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Abstract: A method without memory as well as a method with memory are developed free of
derivatives for solving equations in Banach spaces. The convergence order of these methods is
established in the scalar case using Taylor expansions and hypotheses on higher-order derivatives
which do not appear in these methods. But this way, their applicability is limited. That is why, in this
paper, their local and semi-local convergence analyses (which have not been given previously) are
provided using only the divided differences of order one, which actually appears in these methods.
Moreover, we provide computable error distances and uniqueness of the solution results, which have
not been given before. Since our technique is very general, it can be used to extend the applicability
of other methods using linear operators with inverses along the same lines. Numerical experiments
are also provided in this article to illustrate the theoretical results.

Keywords: derivative-free methods; local convergence; semi-local convergence; divided difference

1. Introduction

Let F : D ⊂ B1 −→ B2 be a differentiable operator in the Fréchet sense, with D being
nonempty, convex, and open set, and B1, B2 be Banach spaces.

A plethora of problems are modeled using the equation

F(x) = 0. (1)

Equation (1) can be defined on the real line or complex plane or constitute a system of
equations derived from a descritization of a boundary (see also Numerical Section 4 for such
examples). Then, to find a solution x∗ of Equation (1), we rely mostly on iterative methods.
This is the case since solutions in closed forms can only be obtained in special cases.

The methods of successive substitutions, or Picard’s method and Newton’s method [1–4],
have been used extensively to generate a sequence approximating a solution x∗ ∈ D of
Equation (1). But these are of convergence orders one and two, respectively. Another
drawback is the usage of the Fréchet derivative in the case of Newton’s method. That
is why the secant method is introduced, which avoids the derivative and is of order
1+
√

5
2 < 2. Later, the Steffensen and the Kurchatov methods are developed, which are also

derivative-free and the convergence order is two [5–9]. However, it is important to develop
derivative-free methods of orders greater than two. Our study contributes in this direction.

In particular, iterative methods without memory use the current iteration, whereas
those with memory rely on the current iteration and the previous ones [10,11]. The idea of
using the latter method is to increase the convergence order without additional operator
evaluations. This type of method is important, since it is are derivative-free.
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In this article, we develop a local and semi-local analysis of convergence for two meth-
ods. The first one is without memory and the second method is with memory. The methods
are defined, respectively, as:

zn = xn + αF(xn)

yn = xn − [xn, zn; F]−1F(xn)

xn+1 = yn − An[yn, zn; F]−1F(yn), (2)

where α ∈ R or α ∈ C, An : D× D −→ L(B1, B2), and

zn = xn − [xn, xn−1; F]−1F(xn)

yn = xn − [xn, zn; F]−1F(xn)

xn+1 = yn − An[yn, zn; F]−1F(yn). (3)

These methods are extensions of Traub’s work on Steffensen-like methods [4]. Method (2)
is without memory and uses two operator evaluations and one inverse evaluation per complete
step. However, Method (3) is with memory, requiring similar calculations, and is faster than
Method (2). Methods (2) and (3) are also studied in [12], when B1 = B2 = R. They are of
orders four and 2 +

√
6, respectively, in the scalar case provided that A(0) = A′(0) = 1 and

A′′(0) < ∞ [12].
Motivation The convergence order is shown using the Taylor series expansion ap-

proach, which is based on derivatives up to order five (not on these methods), limiting their
applicability. As a simple but motivational example:

Let B1 = B2 = R, Ω = [−0.4, 1.3]. Define function g on Ω with

g(t) =
{

2t3 log t2 + 5t5 − 4t4 i f t 6= 0
0 i f t = 0.

It is clear that, in this example, the exact solution is t∗ = 1. Clearly, g′′′(t) is not
bounded on Ω. Therefore, the local analysis of convergence for these methods is not
guaranteed by the analysis in [4,12]. However, the methods may converge (see Numerical
Section 4).

Other concerns are: the lack of upper error estimates on ‖xn − x∗‖ or results on the
location and uniqueness of x∗. These concerns constitute our motivation for writing this
article. These limitations appear in the study of other methods [4–17]. Our approach is
applicable to those methods along the same lines.

Novelty We find computable convergence radius and error estimates relying only on
the derivative appearing on these methods and generalized conditions on F′. That is how
we extend the utilization of these methods. Notice that local analysis of convergence results
on iterative methods is significant, since it reveals how difficult it is to pick a starting point,
x0. Our idea can be used analogously with other methods and for the same reasons because
it is so general. Moreover, a more important and difficult semi-local analysis of convergence
(not presented in [12]) is also developed in this paper.

The local analysis is developed in Section 2, followed by the semi-local convergence in
Section 3, whereas the examples appear in Section 4, followed by the concluding remarks
in Section 5.

2. Local Analysis

We first develop the ball convergence analysis of Method (2) using real parameters
and functions. Let M = [0, ∞) and a ≥ 0.
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Suppose function:

(i)
ξ0(t, at)− 1

has a minimal zero (MZ) R0 ∈ M − {0}, for some function ξ0 : M × M −→ M
nondecreasing and continuous (NDC). Let M0 = [0, R0).

(ii)
ζ1(t)− 1

has an MZ d1 ∈ M0 − {0}, where ξ : M0 ×M0 −→ M is NDC and ζ1 : M0 −→ M is
defined by

ζ1(t) =
ξ(t, at)

1− ξ0(t, at)
.

(iii)
ξ0(ζ1(t)t, 0)− 1, ξ0(ζ1(t)t, at)− 1

have an MZ R1, R2 ∈ M0 − {0}, respectively. Let R = min{R1, R2} and M1 = [0, R).
(iv)

ζ2(t)− 1

has an MZ d2 ∈ M1 − {0}, or some functions ξ1 : M1 −→ M, ξ2 : M1 ×M1 −→ M
NCD and ζ2 : M1 −→ M, defined by

ζ2(t) =

[
ξ(ζ1(t)t, at)ξ1(ζ1(t)t)

(1− ξ0(ζ1(t)t, 0))(1− ξ0(ζ1(t)t, at))

+
ξ2(t, ζ1(t)t)ξ1(ζ1(t)t)

1− ξ0(ζ1(t)t, at)

]
ζ1(t).

The parameter
d = min{di}, i = 1, 2 (4)

is shown in Theorem 1 to be a convergence radius for Method (2). Set M2 = [0, d).
The definition of the parameter d implies

0 ≤ ξ0(t, at) < 1, 0 ≤ ξ0(ζ1(t)t, 0) < 1, (5)

0 ≤ ξ0(ζ1(t)t, at) < 1, and 0 ≤ ζi(t) < 1 (6)

are valid for all t ∈ M2.
By Ū(x∗, λ), we denote the closure of open ball U(x∗, λ) with center x∗ ∈ B1 and of

radius λ > 0.
The following conditions are needed.
Suppose:

(h1) There exists an invertible operator L so that

‖L−1([x, y; F]− L)‖ ≤ ξ0(‖x− x∗‖, ‖y− x∗‖)

and
‖I + α[x, x∗; F]‖ ≤ a

For each x, y ∈ D.
Set D0 = U(x∗, R0) ∩ D.

(h2)
‖L−1([x, z; F]− [x, x∗; F])‖ ≤ ξ(‖x− x∗‖, ‖z− x∗‖),

‖L−1F′(x)‖ ≤ ξ1(‖x− x∗‖)
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and
‖I − A(x, y)‖ ≤ ξ2(‖x− x∗‖, ‖y− x∗‖)

For each x, y, z ∈ D0.
(h3) Ū(x∗, d̃∗) ⊂ D for d̃∗ = max{ad̃, d̃} and d̃ to be given later

and
(h4) There exists d∗ ≥ d̃∗, satisfying ξ0(0, d∗) < 1 or ξ0(d∗, 0) < 1.

Let D1 = Ū(x∗, d∗) ∩ D.

The local analysis of Method (2) uses condition (H) and is given in:

Theorem 1. Under the conditions (H) for d̃ = d, pick x0 ∈ U(x∗, d)− {x∗}. Then, the sequence
{xn} is convergent to x∗. Moreover, this limit is the only zero of F in the set D1, given in (h4).

Proof. The following assertions shall be shown using induction on m

‖ym − x∗‖ ≤ ζ1(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖ < d (7)

and
‖xm+1 − x∗‖ ≤ ζ2(‖xm − x∗‖)‖xm − x∗‖ ≤ ‖xm − x∗‖, (8)

with radius d, as defined in, (4) and functions ζi, as given previously. We have

‖z0 − x∗‖ = ‖x0 − x∗ + αF(x0)‖
= ‖x0 − x∗ + α[x0, x∗; F](x0 − x∗)‖
= ‖(I + α[x0, x∗; F])(x0 − x∗)‖
≤ a‖x0 − x∗‖ < d̃∗.

Using (4), (5), (h1), and (h3), we obtain

‖L−1([x0, z0; F]− L)‖ ≤ ξ0(‖x0 − x∗‖, ‖z0 − x∗‖) ≤ ξ0(d, ad) < 1, (9)

which, together with a lemma on inverses of linear operators due to Banach [8], imply the
linear operator [x0, z0; F] is invertible and

‖[x0, z0; F]−1L‖ ≤ 1
1− ξ0(‖x− x∗‖, ‖z0 − x∗‖)

. (10)

Notice that y0 exists by the first substep of Method (2), from which we can also have

y0 − x∗ = x0 − x∗ − [x0, z0; F]−1F(x0)

= [x0, z0; F]−1

×([x0, z0; F]− [x0, x∗; F])(x0 − x∗). (11)

By (4), (6) (for i = 1), (h2), (h3), (10), and (11), we obtain

‖y0 − x∗‖ ≤
ξ(‖x0 − x∗‖, ‖z0 − x∗‖)‖x0 − x∗‖

1− ξ0(‖x0 − x∗‖, ‖z0 − x∗‖)
≤ ζ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < d, (12)
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showing (7) for m = 0 and that the iterate y0 ∈ U(x∗, d). Notice also that the iterate x1
exists by the second substep of Method (2), from which we can also have

x1 − x∗ = y0 − x∗ − [y0, x0; F]−1F(y0)

+([y0, x∗; F]−1 − [y0, z0; F]−1)F(y0)

+(I − A0)[y0, z0; F]−1F(y0)

= [y0, x∗; F]−1([y0, z0; F]− [y0, x∗; F])[y0, z0; F]−1F(y0)

+(I − A0)[y0, z0; F]−1F(y0). (13)

Then, in view of (4), (6) (for i = 1), (10), (12), and (13), we obtain

‖x1 − x∗‖ ≤
[

ξ(‖y0 − x∗‖, ‖z0 − x∗‖)ξ1(‖y0 − x∗‖)
(1− ξ0(‖y0 − x∗‖, 0))(1− ξ0(‖y0 − x∗‖, ‖z0 − x∗‖))

+
ξ2(‖x0 − x∗‖, ‖y0 − x∗‖)ξ1(‖y0 − x∗‖)

1− ξ0(‖y0 − x∗‖, ‖x0 − x∗‖)

]
‖y0 − x∗‖

≤ ζ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (14)

showing (8) for m = 0 and the iterate x1 ∈ U(x∗, d). Simply, replace z0, x0, y0, x1 by
zm, xm, ym, xm+1 in the previous calculations to complete the induction for (7) and (8). Then,
from the estimation

‖xm+1 − x∗‖ ≤ γ‖xm − x∗‖ < d, (15)

where γ = ζ2(‖x0 − x∗‖) ∈ [0, 1), we conclude limm−→∞ xm = x∗ and xm+1 ∈ U(x∗, ρ).
Let Q = [x∗, q; F] for some q ∈ D1 with F(q) = 0. By (h1) and (h4), we obtain

‖L−1(Q− L)‖ ≤ ξ0(0, ‖q− x∗‖) ≤ ξ0(0, d∗) < 1.

Therefore, q = x∗ follows by the invertibility of Q and the identity 0 = F(q)− F(x∗) =
Q(q− x∗).

Remark 1. (a) We can compute the computational order of convergence (COC), defined by

ξ = ln
(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln
(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

(b) The choice A(t) = 1+ t + βt2, t = F′(x)−1F(y) satisfies the conditions A(0) = A′(0) = 1
and A′′(0) < ∞ required to show the fourth convergence order of Method (2). Next, we show
how to choose function ξ2 in this case. Notice that we have

‖(L(x− x∗))−1(F(x)− F(x∗)− L(x− x∗))‖

≤ 1
‖x− x∗‖

‖L−1([x, x∗; F]− L)‖‖x− x∗‖ for x 6= x∗

≤ ξ0(‖x− x∗‖, 0),

so
ξ2(s, t) = ξ0(s, 0).
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(c) The usual choice for L = F′(x∗) [8]. But this implies that the operator F is differentiable
at x = x∗ and x∗ is simple. This makes it unattractive for solving non-differentiable equa-
tions. However, if L is chosen to be different from F′(x∗), then one can also solve non-
differentiable equations.

(d) The parameter a can be replaced by a real function as follows:

I + α[x, x∗; F] = I + αLL−1([x, x∗; F]− L + L)

= I + αL + αLL−1([x, x∗; F]− L),

‖I + α[x, x∗; F]‖ ≤ ‖I + αL‖
+|α|‖L‖ξ0(‖x− x∗‖, ‖x∗ − x∗‖).

Thus, we can set
a(t) = ‖I + αL‖+ |α|‖L‖ξ0(t, 0),

where a is a non-decreasing function defined in M0. Then, a(t) can replace a in the preced-
ing results.

Next, we develop the ball convergence analysis of Method (3) in an analogous way.
But this time, the “ζ” functions are defined as

ζ̄1(t) =
ξ(t, t)

1− ξ0(t, t)
,

ζ̄2(t) =
ξ(t, ζ̄1(t)t)

1− ξ0(t, ζ̄1(t)t)

and

ζ̄3(t) =

[
ξ0(ζ̄2(t)t, ζ̄1(t)t)ξ1(ζ̄2(t)t)

(1− ξ0(ζ̄2(t)t, 0))(1− ξ0(ζ̄2(t)t, ζ̄1(t)t))

+
ξ2(t, ζ̄2(t)t)ξ1(ζ̄2(t)t)

1− ξ0(ζ̄2(t)t), ξ0(ζ̄1(t)t))

]
ζ̄2(t).

and
d̄ = min{d̄1, d̄2, d̄3}, d̃ = d̄,

and the least zeros of the ζ̄i, i = 1, 2, 3 functions in M0 − {0}, d̄1, d̄2, d̄3, respectively, exist.
The motivation for the introduction of functions ζ̄i is coming from the estimations

‖zn − x∗‖ = ‖xn − x∗ − [xn, xn−1; F]−1F(xn)‖
= ‖[xn, xn−1; F]−1([xn, xn−1; F]− [xn, x∗; F])(xn − x∗)‖

≤ ξ(‖xn − x∗‖, ‖xn−1 − x∗‖)‖xn − x∗‖
1− ξ0(‖xn − x∗‖, ‖xn−1 − x∗‖)

≤ ζ̄1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < d̄,

‖yn − x∗‖ = ‖xn − x∗ − [xn, zn; F]−1F(xn)‖
= ‖[xn, zn; F]−1([xn, zn; F]− [xn, x∗; F])(xn − x∗)‖

≤ ξ(‖xn − x∗‖, ‖zn − x∗‖)‖xn − x∗‖
1− ξ0(‖xn − x∗‖, ‖zn − x∗‖)

≤ ζ̄2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖

and, as in (13),
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‖xn+1 − x∗‖

≤
[

ξ0(ζ̄2(‖xn − x∗‖)‖xn − x∗‖, ζ̄1(‖xn − x∗‖)‖xn − x∗‖)
(1− ξ0(ζ̄2(‖xn − x∗‖)‖xn − x∗‖, 0))

× ξ1(ζ̄2‖xn − x∗‖)‖xn − x∗‖)
(1− ξ0(ζ̄2(‖xn − x∗‖)‖xn − x∗‖, ζ̄1(‖xn − x∗‖)‖xn − x∗‖))

+
ξ2(‖xn − x∗‖, ζ̄2(‖xn − x∗‖)‖xn − x∗‖)ξ1(ζ̄2‖xn − x∗‖)‖xn − x∗‖)

1− ξ0(ζ̄2(‖xn − x∗‖)‖xn − x∗‖, ζ̄1(‖xn − x∗‖)‖xn − x∗‖))

]
×ζ̄2(‖xn − x∗‖)‖xn − x∗‖

≤ ζ̄3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖.

Hence, we arrive at the corresponding local convergence result for Method (3).

Theorem 2. Under the conditions (H), hold with d̃ = d̄, the conclusions of Theorem 1 hold for
Method (3) with d, and ζ is replaced by d̄, ζ̄, respectively.

3. Semi-Local Analysis

The analysis in this case uses a majorant sequence [1–3,8].
Assume the following:

(e1) There exist continuous and nondecreasing functions f : M −→ R, p0 : M×M −→ R
so that the equation p0(t, f (t))− 1 = 0 has a smallest positive solution, denoted as s.
Set M2 = [0, s).

(e2) There exists a continuous and nondecreasing function p : M2 × M2 × M2 −→ R.
Define the sequence {αn} for α0 = 0, some β0 ≥ 0, and each n = 0, 1, 2, . . . by

cn = (1 + p0(αn, βn))(βn − αn) + (1 + p0(αn, f (αn)))(βn − αn),

αn+1 = βn +
p(αn, βn, f (αn))cn

1− p0(βn, f (αn))
,

bn+1 = (1 + p0(αn, αn+1))(αn+1 − αn) + (1 + p0(αn, f (αn)))(αn+1 − αn)

and
βn+1 = αn+1 +

bn+1

1− p0(αn+1, f (αn+1))
.

A convergence criterion for this sequence is:
(e3) There exists s0 ∈ M2 such that for each n = 0, 1, 2, . . . p0(βn, f (αn)) < 1, p0(αn,

f (αn)) < 1, and αn ≤ s0. It follows by the definition of the sequence and this condition
that 0 ≤ αn ≤ βn ≤ αn+1 ≤ s0, and there exists α∗ ∈ [0, s0] such that limn−→∞ αn = α∗.
These functions are connected to the operators of the method.

(e4) There exists an invertible operator L so that for each x, y ∈ D and some x0 ∈ D

‖L−1([x, y; F]− L)‖ ≤ p0(‖x− x0‖, ‖y− x0‖)

and for z = x + αF(x)

z− x0‖ ≤ f (‖x− x0‖) ≤ ‖x− x0‖.

Set D2 = D ∩U(x0, s).
(e5) For A = A(x, y, z) and each x, y, z ∈ D2

‖A‖ ≤ p(‖x− x0‖, ‖y− x0‖, ‖z− x0‖)

and
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(e6) U[x0, α∗] ⊂ D.

It follows by (e1) and (e4) that p0(0, ‖z− x0‖)− p0(0, 0) < 1. Thus, the linear operator
[x0, z0; F] is invertible. That is why we can set β0 ≥ ‖[x0, z0; F]−1F(x0)‖. The motivational
calculations for the majorant sequence follow in turn by induction:

F(yn) = F(yn)− F(xn)− [xn, zn; F](yn − xn),

‖L−1F(yn)‖ ≤ (1 + p0(‖xn − x0‖, ‖yn − x0‖))‖yn − x0‖
+(1 + p0(‖xn − x0‖, ‖zn − x0‖))‖yn − xn‖

= c̄n

≤ (1 + p0(αn, βn))(βn − αn)

+(1 + p0(αn, f (αn))(βn − αn)

= cn,

‖An‖ ≤ p(‖xn − x0‖, ‖yn − x0‖, ‖zn − x0‖)
≤ p(αn, βn, f (αn)),

‖L−1([yn, zn; F]− L)‖ ≤ p0(‖yn − x0‖, ‖zn − x0‖)
≤ p0(βn, f (αn)) < 1,

‖[yn, zn; F]−1L‖ ≤ 1
1− p0(βn, f (αn))

,

‖xn+1 − yn‖ ≤ ‖An‖‖[yn, zn; F]−1L‖‖L−1F(yn)‖

≤ p(αn, βn, f (αn))cn

1− P0(βn, f (αn))

= αn+1 − βn,

‖xn+1 − x0‖ ≤ ‖xn+1 − yn‖+ ‖yn − x0‖
≤ αn+1 − βn + βn − α0 = αn+1 < α∗,

F(xn+1) = F(xn+1)− F(xn)− [xn, zn; F](yn − xn),

‖L−1F(xn+1)‖ ≤ (1 + p0(‖xn − x0‖, ‖xn+1 − x0‖))‖xn+1 − xn‖
+(1 + p0(‖xn − x0‖, ‖zn − x0‖)‖yn − xn‖ = b̄n+1

≤ (1 + p0(αn, αn+1))(αn+1 − αn)

+(1 + p0(αn, f (αn)))(βn − αn) = bn+1

‖yn+1 − xn+1‖ ≤ ‖[xn+1, zn+1; F]−1L‖‖L−1F(xn+1)‖

≤ bn+1

1− p0(αn+1, f (αn+1))

= βn+1 − αn+1

and

‖yn+1 − x0‖ ≤ ‖yn+1 − xn+1‖+ ‖xn+1 − x0‖
≤ βn+1 − αn+1 + αn+1 − α0

= βn+1 < α∗.
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Thus, the iterates xn, yn, zn ∈ U(x∗, α∗) and the sequence {xn} is Cauchy in the Banach
space B1 and, as such, it is convergent to some x∗ ∈ U[x0, α∗] (since U[x0, α∗] is a closed
set). By letting n −→ ∞, we deduce F(x∗) = 0.

Thus, we arrived at the semi-local convergence result for the Method (2).

Theorem 3. Assume the conditions (e1)–(e6) hold. Then, the sequence {xn} is well-defined,
remains in U[x0, α∗], and is convergent to a solution x∗ ∈ U[x0, α∗] of the equation F(x) = 0.

The uniqueness of the solution is discussed next.

Proposition 1. Assume the following:

(i) There exists a solution x̄ ∈ U(x0, s1) of the equation F(x) = 0 for some s1 > 0.
(ii) The first condition in (e4) holds in the ball U(x0, s1).
(iii) There exists s2 ≥ s1 so that

p0(s1, s2) < 1.

Set D3 = D ∩ U[x0, s2]. Then, the equation F(x) = 0 is uniquely solvable by x̄ in the
domain D3.

Proof. Let ȳ ∈ D3 with F(ȳ) = 0 with ȳ 6= x̄. Then, the divided difference E = [x̄, ȳ; F] is
well-defined. Then, we have the estimate

‖L−1(E− L)‖ ≤ p0(‖x̄− x0‖, ‖ȳ− x0‖)
≤ p0(s1, s2) < 1.

It follows that the linear operator E is invertible. Then, we can write

x̄− ȳ = E−1(F(x̄)− F(ȳ)) = E−1(0) = 0.

Thus, we deduce ȳ = x̄.

Remark 2. (i) The limit point α∗ can be switched with s in the condition (e6).
(ii) Under all the conditions of Theorem 3, we can take x̄ = x∗ and s1 = α∗.
(iii) As in the local case, a choice for the real function f can be provided, being motivated by

the calculation:

z− x0 = x− x0 + α(F(x)− F(x0)) + αF(x0)

= (I + α[x, x0; F])(x− x0) + αF(x0),

= [(I + αL) + αLL−1([x, x0; F]− L)](x− x0) + αF(x0).

Thus, we can take

f (t) = [‖I + αL‖+ |α|‖L‖p0(t, 0)]t + |α|‖F(x0)‖.

The semi-local analysis of convergence for Method (3) follows along the same lines.

4. Numerical Examples

In the first example, we use the standard and popular divided difference [1,4,12]

[x, y; F] =
∫ 1

0
F′(y + θ(x− y))dθ, α = −1,

and ξ2 as in Remark 1.
The first three examples validate our local convergence analysis results.
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Example 1. Consider the kinematic system

F′1(v1) = ev1 , F′2(v2) = (e− 1)v2 + 1, F′3(v3) = 1

with F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F2, F3). Let B1 = B2 = R3, D = Ū(0, 1), x∗ =
(0, 0, 0)T . Define function F on D for w = (v1, v2, v3)

T by

F(w) = (ev1 − 1,
e− 1

2
v2

2 + v2, v3)
T .

Then, we obtain

F′(w) =

 ev1 0 0
0 (e− 1)v2 + 1 0
0 0 1

.

The conditions (H) are validated if we choose ξ0(u1, u2) =
1
2 (e− 1)(u1 + u2), ξ(u1, u2) =

1
2 e

1
e−1 (u1 + u2), ξ1(u1) = e

1
e−1 , and ξ2(u1, u2) =

1
2 (e− 1)u1, and a = e

2 . Then, by using (i)–(iv)
and solving the scalar equations, we deduce that the radii are:

d1 = 0.241677, d2 = 0.192518, d̄1 = 0.285075, d̄2 = 0.285075, d̄3 = 0.251558.

Therefore, Method (3) provides the largest radius for the example. Consequently, we conclude
d = d2 and d̄ = d3.

The iterates are given in Table 1.

Table 1. Iterates of Method (2) and Method (3).

n xn by (2) xn by (3)

−1 (0.2000, 0.2000, 0.2000) (0.2000, 0.2000, 0.2000)
0 (0.1000, 0.1000, 0.1000) ( 0.1000, 0.1000, 0.1000)
1 ( 0.0044, 0.0526, 0) ( 0.0000, 0.0457, 0)
2 (0.0000, 0.0325, 0) (0.0000, 0.0276, 0)
3 (0.0000, 0.0215, 0) (−0.0000, 0.0181, 0)
4 (0.0000, 0.0147, 0) (−0.0000, 0.0124, 0)
5 (0.0000, 0.0103, 0) (−0.0000, 0.0087, 0)
6 (0.0000, 0.0074, 0) (−0.0000, 0.0062, 0)
7 (0.0000, 0.0053, 0) (−0.0000, 0.0045, 0)
8 (0.0000, 0.0038, 0) (−0.0000, 0.0032, 0)
9 (0.0000, 0.0028, 0) (−0.0000, 0.0024, 0)
10 (0.0000, 0.0020, 0) (−0.0000, 0.0017, 0)
11 (0.0000, 0.0015, 0) (−0.0000, 0.0013, 0)
12 (0.0000, 0.0011, 0) (−0.0000, 0.0009, 0)
13 (0.0000, 0.0008, 0) (−0.0000, 0.0007, 0)
14 (0.0000, 0.0006, 0) (−0.0000, 0.0005, 0)
15 (0.0000, 0.0004, 0) (−0.0000, 0.0004, 0)
16 (0.0000, 0.0003, 0) (−0.0000, 0.0003, 0)
17 (0.0000, 0.0002, 0) (−0.0000, 0.0002, 0)
18 (0.0000, 0.0002, 0) (−0.0000, 0.0001, 0)
19 (0.0000, 0.0001, 0) (−0.0000, 0.0001, 0)
20 (0.0000, 0.0001, 0) (−0.0000, 0.0001, 0)
21 (0.0000, 0.0001, 0) (−0.0000, 0.0001, 0)
22 (0.0000, 0.0001, 0) (0, 0, 0)

Notice that Method (3) is also faster than (2) in this example.
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Example 2. Consider B1 = B2 = C[0, 1], D = U(0, 1), and F : D −→ B2, given as

F(λ)(t) = ϕ(t)− 5
∫ 1

0
xτλ(τ)3dτ.

We have that

F′(λ(ξ))(t) = ξ(t)− 15
∫ 1

0
xτλ(τ)2ξ(τ)dτ, for each ξ ∈ D.

Then, we find that x∗ = 0. Hence, the conditions (H) are validated for ξ0(u1, u2) =
15
4 (u1 +

u2), ξ(u1, u2) =
15
2 (u1 + u2), ξ1(u1) = 2, ξ2(u1, u2) =

15
4 u1, and a = 7. Then, the radii are:

d1 = 0.011111, d2 = 0.00865678, d̄1 = 0.044444, d̄2 = 0.044444, d̄3 = 0.0413453.

Hence, we conclude d = d2 and d̄ = d̄3.

Example 3. By the academic example in the introduction, we have ξ0(u1, u2) = ξ(u1, u2) =
96.6629073

2 (u1 + u2), ξ1(u1) = 2, ξ2(u1, u2) =
96.6629073

2 u1, and a = 5. Then, the radii are:

d1 = 0.0017242, d2 = 0.00138313, d̄1 = 0.00517261,

d̄2 = 0.005172613, d̄3 = 0.0044859.

Hence, we conclude d = d2 and d̄ = d̄3.

Concerning the semi-local case and the application of the methods, we provide two
more examples. The first example involvs non-differentiable mappings.

Example 4. Let D = R×R. The 2× 2 nonlinear and non-differentiable system to be solved is

3t2
1t2 + t2

2 − 1 + |t1 − 1| = 0

t4
1 + t1t3

2 − 1 + |t2| = 0.

The system can also be described as

F = (F1, F2),

where

F1(t1, t2) = 3t2
1t2 + t2

2 − 1 + |t1 − 1|
F2(t1, t2) = t4

1 + t1t3
2 − 1 + |t2|.

The system becomes F(t1, t2) = 0. Then, as A = [., .; F], which is a 2× 2 real matrix for
t̄ = [t1, t2]

tr and t̃ = [t3, t4]
tr by

[t̄, t̃; F]i,1 =
Fi(t3, t4)− Fi(t1, t4)

t3 − t2
for t1 6= t3,

and

[t̄, t̃; F]i,2 =
Fi(t1, t4)− Fi(t1, t2)

t4 − t2
for t2 6= t4,

i = 1, 2. Otherwise, set [., .; F] = O. Notice that these matrices constitute standard divided
differences [9–11,17]. Let us choose t̄0 = [5, 5]tr and t̃ = [1, 0]tr to be the starters for scheme (2).
Then, the solution of the system is t∗ = [t∗1 , t∗2 ]

tr for

t∗1 = 0.894655373334687 and t∗2 = 0.327826421746298.
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The solution is obtained after four iterations for both methods.

Example 5. The system of equations

3t2
1t2 + t2

2 = 1

t4
1 + t1t3

2 = 1,

has solutions (−1, 0.2), (−0.4,−1.3), and (0.9, 0.3). The solution (0.9, 0.3) is considered for
approximating using Methods (2) and (3). We use the initial point (2,−1) in our computation.
Tables 1 and 2 provide the obtained results.

The iterates are given in Table 2.

Table 2. Iterates of Method (2) and Method (3).

n xn by (2) xn by (3)

−1 — (1.9, −0.9)
0 (2.000000, −1.000000) (2.000000, −1.000000)
1 (1.953072, −0.962331) (1.153994, 0.203527)
2 (1.903627, −0.920635) (0.996799, 0.301846)
3 (1.851328, −0.874390) (0.992780, 0.306440)
4 (1.795779, −0.822929) (0.992780, 0.306440)
5 (1.736504, −0.765386)
6 (1.672947, −0.700609)
7 (1.604467, −0.627018)
8 (1.530378, −0.542399)
9 (1.450068, −0.443592)
10 (1.363359, −0.326162)
11 (1.271401, −0.184796)
12 (1.178280, −0.018149)
13 (1.091066, 0.152382)
14 (1.020124, 0.270191)
15 (0.993678, 0.305320)
16 (0.992780, 0.306440)
17 (0.992780, 0.306440)

Notice that Method (3) is faster than Method (2) in this example.

5. Conclusions

There are some drawbacks when Taylor series expansions are used to find the order
of convergence for iterative methods. Some of these are: (a) high order derivatives not
on the methods must exist; (b) computable estimates of ‖xn − x∗‖; and (c) uniqueness of
the solution x∗ results are not given. These drawbacks create problems like not knowing
how to pick initial points or how many iterates are needed to achieve a pre-decided error
tolerance. We developed a technique in this paper so general that it can be applied to
extend the applicability of other methods along the same lines [1–9,12–17]. In particular,
we addressed problems (a)–(c) using generalized conditions only on the first derivative
and divided differences of order one. Notice that only divided differences of order one
appear in these methods. Hence, we extended the applicability of these methods in the
more general setting of Banach space-valued equations. Numerical experiments where the
convergence criteria are tested complete this paper. The idea of this paper shall be used in
future work to extend the applicability of similar methods [5,12–16].
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