = probabilistic membership
in two latent classes; MMLC2 = probabilistic membership in two latent classes; GL = Rasch model with
generalized logistic distribution. The model LCRM2 corresponds to the one-parameter logistic diagnostic
classification model (1PLDCM). † The model NO was used as the reference model to compute AIC differences.
Positive values indicate a better-fitting model and are printed in bold font.

6. Discussion

A recent article introduced the 1PLDCM as a particular case of the logistic DCM [17].
We have shown in this article that this model can be seen as a latent class Rasch model with
two located latent classes. The binary classification typically conducted in DCMs can then
be tested against latent class Rasch models with a larger number of latent classes, searching
for a more appropriate classification of subjects. Notably, the Rasch model possesses the
desirable property that the sum score is a sufficient statistic for the latent trait θ as well as
for the dichotomous skill α in the 1PLDCM. More general one-parameter IRT models using
the generalized logistic link function were discussed that lose the sufficiency property of
the sum score but still fulfill the invariant item ordering property. We also investigated
mixed, partial, and probabilistic membership extensions of the 1PLDCM. It was shown
that the partial and probabilistic membership models analytically coincided and were
equivalent to the Rasch model with a bounded trait distribution. Hence, they also share the
statistical properties of the Rasch model. However, it is vital that the mixed membership
DCM extension is not a Rasch model.

We also applied the discussed one-parameter models to six datasets. Unsurprisingly,
the 1PLDCM had the worst fit in all datasets. Nevertheless, the fit could be improved by
increasing the number of latent classes in the Rasch model to four or five. However, we
think DCMs are often primarily chosen not because of their good model fit but due to their
more interpretable classification of students instead of only providing a continuous ability
distribution as the model result.

The relations among the Rasch model and DCMs in models with only one latent
variable or one skill were discussed, respectively. The findings transfer to multidimensional
Rasch models or DCMs in the case of a simple loading structure (i.e., each item loads on only
one dimension). In the case of a complex loading structure, the relationships among the dif-
ferent DCM extensions are more complex. Future research can investigate the relationship
between multidimensional compensatory and noncompensatory IRT models [80–82] and
mixed and partial membership extensions [19] for complex loading structures. It would be
interesting to determine whether interpreting of θ as multiple continuous and real-valued
latent variables in multidimensional IRT models offers disadvantages compared to mixed
or partial membership representations of bounded abilities α∗ between 0 and 1 in DCMs.
Furthermore, future research could also investigate whether empirical datasets better fit
the partial instead of the mixed membership DCM for multiple skills.
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Abbreviations

The following abbreviations are used in this manuscript:

1PL one-parameter logistic
1PLDCM one-parameter logistic diagnostic classification model
2PL two-parameter logistic
AIC Akaike information criterion
BIC Bayesian information criterion
DCM diagnostic classification model
EM expectation maximization
GDINA generalized deterministic inputs, noisy “and” gate
IRF item response function
IRT item response theory
LCRM latent class Rasch model
LDCM logistic diagnostic classification model
MML marginal maximum likelihood
RM Rasch model
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