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Abstract: A brief review of the classical and quantum description of the interaction of electromag-
netic radiation with matter based on the model of a harmonic oscillator is presented. This review
includes the generalized Bohr correspondence principle, the excitation of a quantum oscillator by
electromagnetic pulses including saturation effect, the harmonic limit of the Bloch equations, and a
phenomenological account of the damping of the quantum oscillator. In all cases, at the mathemat-
ical level, the relationship between the classical and quantum descriptions of the electromagnetic
interaction is established and the conditions for such compliance are identified.
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1. Introduction

The model of a harmonic oscillator (HO) is the most important model, both in classical
and quantum physics [1,2]. It is well-known that a wide range of mechanical systems near
the equilibrium position can be described by HO [3]. The quantum HO is a unique model
in quantum physics that allows an analytical solution for any external force [4]. It describes
a number of the most important quasi-particles, such as photons, phonons, vibrons, etc. In
addition, this model applies to an electron in a magnetic field (Landau levels [5]), charge
carriers in quantum dots in the case of a parabolic potential [6], etc.

An important field of application of the HO model is the theory of the interaction of
electro-magnetic radiation with matter, in particular, with atomic particles. The wide use
of this model in the latter case is explained by the large value of the atomic electric field
(Ea ≈ 5.14·109 V/cm). As a result, the effect of electromagnetic radiation with an amplitude
less than the atomic one on atomic electrons is weak, and the HO model is applicable [7].

In particular, in connection with the recent development of the technology for gener-
ating ultrashort electromagnetic pulses, the quantum oscillator model is used to describe
their interaction with matter [8,9]. The use of this model makes it possible to consistently
take into account nonlinear effects in the interaction of a strong electromagnetic field
with matter.

It is essential that the harmonic oscillator is a kind of “bridge” between quantum and
classical physics of the electromagnetic interaction, which manifests itself, for example,
in the Bohr correspondence principle [10]. The Bohr correspondence principle initiated
the widespread use of the HO model in describing the electromagnetic interaction, which
includes both various photoprocesses (excitation, ionization, dissociation, scattering, etc.)
and the interaction of matter with charged particles [11,12]. In the latter case, the concept
of photons (equivalent photons of the field of charged particles) can be used, as was
demonstrated in the paper of E. Fermi [13].

Although quantum HO has an infinite number of energy levels, its classical analog also
appears when describing the interaction of a two-level quantum system with a resonant
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electromagnetic field using the optical Bloch equations [14]. Indeed, in this case, the dipole
moment of a two-level system upon its weak excitation is described by the equation for
forced oscillations of a classical oscillator. Note that a two-level system with a dipole-allowed
transition can be considered as a qubit whose control by electromagnetic pulses [15] is promising for
applications in quantum optics [16] and quantum informatics.

The purpose of this paper is to briefly review the most significant manifestations of the
HO model in describing the interaction of radiation with matter in classical and quantum
approaches and mathematically show the relationship between these descriptions.

2. Classical Harmonic Oscillator
2.1. Model of Harmonic Oscillator

Let us consider a one-dimensional system near equilibrium position at point x0. Then,
the following decomposition of its potential energy U(x) is valid [3]

U(x ≈ x0) ∼= U(x0) +
1
2

U′′x2(x0)(x− x0)
2. (1)

Here, U′′x2 is the second derivative of potential energy with respect to coordinate.
Quadratic dependence of potential energy on coordinate presented in (1) is the charac-

teristic feature of HO. Total energy of HO is given by the well-known expression

E =
m

.
x2

2
+

mω2
0(x− x0)

2

2
. (2)

Here, m is mass of HO and ω0 is its own frequency which can be expressed via
potential energy from (1) as follows:

ω0 =
√

U′′x2(x0)/m. (3)

We suppose that U′′x2(x0) 6= 0.
Thus, for small deviations from the equilibrium position, each physical system can be

associated with a harmonic oscillator of frequency ω0 as given by (3) for the one-dimensional case.

2.2. Interaction of Charged Oscillator with Electromagnetic Radiation

Let us consider the interaction of charged HO with electromagnetic radiation. The
Equation of HO motion with account for damping has the form

..
x + 2γ

.
x + ω2

0x =
q
m

E(t). (4)

Here, q and γ are the charge and relaxation constant of the oscillator, and E(t) is electric
field strength in the radiation, which can be written as follows:

E(t) = E0Ẽ(t). (5)

Here, Ẽ(t) is dimensionless field strength, and E0 is amplitude of electric field. We
assume that E(t→ ±∞)→ 0 and

.
x(t→ −∞)→ 0 .

Note that Equation (6) is valid in dipole approximation when the dependence of
the electric field on the coordinate can be neglected. When interacting with electromagnetic
radiation, the dipole approximation is valid in the case when the radiation wavelength significantly
exceeds the spatial size of the oscillator. Then, the greatest contribution to the electromagnetic
interaction comes from the term corresponding to the dipole distribution of charges in the target.

The solution of (6) is equal to

x(t) =
qE0

m

∞∫
−∞

Ẽ(ω) exp(−iωt)
ω2

0 −ω2 − 2iωγ

dω

2π
. (6)
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Here, Ẽ(ω) is Fourier transform of the dimensionless electric field strength.

2.3. Excitation Energy of Oscillator by Electromagnetic Pulse

The excitation energy of the HO at a given moment of time t is equal to the work
carried out on the oscillator under the action of radiation electric field by the time t:

∆εclas(t) = qE0

t∫
−∞

.
x
(
t′
)
Ẽ
(
t′
)
dt′. (7)

Substituting derivative of HO coordinate (8) in Equation (9) we obtain

∆εclas(t) =
q2E2

0
m

t∫
−∞

dt′Ẽ
(
t′
) ∞∫
−∞

dω

2π
Ẽ(ω)

iω exp(−iωt′)
ω2 −ω02 + 2iωγ

. (8)

For oscillator without damping ( γ→ 0), the Formula (10) simplifies to the form [17]:

∆εclas(t) =
q2E2

0
2m

∣∣∣∣∣∣
t∫

−∞

dt′Ẽ
(
t′
)

exp
(
iω0t′

)∣∣∣∣∣∣
2

. (9)

In the derivation of Formula (11), we used the Fourier decomposition of Ẽ(t′) and
the relation

∞∫
−∞

dω

2π

iω exp(−iω(t′ − t′′ ))
ω2 −ω2

0 − 2iωγ
→

γ→0
θ
(
t′ − t′′

)
cos
[
ω0
(
t′ − t′′

)]
, (10)

where θ(τ) is the Heaviside theta function.
Let us consider the excitation of HO by electric pulse with duration τ. Then, in the

long time limit t >> τ, we have instead of (10)

∆εclas(t >> τ) =
q2E2

0
2m

∞∫
0

dω
∣∣∣Ẽ(ω)

∣∣∣2 4ω2γ/π(
ω2 −ω2

0
)2

+ 4ω2γ2
. (11)

In the case of HO without damping, we obtain from (11) and (13) the following simple
expression for excitation energy:

∆εclas(t >> τ) =
q2E2

0
2m

∣∣∣Ẽ(ω0, τ, ωc)
∣∣∣2. (12)

Here, we explicitly show the dependence of the Fourier transform of electric field
strength on duration and carrier frequency ωc of exciting electromagnetic pulse. Note that
the resulting expression (14) coincides with the formula for energy transfer to a classical
harmonic oscillator under the action of an external force F(t) = qE(t), which is given in
the textbook [3].

Thus, when oscillator damping is absent (γ = 0), the instant value of the excitation
energy at the time moment t is determined by incomplete Fourier transform of electric field
strength calculated at the own frequency of HO (11) while in the limit of long time t >> τ,
it is determined by complete Fourier transform (14).

The resulting expressions for the excitation energy can be used to analyze its de-
pendence on the pulse parameters (duration, carrier frequency, and envelope). So in
paper [18], it is shown that the dependence of the excitation energy on the pulse duration
(τ-dependence for short) is essentially determined by its envelope. In the case of a pulse
with an exponential envelope, this dependence has a monotonically increasing character for
any carrier frequencies of the pulse. For the Gaussian envelope, the τ-dependence can have
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extrema at sufficiently large detunings of the carrier frequency from the own frequency of
the oscillator. In the case of long quasi-monochromatic pulses, the τ-dependence is linear
for all pulse envelopes.

3. Bohr Correspondence Principle and Its Generalization
3.1. Original Version of Bohr Correspondence Principle

Bohr’s so-called old quantum theory correctly describes the hydrogen atom and, using
the postulates formulated by N. Bohr, lays the foundations for the theory of interaction
between atoms and electromagnetic radiation.

The next step towards the phenomenological description of this interaction was the
Bohr correspondence principle (BCP). This principle states that an atom, when interact-
ing with an electromagnetic field, can be represented by a set of harmonic oscillators
corresponding to dipole-allowed transitions between stationary states of electrons in an
atom [10]. The own frequencies of these oscillators are equal to the frequencies of transitions
between atomic energy levels, and the strength of the electromagnetic interaction is deter-
mined by a dimensionless parameter called the oscillator strength. Each dipole-allowed
transition can be associated with a two-level system (TLS), which, within the framework of
this principle, is described by a harmonic oscillator.

Note that BCP can, in particular, describe the dynamical polarizability of an atom
without resorting to the quantum mechanical formalism [11]. Dynamic polarizability is
included in the expression for the cross section of Rayleigh scattering of radiation on an
atom [12], and also determines the constants of the van der Waals interaction and some
other atomic characteristics.

3.2. Generalization of Bohr Correspondence Principle

It is instructive to consider the generalization of the BCP to the time dependence of the
process of excitation of dipole-allowed transitions in an atom [17]. This generalization can
be obtained by comparing the time dependence of the excitation energy of TLS associated
with the dipole-allowed transition and the harmonic oscillator corresponding to this TLS
according to BCP. Excitation energy of classical HO is described by the expression (10).
Temporal dependence of the excitation energy of TLS is given by the equality,

εquant(t) =
q2E2

0
2m

∞∫
0

dωG(ω)

∣∣∣∣∣∣
t∫

−∞

Ẽ
(
t′
)

exp
(
iωt′

)
dt′

∣∣∣∣∣∣
2

. (13)

Here, G(ω) is the spectral profile of TLS photoexcitation cross section. This formula
can be derived in the framework of conventional quantum-mechanical approach in the
first order of perturbation theory by analogy with the consideration carried out in the
paper [19].

In the case of spectral profile with zero width, when G(ω)→ δ(ω−ω0) equality
(13) coincides with (11) and there is a complete correspondence between the classical and
quantum results.

For long time t >> τ, we have from (13)

εquant(t >> τ) =
q2E2

0
2m

∞∫
0

dωG(ω)
∣∣∣Ẽ(ω, τ, ωc)

∣∣∣2. (14)

This expression corresponds to classical analogue (13) if the following relation is valid:

4ω2γ/π(
ω2 −ω2

0
)2

+ 4ω2γ2
≡ Gosc(ω)↔ G(ω). (15)
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We introduce here the so-called “oscillator” spectral profile Gosc(ω). It coincides with
quantum spectral profile in the case of Lorentz G(ω) and for sufficiently small spectral
width γ << ω0.

Numerical analysis [17] shows that, in the general case, a good agreement between the
time dependences of the excitation energy calculated in the framework of the classical and
quantum approaches takes place for a small value of the ratio γ/ω0. As it increases, the
correspondence worsens, especially for long times but nevertheless remains good enough
for the values of the ratio γ/ω0 characteristic for dipole-allowed transitions between atomic
energy levels.

Thus, the extension of the BCP to the time dependence of electromagnetic processes has
been demonstrated via comparison between classical HO and quantum two-level system.

4. Charged Quantum Oscillator in the Electromagnetic Field
4.1. Schwinger Formula for Excitation of Quantum Oscillator between Stationary States

The basic formula describing the probability of the transition of an undamped quan-
tum oscillator between stationary states was obtained in the work of J. Schwinger [4] to
describe the interaction of a quantized electromagnetic field with a given electric current.
This expression for the probability Wmn of transition from the stationary state |n〉 to the
stationary state |m〉 (m > n) is given by the following equality [4]:

Wn→m =
n!
m!

(
|J|2
)m−n

exp
(
−|J|2

)∣∣∣Lm−n
n

(
|J|2
)∣∣∣2. (16)

Here, J is dimensionless Fourier transform of electric current and Lk
m(x) are the

generalized Laguerre polynomials. To obtain an expression for the probability of charged
HO excitation by electromagnetic pulse, we use Formula (16) and the following relation [20]:

|J|2 → Ω2
0

∣∣∣Ẽ(ω0, τ, ωc)
∣∣∣2. (17)

We introduce here Rabi frequency Ω0 according to the definition

Ω0 =
qE0√

2m}ω0
. (18)

Thus, Rabi frequency (18) describes the strength of electromagnetic influence on
quantum HO.

In the paper [21], relation (17) was generalized to account the dependence of the
excitation probability on current time.

4.2. Classical HO Is a Driver of Quantum One

Taking into account Formula (11) and Definition (18), replacement (17) can be repre-
sented as

|J|2 → ∆εclas(t)
}ω0

≡ ν(t). (19)

Here, we introduce key dimensionless parameter ν(t), which determines dynamics of
quantum HO under external action [21]. An expression for this parameter in terms of the
excitation energy of a classical oscillator associated (having the same parameters) with a
quantum oscillator was first obtained by Husimi [22].

The Schwinger Formula (16) takes into account all nonlinear effects in the interaction
of an undamped quantum oscillator with an electromagnetic pulse. It is important that in
this way an exact description of the dynamics of a quantum oscillator is carried out for
any strength of external influence. This circumstance singles out the harmonic oscillator
as a unique quantum system, for which a fully analytical description is possible for any
external perturbation.
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An important consequence of the foregoing is the fact that the associated classical
oscillator, according to replacement (19), is a quantum oscillator “driver”, determining
the dynamics of the latter in accordance with Expression (16). Thus, there is a correspon-
dence between the model of a harmonic oscillator in classical and quantum physics of
light–matter interactions.

4.3. Average Number of Excited Quanta

The average number of excited quanta (n) under the action of electromagnetic pulse
on quantum HO can be easily obtained using Formulas (16) and (17) and the definition of
this quantity. When HO is excited from ground state, n is equal to

n = Ω2
0

∣∣∣Ẽ(ω0, τ, ωc)
∣∣∣2 =

∆εclas
}ω0

. (20)

Obviously, this expression can be rewritten in the form

∆εclas = n}ω0. (21)

This equality “returns” us from the quantum oscillator to the classical one; it has a
clear physical meaning, which is intuitively easy to understand. Formula (21) also demon-
strates the relationship between the harmonic oscillator model in classical and quantum
physics, namely, the quantum oscillator after averaging gives the classical result for the
excitation energy.

4.4. Saturation Effect upon Pulsed Excitation of a Quantum Oscillator

One of the important nonlinear phenomena arising during the interaction of resonant
electromagnetic radiation with a quantum system is the saturation effect. In the case of
excitation of TLS, the saturation effect leads to the equalization of the populations of both
energy levels and to the field broadening of a homogeneous spectral absorption profile or
the burning of the spectral dips in the inhomogeneous spectral profile. When a quantum
oscillator is excited by electromagnetic pulse, other specific features of this effect appear,
due to an infinite number of energy levels and a finite duration of the exciting pulse.

These “quantum HO features” of the saturation effect can be analyzed using
Expressions (16) and (17), as well as the explicit form of the Fourier transform of an electric
field strength in a pulse. Such an analysis was carried out in [20] for the Gaussian enve-
lope and the envelope in the form of a hyperbolic secant, and in paper [23] for a double
exponential envelope.

In the papers cited, the conditions for weak and strong excitation modes were deter-
mined depending on the parameters of the exciting pulse. In the strong excitation mode,
the saturation effect manifests itself both in the spectrum (dependence of the excitation
probability on the carrier frequency of the pulse) and in the τ-dependence. This manifesta-
tion is in the transformation of the maximum to a minimum and the appearance of new
maxima in the spectral and τ-dependencies. The Rabi frequency, which determines the
effect of “spectral” saturation, is inversely proportional to the pulse duration, while the
saturation Rabi frequency for the τ-dependence of the excitation probability is proportional
to the detuning of the pulse carrier frequency from the own frequency of the oscillator.

The essential difference between the saturation effect upon excitation of a quantum
oscillator and the saturation effect upon excitation of TLS is that in the case of an oscillator,
the populations of nearby levels do not equalize with increasing field amplitude (Rabi
frequency). Instead, the population maximum shifts to higher energy levels due to their
infinite number. The latter circumstance can be seen from Formula (20), which implies an
increase in the average number of excited quanta with increasing Rabi frequency.
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5. Other Correspondences between Quantum Descriptions of Light–Matter Interaction
and Classical HO Model
5.1. HO Limit of Bloch Equations

The dynamics of a two-level system with a dipole-allowed transition in the electric field
can be described in terms of the optical Bloch vector R [7]. The first and third components
of the this vector are defined by the equalities

d(t) = d0R1(t) and R3(t) = N1(t)− N2(t). (22)

Here, d(t) is dipole moment of TLS (d0 is matrix element of dipole moment) and
N1,2(t) are populations of TLS levels. The second component of the optical Bloch vector
is related to the quadrature component of the dipole moment. It is shifted in phase by
90 degrees with respect to the first component.

The system of equations for the components of the optical Bloch vector has the form [7]

.
R1 = ω0R2 (23)

.
R2 = −ω0R1 + 2Ω(t)R3 (24)

.
R3 = −2Ω(t)R2. (25)

The time-dependent Rabi frequency introduced here is defined by

Ω(t) = d0E(t)/}. (26)

It is convenient to represent the matrix element of the TLS dipole moment in the form

d0 = qx0 (27)

where x0 is characteristic length dimension parameter equal to the matrix element of the
coordinate calculated between the wave functions of the TLS. Using this parameter, one
can determine the TLS coordinate in terms of the first component of the Bloch vector by
the equality

x(t) = x0R1(t). (28)

The system of Equations (23) and (24) is a consequence of the Schrödinger equation. It
is written in neglect of the relaxation of the Bloch vector, which is valid at times t < T1,2
(T1,2 are the relaxation times of the populations and the dipole moment of the TLS), which
is what we are assuming here.

Eliminating the second component of the Bloch vector from the system of
Equations (23)–(26), we find

..
R1 + ω2

0R1 = 2ω0
d0E(t)

} R3(t). (29)

Taking into account equalities (27) and (28), we arrive at the following equation for
the TLS coordinate:

..
x + ω2

0x = f0R3(t)
qE(t)

m
. (30)

Here, the oscillator strength of the TLS is introduced by the formula

f0 =
2mω0x2

0
} . (31)

This equality coincides with the standard definition of the oscillator strength of a
dipole-allowed transition [24].
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So, the derived Equation (30) describes the forced oscillations of a classical harmonic
oscillator corresponding to TLS coordinate under the action of a driving force F(t) = qE(t).
In addition to the oscillator strength, the coupling between the TLS and the electric field is
also determined by the third component of the Bloch vector R3(t). In the case of a weak
perturbation, R3(t) ∼= 1 and Equation (30) coincides completely with the equation for
HO without damping in an external field. If the populations of the TLS levels are equal,
then R3(t) = 0, and there is no coupling between the TLS and the electric field. This is a
distinctive feature of the equation for the TLS coordinate, due to the quantum nature of the
optical Bloch vector.

The established correspondence of the TLS to the classical HO can also be considered
as a substantiation of the Bohr correspondence principle from the point of view of the
quantum approach. It follows from the above consideration that exact correspondence
takes place when the TLS is weakly excited, when R3(t) ∼= 1.

5.2. Accounting for the Damping of HO in the Framework of the Classical and
Quantum Approaches

The basic Equation (6) of a damped classical harmonic oscillator in electric field can be
rewritten via dimensionless coordinate

Q =
x
x0

=

√
2mω0

} x, x0 =

√
}

2mω0
(32)

in the form ..
Q + 2γ

.
Q + ω2

0Q = 2ω0Ω0Ẽ(t); (33)

Rabi frequency Ω0 is given by Equation (18).
The Hamiltonian of a harmonic oscillator in an electric field is defined as follows [25]:

Ĥ = }ω0 â+ â− d̂E0Ẽ(t), (34)

where â+ is the creation operator and â is the annihilation operator of oscillator quanta.
The operator of the dipole moment of a quantum oscillator d̂ has the following form:

d̂ = qx0
(
â + â+

)
(35)

and
Ĥ = }ω0 â+ â− }Ω0

(
â + â+

)
Ẽ(t). (36)

A consistent description of the damping of a quantum oscillator is a difficult quantum
mechanical problem [26]. Here, we use the phenomenological approach, in which damping
is taken into account using the following substitution [27]:

ω0 → ω0 − iγ. (37)

This substitution is used, in particular, to take into account the finite lifetime of the
stationary states of an electron in an atom [1,5].

Using (37) we have for quantum HO Hamiltonian with phenomenological account
for damping

Ĥ = }(ω0 − iγ)â+ â− }Ω0
(
â + â+

)
Ẽ(t). (38)

Let us write the Heisenberg equations i}
.

Ô =
[
Ô, Ĥ

]
for the creation and annihilation

operators using Hamiltonian (38):

.
â = −i(ω0 − iγ)â + iΩ0Ẽ(t) (39)
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.
â
+
= i(ω0 + iγ)â+ − iΩ0Ẽ(t). (40)

We introduce dimensionless operators of coordinate and momentum of a quantum
oscillator using the formulas

Q̂ = â + â+ (41)

P̂ = i
(
â+ − â

)
. (42)

Rewriting Equations (39) and (40) in terms of the variables (41) and (42) we obtain

.
Q̂ = ω0P̂− γQ̂ (43)

.
P̂ = −ω0Q̂− γP̂ + 2Ω0Ẽ(t). (44)

Eliminating the momentum operator from (43) and (44), we arrive at the equation for
the quantum oscillator coordinate operator

..
Q̂ + 2γ

.
Q̂ +

(
ω2

0 + γ2
)

Q̂ = 2ω0Ω0Ẽ(t). (45)

Equation (45) coincides with Equation (33) up to the replacement

ω2
0 → ω2

0 + γ2. (46)

Relation (46) means renormalization of the own frequency of the oscillator with
damping taken into account.

We see that the phenomenological replacement of the own frequency of a quantum
oscillator (37) corresponds to the equation for forced oscillations of damped classical
oscillator with renormalization (46) taken into account. Thus, a connection is traced
between the classical and quantum models of damped HO.

6. Conclusions

We briefly considered the application of the HO model in the classical and quantum
theories of light–matter interaction and on a number of different examples demonstrated
mathematically the correspondence between them. It is shown that this correspondence,
postulately introduced by N. Bohr to describe atomic radiation processes in the frame-
work of classical physics, can be generalized to time dependence and substantiated in the
quantum formalism using the Bloch equations.

The probability of excitation of a quantum HO, derived in the framework of a rigorous
quantum approach, is determined by the excitation energy of the associated classical
oscillator, which, therefore, is the “driver” of its quantum counterpart. The dependence of
the excitation energy of classical HO on the duration of the exciting pulse (τ) is essentially
determined by the pulse envelope. This dependence, when the envelope changes from
exponential to Gaussian, is transformed from a monotonically increasing function into a
function with extrema. The above is true for the τ-dependence of the average number of
excited quanta of the quantum HO, which is equal to the ratio of the excitation energy of
the associated classical HO to the quantum energy.

The phenomenological account for the damping of a quantum HO leads to an equa-
tion for the operator of its coordinates, which coincides with the corresponding classical
equation, up to renormalization of the eigenfrequency of the oscillator.

Thus, it is shown that the quantum-mechanical Bloch equations and the Heisenberg
equations for quantum GO are conjugate with the equation of forced oscillations of a
classical oscillator.
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It follows from the analysis carried out in the present paper that the HO model
has interconnected “projections” on the classical and quantum theory of electromagnetic
processes, thus uniting them into one whole.
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